News Posts matching #LPCAMM

Return to Keyword Browsing

LPDDR6 LPCAMM2 Pictured and Detailed Courtesy of JEDEC

Yesterday we reported on DDR6 memory hitting new heights of performance and it looks like LPDDR6 will follow suit, at least based on details in a JEDEC presentation. LPDDR6 will just like LPDDR5 be available as solder down memory, but it will also be available in a new LPCAMM2 module. The bus speed of LPDDR5 on LPCAMM2 modules is expected to peak at 9.2 GT/s based on JEDEC specifications, but LPDDR6 will extend this to 14.4 GT/s or roughly a 50 percent increase. However, today the fastest and only LPCAMM2 modules on the retail market which are using LPDDR5X, comes in at 7.5 GT/s, which suggests that launch speeds of LPDDR6 will end up being quite far from the peak speeds.

There will be some other interesting changes to LPDDR6 CAMM2 modules as there will be a move from 128-bit per module to 192-bit per module and each channel will go from 32-bits to 48-bits. Part of the reason for this is that LPDDR6 is moving to a 24-bit channel width, consisting of two 12-bit sub channels, as mentioned in yesterday's news post. This might seem odd at first, but in reality is fairly simple, LPDDR6 will have native ECC (Error Correction Code) or EDC (Error Detection Code) support, but it's currently not entirely clear how this will be implemented on a system level. JEDEC is also looking at developing a screwless solution for the CAMM2 and LPCAMM2 memory modules, but at the moment there's no clear solution in sight. We might also get to see LPDDR6 via LPCAMM2 modules on the desktop, although the presentation only mentions CAMM2 for the desktop, something we've already seen that MSI is working on.

Mnemonic and Foresee Showcase Several New Enterprise SSD Models

During the COMPUTEX 2024 exhibition from June 4th to 7th, Mnemonic Electronic Co., Ltd. (hereinafter referred to as Mnemonic), Longsys's Taiwan subsidiary, will showcase a series of high-capacity SSD products under the theme "Embracing the Era of High-capacity SSDs," providing solutions for global users of high-capacity SSD products.

The lineup of high-capacity products presented by Mnemonic includes the ORCA 4836 series enterprise NVMe SSDs and the UNCIA 3836 series enterprise SATA SSDs. These products are equipped with the latest enterprise-grade 128-layer TLC NAND flash memory, offering high performance, low latency, adjustable power consumption, and high reliability storage solutions for enterprise-grade users such as servers, cloud computing, and edge computing, with a maximum capacity of up to 7.68 TB.

Micron Delivers Crucial LPCAMM2 with LPDDR5X Memory for the New AI-Ready Lenovo ThinkPad P1 Gen 7 Workstation

Micron Technology, Inc., today announced the availability of Crucial LPCAMM2, the disruptive next-generation laptop memory form factor that features LPDDR5X mobile memory to level up laptop performance for professionals and creators. Consuming up to 58% less active power and with a 64% space savings compared to DDR5 SODIMMs, LPCAMM2 delivers higher bandwidth and dual-channel support with a single module. LPCAMM2 is an ideal high-performance memory solution for handling AI PC and complex workloads and is compatible with the powerful and versatile Lenovo ThinkPad P1 Gen 7 mobile workstations.

"LPCAMM2 is a game-changer for mobile workstation users who want to enjoy the benefits of the latest mobile high performance memory technology without sacrificing superior performance, upgradeability, power efficiency or space," said Jonathan Weech, senior director of product marketing for Micron's Commercial Products Group. "With LPCAMM2, we are delivering a future-proof memory solution, enabling faster speeds and longer battery life to support demanding creative and AI workloads."

Lenovo Unveils Its New AI-Ready ThinkPad P1 Gen 7 Mobile Workstation

Today, Lenovo launched its latest mobile workstation offerings meticulously crafted to deliver the exceptional power and performance essential for handling complex workloads. Lenovo's ThinkPad P1 Gen 7, P16v i Gen 2, P16s i Gen 3, and P14s i Gen 5, with their cutting-edge AI technologies, are set to transform the way professionals engage with AI workflows. By collaborating with industry partners, Intel, NVIDIA, and Micron, Lenovo has introduced powerful and performance-packed AI PCs that meet the demands of modern-day AI-intensive tasks. The inclusion of the Intel Core Ultra processors with their integrated neural processing unit (NPU) and NVIDIA RTX Ada Generation GPUs signifies a major advancement in AI technology, boosting overall performance and productivity capabilities.

The latest ThinkPad P series mobile workstations powered by Intel Core Ultra processors and NVIDIA RTX Ada Generation GPUs deliver flexible, high-performance, and energy-efficient AI-ready PCs. The integrated NPU is dedicated to handling light, continuous AI tasks, while the NVIDIA GPU runs more demanding day-to-day AI processing. This combination enables smooth and reliable functioning of AI technologies, serving professionals engaged in diverse tasks ranging from 3D modeling and scene development to AI inferencing and training.

Samsung Electronics' Industry-First LPCAMM Ushers in Future of Memory Modules

Samsung Electronics, a world leader in advanced memory technology, today announced that it has developed the industry's first Low Power Compression Attached Memory Module (LPCAMM) form factor, which is expected to transform the DRAM market for PCs and laptops - and potentially even data centers. Samsung's groundbreaking development for its 7.5 gigabits-per-second (Gbps) LPCAMM has completed system verification through Intel's platform. Historically, PCs and laptops have conventionally used LPDDR DRAM or DDR-based So-DIMMs. While LPDDR is compact, it's permanently attached to the motherboard, making it challenging to replace during repairs or upgrades. On the other hand, So-DIMMs can be attached or detached easily but have limitations with performance and other physical features.

LPCAMM overcomes the shortcomings of both LPDDR and So-DIMMs, addressing the increased demand for more efficient yet compact devices. Being a detachable module, LPCAMM offers enhanced flexibility for PC and laptop manufacturers during the production process. Compared to So-DIMM, LPCAMM occupies up to 60% less space on the motherboard. This allows more efficient use of devices' internal space while also improving performance by up to 50% and power efficiency by up to 70%. LPDDR's power-saving features have made it an attractive option for servers, since it could potentially improve total cost of operation (TCO) efficiency. However, using LPDDR can create operational difficulties such as the need to replace the entire motherboard when upgrading a server's DRAM specifications. LPCAMM offers a solution to these challenges, creating significant potential for it to become the solution of choice for future data centers and servers.
Return to Keyword Browsing
Jun 2nd, 2024 15:13 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts