News Posts matching #Samsung

Return to Keyword Browsing

NVIDIA Devouring Chips Faster than South Korea's Supply, Lowest Inventory in 10 Years

South Korea's stock of semiconductor chips dropped more than it has since 2014. This big decrease shows that customers are buying chips faster than companies can make them, as they need more equipment for developing artificial intelligence (AI) technology. Official data released on May 31 revealed that in April, chip inventories fell by 33.7% compared to a year earlier - the largest drop since late 2014. This is the fourth month in a row that inventories have declined, while at the same time South Korea's exports of semiconductors have gone up again. Additionally, South Korea's production of chips rose 22.3% in April, which is less than the 30.2% increase from the previous month. Shipments from factories grew 18.6%, also lower than March's 16.4% growth.

South Korea is home to the two biggest memory chipmakers in the world (Samsung and SK Hynix), and they are competing to supply chips to NVIDIA, the latest having an insatiable appetite for more and more chips. These two Korean companies are in a race to develop a more advanced and more profitable version of high-bandwidth memory, or HBM. During the memory chip boom from 2013-2015, inventories didn't increase for about a year and a half. In the 2016-2017 cycle, inventory declines lasted nearly a year. A report from South Korea's central bank expects the latest surge in chip demand to continue at least until the first half of next year. This is because the "artificial intelligence boom" is driving up demand similarly to how cloud servers caused an expansion in 2016, and now mostly forgotten crypto-mining fever. South Korea will release its latest export data on June 1.
NVIDIA Chips South Korea South Korea Chips Inventory April 2024

Samsung Strike Has No Immediate Impact on Memory Production, with No Shipment Shortages

The Samsung Electronics Union is reportedly planning to strike on June 7, TrendForce reports that this strike will not impact DRAM and NAND Flash production, nor will it cause any shipment shortages. Additionally, the spot prices for DRAM and NAND Flash had been declining prior to the strike announcement, and there has been no change in this downtrend since the announcement.

Samsung's global share of DRAM and NAND Flash output in 2023 was 46.8% and 32.4%, respectively. Even though the South Korean plants account for all 46.8% of global DRAM production and about 17.8% of global NAND Flash production, TrendForce identifies four reasons why this strike will not impact production. Firstly, the strike involves employees at Samsung's headquarters in Seocho, Seoul, where union participation in higher, but these employees do not directly engage in production. Secondly, this strike is planned for only one day, which falls within the flexible scheduling range for production.

Growing Demand for High-Capacity Storage Propels Enterprise SSD Revenue Up by Over 60% in 1Q24

TrendForce reports that a reduction in supplier production has led to unmet demand for high-capacity orders since 4Q23. Combined with procurement strategies aimed at building low-cost inventory, this has driven orders and significantly boosted enterprise SSD revenue, which reached US$3.758 billion in 1Q24—a staggering 62.9% QoQ increase.

TrendForce further highlights that demand for high-capacity, driven by AI servers, has surged. North American clients increasingly adopt high-capacity QLC SSDs to replace HDDs, leading to over 20% growth in Q2 enterprise SSD bit procurement. This has also driven up Q2 enterprise SSD contract prices by more than 20%, with revenue expected to grow by another 20%.

AMD Wants to Tap Samsung Foundry for 3 nm GAAFET Process

According to a report by KED Global, Korean chipmaking giant Samsung is ramping up its efforts to compete with global giants like TSMC and Intel. The latest partnership on the horizon is AMD's collaboration with Samsung. AMD is planning to utilize Samsung's cutting-edge 3 nm technology for its future chips. More specifically, AMD wants to utilize Samsung's gate-all-around FETs (GAAFETs). During ITF World 2024, AMD CEO Lisa Su noted that the company intends to use 3 nm GAA transistors for its future products. The only company offering GAAFETs on a 3 nm process is Samsung. Hence, this report from KED gains more credibility.

While we don't have any official information, AMD's utilization of a second foundry as a manufacturing partner would be a first for the company in years. This strategic move signifies a shift towards dual-sourcing, aiming to diversify its supply chain and reduce dependency on a single manufacturer, previously TSMC. We still don't know what specific AMD products will use GAAFETs. AMD could use them for CPUs, GPUs, DPUs, FPGAs, and even data center accelerators like Instinct MI series.

Samsung Could Start 1nm Mass Production Sooner Than Expected

Samsung Foundry business is set to announce its technology roadmap and plans to strengthen the foundry ecosystem at the Foundry and SAFE Forum in Silicon Valley from June 12 to 13. Notably, Samsung is expected to advance its 1 nm process mass production plan, originally scheduled for 2027, to 2026. This move could look like a surprise since recent rumors (denied by Samsung) emerged about HBM3 and HBM3E chips running too hot and failing to be validated by NVIDIA.

Previously, Samsung successfully mass-produced the world's first 3 nm wafer foundry in June 2022. The company plans to start mass production of its second-generation 3 nm process in 2024 and 2 nm process in 2025. Speculations suggest Samsung may integrate these nodes and potentially begin mass-producing 2 nm chips as early as the second half of 2024. In comparison, rival TSMC aims to reach the A16 node (1.6 nm) in 2027 and start mass production of its 1.4 nm process around 2027-2028.
Samsung Foundry

Micron DRAM Production Plant in Japan Faces Two-Year Delay to 2027

Last year, Micron unveiled plans to construct a cutting-edge DRAM factory in Hiroshima, Japan. However, the project has faced a significant two-year delay, pushing back the initial timeline for mass production of the company's most advanced memory products. Originally slated to begin mass production by the end of 2025, Micron now aims to have the new facility operational by 2027. The complexity of integrating extreme ultraviolet lithography (EUV) equipment, which enables the production of highly advanced chips, has contributed to the delay. The Hiroshima plant will produce next-generation 1-gamma DRAM and high-bandwidth memory (HBM) designed for generative AI applications. Micron expects the HBM market, currently dominated by rivals SK Hynix and Samsung, to experience rapid growth, with the company targeting a 25% market share by 2025.

The project is expected to cost between 600 and 800 billion Japanese yen ($3.8 to $5.1 billion), with Japan's government covering one-third of the cost. Micron has received a subsidy of up to 192 billion yen ($1.2 billion) for construction and equipment, as well as a subsidy to cover half of the necessary funding to produce HBM at the plant, amounting to 25 billion yen ($159 million). Despite the delay, the increased investment in the factory reflects Micron's commitment to advancing its memory technology and capitalizing on the growing demand for HBM. An indication of that is the fact that customers have pre-ordered 100% of the HBM capacity for 2024, not leaving a single HBM die unused.

NAND Flash Industry Revenue Grew 28.1% in 1Q24, Growth Expected to Continue into Q2

TrendForce reports that adoption of enterprise SSDs by AI servers began in February, which subsequently led to large orders. Additionally, PC and smartphone customers have been increasing their inventory levels to manage rising prices. This trend drove up NAND Flash prices and shipment levels in 1Q24 and boosted quarterly revenue by 28.1% to US$14.71 billion.

There were significant changes in market rankings this quarter, with Micron overtaking Western Digital to claim the fourth spot. Micron benefited from slightly lower prices and shipments than its competitors in 4Q23, resulting in a 51.2% QoQ revenue growth to $1.72 billion in 1Q24—the highest among its peers.

China Launches Massive $47.5 Billion "Big Fund" to Boost Domestic Chip Industry

Beijing has doubled down on its push for semiconductor self-sufficiency with the establishment of a new $47.5 billion investment fund to accelerate growth in the domestic chip sector. The fund, officially registered on May 24th under the name "China Integrated Circuit Industry Investment Fund Phase III", represents the largest of three state-backed vehicles aimed at cultivating China's semiconductor capabilities. The announcement comes as tensions over advanced chip technology continue to escalate between the U.S. and China. Over the past couple years, Washington has steadily ratcheted up export controls on semiconductors to Beijing over national security concerns about potential military applications. These measures have lent new urgency to China's quest for self-sufficiency in chip design and manufacturing.

With a war chest of 344 billion yuan ($47.5 billion), the "Big Fund" dwarfs the combined capital of the first two semiconductor investment vehicles launched in 2014 and 2019. Officials have outlined a multipronged strategy targeting key bottlenecks, focusing on equipment for chip fabrication plants. The fund has bankrolled major projects such as flash memory maker Yangtze Memory Technologies and leading foundries like SMIC and Huahong. China's homegrown chip industry still needs to catch up to global leaders like Intel, Samsung, and TSMC. However, the immense scale of state-directed capital illustrates Beijing's unwavering commitment to developing a self-reliant supply chain for semiconductors—a technology viewed as indispensable for economic and military competitiveness. News of the "Big Fund" sent Chinese chip stocks surging over 3% on hopes of fresh financing tailwinds.

NVIDIA Reportedly Having Issues with Samsung's HBM3 Chips Running Too Hot

According to Reuters, NVIDIA is having some major issues with Samsung's HBM3 chips, as NVIDIA hasn't managed to finalise its validations of the chips. Reuters are citing multiple sources that are familiar with the matter and it seems like Samsung is having some serious issues with its HMB3 chips if the sources are correct. Not only do the chips run hot, which itself is a big issue due to NVIDIA already having issues cooling some of its higher-end products, but the power consumption is apparently not where it should be either. Samsung is said to have tried to get its HBM3 and HBM3E parts validated by NVIDIA since sometime in 2023 according to Reuter's sources, which suggests that there have been issues for at least six months, if not longer.

The sources claim there are issues with both the 8- and 12-layer stacks of HMB3E parts from Samsung, suggesting that NVIDIA might only be able to supply parts from Micron and SK Hynix for now, the latter whom has been supplying HBM3 chips to NVIDIA since the middle of 2022 and HBM3E chips since March of this year. It's unclear if this is a production issue at Samsung's DRAM Fabs, a packaging related issue or something else entirely. The Reuter's piece goes on to speculating about Samsung not having had enough time to develop its HBM parts compared its competitors and that it's a rushed product, but Samsung issued a statement to the publication that it's a matter of customising the product for its customer's needs. Samsung also said that it's "the process of optimising its products through close collaboration with customers" without going into which customer(s). Samsung issued a further statement saying that "claims of failing due to heat and power consumption are not true" and that testing was going as expected.

Galaxy Book4 Edge: Samsung's Next-Gen AI PC Expands the Galaxy AI Ecosystem

Samsung Electronics today unveiled the Galaxy Book4 Edge, the next-generation of AI PCs. With 45 TOPS NPU AI computing performance and cutting-edge hybrid AI integrations, the Galaxy Book4 Edge amplifies the PC experience and offers the most hyperconnected mobile AI ecosystem yet. Together, Samsung and leading industry partners are propelling AI innovation and unleashing a next-generation AI PC with the Galaxy Book4 Edge.

"The Galaxy Book4 Edge expands our vision of AI connectivity—bridging the gap between mobile and PC, while democratizing AI experiences that change the way we operate each and every day," said TM Roh, President and Head of Mobile eXperience Business at Samsung Electronics. "This next-generation AI PC unlocks new levels of computing performance, made possible by our proven Samsung Galaxy interface and open collaboration with industry leaders to bring our users world-class hardware and software solutions."

HBM3e Production Surge Expected to Make Up 35% of Advanced Process Wafer Input by End of 2024

TrendForce reports that the three largest DRAM suppliers are increasing wafer input for advanced processes. Following a rise in memory contract prices, companies have boosted their capital investments, with capacity expansion focusing on the second half of this year. It is expected that wafer input for 1alpha nm and above processes will account for approximately 40% of total DRAM wafer input by the end of the year.

HBM production will be prioritized due to its profitability and increasing demand. However, limited yields of around 50-60% and a wafer area 60% larger than DRAM products mean a higher proportion of wafer input is required. Based on the TSV capacity of each company, HBM is expected to account for 35% of advanced process wafer input by the end of this year, with the remaining wafer capacity used for LPDDR5(X) and DDR5 products.

Pair of Samsung Arm Powered Galaxy Book4 Edge Noteboks Leaks Ahead of Launch

Later today we're expecting to see several Arm based notebooks running Windows 11 being announced, at least based on launch event announcements by some of the manufacturers. Two upcoming Samsung models have leaked ahead of the product launches and it appears that Samsung will at least offer a pair of different models with either a 14-inch or a 16-inch display as the Galaxy Book4 Edge 14 and Galaxy Book4 Edge 16. The latter is also said to come in a Pro model. According to Winfuture, all three models will feature Qualcomm's Snapdragon X processors, although the specific SKUs are currently unknown.

Both the 14-inch and 16-inch models are said to come with AMOLED displays with a 3K resolution, which is at least 2880 by something, but could be higher. The displays are said to have a brightness of up to 400 nits, but little else is known about the displays. Other known features include USB4 support—as it's part of the Qualcomm specs—and both sizes appear to feature two Type-C ports, plus a regular USB Type-A port of unknown speed and a micro SD card slot on the 16-inch models. There's also an HDMI port and a headset jack on both sizes of the Galaxy Book4 Edge. Winfuture claims the base model will start at around €1,800.

TSMC Unveils Next-Generation HBM4 Base Dies, Built on 12 nm and 5 nm Nodes

During the European Technology Symposium 2024, TSMC has announced its readiness to manufacture next-generation HBM4 base dies using both 12 nm and 5 nm nodes. This significant development is expected to substantially improve the performance, power consumption, and logic density of HBM4 memory, catering to the demands of high-performance computing (HPC) and artificial intelligence (AI) applications. The shift from a traditional 1024-bit interface to an ultra-wide 2048-bit interface is a key aspect of the new HBM4 standard. This change will enable the integration of more logic and higher performance while reducing power consumption. TSMC's N12FFC+ and N5 processes will be used to produce these base dies, with the N12FFC+ process offering a cost-effective solution for achieving HBM4 performance and the N5 process providing even more logic and lower power consumption at HBM4 speeds.

The company is collaborating with major HBM memory partners, including Micron, Samsung, and SK Hynix, to integrate advanced nodes for HBM4 full-stack integration. TSMC's base die, fabricated using the N12FFC+ process, will be used to install HBM4 memory stacks on a silicon interposer alongside system-on-chips (SoCs). This setup will enable the creation of 12-Hi (48 GB) and 16-Hi (64 GB) stacks with per-stack bandwidth exceeding 2 TB/s. TSMC's collaboration with EDA partners like Cadence, Synopsys, and Ansys ensures the integrity of HBM4 channel signals, thermal accuracy, and electromagnetic interference (EMI) in the new HBM4 base dies. TSMC is also optimizing CoWoS-L and CoWoS-R for HBM4 integration, meaning that massive high-performance chips are already utilizing this technology and getting ready for volume manufacturing.

Shipments of OLED Monitors Hit 200,000 Units in 1Q24, Annual Forecast to Reach 1.34 Million

TrendForce's latest report reveals a robust start to 2024 for OLED monitors, with shipments reaching approximately 200,000 units in the first quarter—marking a YoY growth of 121%. The momentum is expected to continue into the second quarter, which is set to see quarterly growth of 52% as new models hit the market, bringing the total for the first half to 500,000 units. With brands ramping up investments and panel makers launching new products alongside aggressive promotions, annual shipments are projected to soar to 1.34 million units, achieving an impressive 161% growth rate.

Samsung leads the market share in the first quarter with 36%, driven by strong sales of its 49-inch models which offer a significant cost-performance advantage—being only 20% more expensive than their LCD counterparts. Notably, Samsung's plan to introduce 27-inch and 31.5-inch models in Q2, which are expected to further boost its OLED shipments.

Samsung Electronics Announces First Quarter 2024 Results

Samsung Electronics today reported financial results for the first quarter ended March 31, 2024. The Company posted KRW 71.92 trillion in consolidated revenue on the back of strong sales of flagship Galaxy S24 smartphones and higher prices for memory semiconductors. Operating profit increased to KRW 6.61 trillion as the Memory Business returned to profit by addressing demand for high value-added products. The Mobile eXperience (MX) Business posted higher earnings and the Visual Display and Digital Appliances businesses also recorded increased profitability.

The weakness of the Korean won against major currencies resulted in a positive impact on company-wide operating profit of about KRW 0.3 trillion compared to the previous quarter. The Company's total capital expenditures in the first quarter stood at KRW 11.3 trillion, including KRW 9.7 trillion for the Device Solutions (DS) Division and KRW 1.1 trillion on Samsung Display Corporation (SDC). Spending on memory was focused on facilities and packaging technologies to address demand for High Bandwidth Memory (HBM), DDR5 and other advanced products, while foundry investments were concentrated on establishing infrastructure to meet medium- to long-term demand. Display investments were mainly made in IT OLED products and flexible display technologies.

AI Demand Drives Rapid Growth in QLC Enterprise SSD Shipments for 2024

North American customers are increasing their orders for storage products as energy efficiency becomes a key priority for AI inference servers. This, in turn, is driving up demand for QLC enterprise SSDs. Currently, only Solidigm and Samsung have certified QLC products, with Solidigm actively promoting its QLC products and standing to benefit the most from this surge in demand. TrendForce predicts shipments of QLC enterprise SSD bits to reach 30 exabytes in 2024—increasing fourfold in volume from 2023.

TrendForce identifies two main reasons for the increasing use of QLC SSDs in AI applications: the products' fast read speeds and TCO advantages. AI inference servers primarily perform read operations, which occur less frequently than the data writing required by AI training servers. In comparison to HDDs, QLC enterprise SSDs offer superior read speeds and have capacities that have expanded up to 64 TB.

Samsung Signs $3 Billion HBM3E 12H Supply Deal with AMD

Korean media reports that Samsung Electronics has signed a 4.134 trillion Won ($3 billion) agreement with AMD to supply 12-high HBM3E stacks. AMD uses HBM stacks in its AI and HPC accelerators based on its CDNA architecture. This deal is significant, as it gives analysts some idea of the kind of volumes of AI GPUs AMD is preparing to push into the market, if they know what percent of an AI GPU's bill of materials is made up by memory stacks. AMD has probably negotiated a good price for Samsung's HBM3E 12H stacks, given that rival NVIDIA almost exclusively uses HBM3E made by SK Hynix.

The AI GPU market is expected to heat up with the ramp of NVIDIA's "Hopper" H200 series, the advent of "Blackwell," AMD's MI350X CDNA3, and Intel's Gaudi 3 generative AI accelerator. Samsung debuted its HBM3E 12H memory in February 2024. Each stack features 12 layers, a 50% increase over the first generation of HBM3E, and offers a density of 36 GB per stack. An AMD CDNA3 chip with 8 such stacks would have 288 GB of memory on package. AMD is expected to launch the MI350X in the second half of 2024. The star attraction with this chip is its refreshed GPU tiles built on the TSMC 4 nm EUV foundry node. This seems like the ideal product for AMD to debut HBM3E 12H on.

Samsung Electronics Begins Industry's First Mass Production of 9th-Gen V-NAND

Samsung Electronics Co., Ltd., the world leader in advanced memory technology, today announced that it has begun mass production for its one-terabit (Tb) triple-level cell (TLC) 9th-generation vertical NAND (V-NAND), solidifying its leadership in the NAND flash market.

"We are excited to deliver the industry's first 9th-gen V-NAND, which will bring future applications leaps forward. In order to address the evolving needs for NAND flash solutions, Samsung has pushed the boundaries in cell architecture and operational scheme for our next-generation product," said SungHoi Hur, Head of Flash Product & Technology at Samsung Electronics. "Through our latest V-NAND, Samsung will continue to set the trend for the high-performance, high-density solid state drive (SSD) market that meets the needs for the coming AI generation."

Samsung and Qualcomm Achieve Innovative Industry-First Milestone With Advanced Modulation Technology

Samsung Electronics and Qualcomm Technologies, Inc. today announced that the companies successfully completed 1024 Quadrature Amplitude Modulation (QAM) tests for both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) spectrum bands, marking an industry-first for FDD. This innovative milestone and collaboration demonstrate the companies' dedication to supporting operators increase 5G throughput and boost spectral efficiency of their networks.

QAM is an advanced modulation technology to transmit data or information more efficiently. This directly relates to how many bits of data can be delivered in each transmission. While 256 QAM is widely used in commercial networks, Samsung and Qualcomm Technologies recently accomplished the latest 1024 QAM defined in 3GPP Release 17 specifications. This enhanced QAM technology helps operators maximize their use of spectrum resources and allows mobile users to seamlessly enjoy various mobile services such as live video streaming and online multi-player gaming, which require higher download speeds.

Samsung Introduces 512GB Capacity BAR Plus and FIT Plus USB Flash Drives

Samsung Electronics America, the leader in advanced memory technology, today announced a new 512 GB capacity for its BAR Plus and FIT Plus USB 3.2 Gen 1 Flash Drives. The newest drives introduce more storage capacity to the lineup in the same sleek designs, perfect for storing your favorite tunes, irreplaceable photos/videos, and important work or school documents. These USB flash drives help you back up your data and save time thanks to their high capacity, quick speeds, wide device compatibility, and reliability.

"We recognize that professionals across the U.S. have more data storage needs than ever. That's why we're introducing a new size option within our cutting-edge BAR Plus and FIT Plus USB Flash Drive line-up, ensuring there is a storage solution for everyone," said Jose Hernandez, Senior Director of Memory Product Marketing at Samsung. "The drives are also intentionally designed to fit your personal style - whether you prefer something sleek and modern or unassuming and traditional, you can always be plugged in."

Samsung Develops Industry's Fastest 10.7Gbps LPDDR5X DRAM

Samsung Electronics, a world leader in advanced memory technology, today announced that it has developed the industry's first LPDDR5X DRAM supporting the industry's highest performance of up to 10.7 gigabits-per-second (Gbps). Leveraging 12 nanometer (nm)-class process technology, Samsung has achieved the smallest chip size among existing LPDDRs, solidifying its technological leadership in the low-power DRAM market.

"As demand for low-power, high-performance memory increases, LPDDR DRAM is expected to expand its applications from mainly mobile to other areas that traditionally require higher performance and reliability such as PCs, accelerators, servers and automobiles," said YongCheol Bae, Executive Vice President of Memory Product Planning of the Memory Business at Samsung Electronics. "Samsung will continue to innovate and deliver optimized products for the upcoming on-device AI era through close collaboration with customers." With the surge in AI applications, on-device AI, which enables direct processing on devices, is becoming increasingly crucial, underscoring the need for low-power, high-performance LPDDR memory.

Samsung Readies 290-layer 3D NAND for May 2024 Debut, Planning 430-layer for 2025

Samsung is preparing to launch its 9th Generation V-NAND (3D NAND flash) memory next month, Korean publication Hankyung reports. The 9th Gen 3D NAND flash memory by Samsung is expected to offer 290 layers, a step-up from the 236-layer 8th Gen V-NAND that the company debuted in 2022. Samsung reportedly achieved the 290-layer vertical stacking density through improvements in its flash layer stacking techniques that relies on increasing the layer counts through more memory holes in the flash layer. The cost here is data density per wafer, but a net gain from the increase in layer counts.

The same source behind the 9th Gen V-NAND story also reports that the company is targeting a rather early 2025 launch for its successor—the 10th Gen V-NAND. This is expected to be a mammoth 430-layer 3D NAND flash, a jump of 140 layers over the 9th Gen (which itself jumped by 54 layers over its predecessor). This would put Samsung back on track along with its competitors, Kioxia, SK Hynix, Micron Technology, and YMTC, as they gun for the ambitious goal of 1000-layer 3D NAND flash by 2030.
Many Thanks to TumbleGeorge for the tip.

DRAM Manufacturers Gradually Resume Production, Impact on Total Q2 DRAM Output Estimated to Be Less Than 1%

Following in the wake of an earthquake that struck on April 3rd, TrendForce undertook an in-depth analysis of its effects on the DRAM industry, uncovering a sector that has shown remarkable resilience and faced minimal interruptions. Despite some damage and the necessity for inspections or disposal of wafers among suppliers, the facilities' strong earthquake preparedness of the facilities has kept the overall impact to a minimum.

Leading DRAM producers, including Micron, Nanya, PSMC, and Winbond had all returned to full operational status by April 8th. In particular, Micron's progression to cutting-edge processes—specifically the 1alpha and 1beta nm technologies—is anticipated to significantly alter the landscape of DRAM bit production. In contrast, other Taiwanese DRAM manufacturers are still working with 38 and 25 nm processes, contributing less to total output. TrendForce estimates that the earthquake's effect on DRAM production for the second quarter will be limited to a manageable 1%.

Samsung Announces New EVO Select and EVO Plus microSD Cards with Improved Speeds

Samsung Electronics America, the leader in advanced memory technology, today introduced the latest iteration of its EVO Select and EVO Plus microSD cards, designed for mobile devices and handheld gaming consoles. The Samsung EVO Select and EVO Plus microSD cards boast increased transfer speeds of up to 160 MB/s, a 23% increase over their predecessors. They offer a turnkey way for everyday users and gamers to add storage space to their devices for content like games, files, photos, and videos.

"With the mobile and handheld gaming market on the rise, we sought to make data transfers on those devices even faster with these updated EVO Select and EVO Plus lines," said Jose Hernandez, Senior Director of Memory Product Marketing at Samsung. "We also heard the need for more space options like a 1 TB memory card for digital files like games, video footage from phones, cameras and drones, photos, and creative designs. With this addition to the lineup, you can be confident you'll have plenty of space, fast speeds and the durability needed to last for years to come."

Samsung Semiconductor Discusses "Water Stress" & Impact of Production Expansion

"The Earth is Blue," said Yuri Gagarin, the first human to journey into space. With two-thirds of its surface covered in water, Earth is a planet that exuberates its blue radiance in the dark space. However, today, the scarcity of water is a challenge that planet Earth is confronted with. For some, this may be hard to understand. What happened to our blue planet Earth? To put in numbers, more than 97% of the water on Earth consists of seawater, with another 2% locked in ice caps. That only leaves a mere 1% of water available for our daily use. The problem lies in the fact that this 1% of water is gradually becoming scarcer due to reasons such as climate change, environmental pollution, and population growth, leading to increased water stress. 'Water stress' is quantified by the proportion of water demand to the available water resources on an annual basis, indicating the severity of water scarcity as the stress index rises. Higher stress indexes signify experiencing severe water scarcity.

The semiconductor ecosystem, unsustainable without water
Because water stress issues transcend national boundaries, various stakeholders including international organizations and governments work to negotiate water resource management strategies and promote collaboration. UN designates March 22nd as an annual "World Water Day" to raise awareness about the severity of water scarcity running various campaigns. Now, it's imperative for companies to also take responsibility for the water resources given and pursue sustainable management.
Return to Keyword Browsing
May 31st, 2024 16:33 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts