• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

IBM Research Announces New Advances in Device Performance for Quantum Computing

btarunr

Editor & Senior Moderator
Staff member
Joined
Oct 9, 2007
Messages
46,274 (7.69/day)
Location
Hyderabad, India
System Name RBMK-1000
Processor AMD Ryzen 7 5700G
Motherboard ASUS ROG Strix B450-E Gaming
Cooling DeepCool Gammax L240 V2
Memory 2x 8GB G.Skill Sniper X
Video Card(s) Palit GeForce RTX 2080 SUPER GameRock
Storage Western Digital Black NVMe 512GB
Display(s) BenQ 1440p 60 Hz 27-inch
Case Corsair Carbide 100R
Audio Device(s) ASUS SupremeFX S1220A
Power Supply Cooler Master MWE Gold 650W
Mouse ASUS ROG Strix Impact
Keyboard Gamdias Hermes E2
Software Windows 11 Pro
Scientists at IBM Research (NYSE: IBM)/ (#ibmresearch) have achieved major advances in quantum computing device performance that will accelerate the realization of a practical, full-scale quantum computer. For specific applications, quantum computing which leverages the underlying quantum mechanical behavior of matter has the potential to deliver computational power that is unrivaled by any supercomputer today.

Using a variety of techniques in the IBM labs, scientists have established three new records for reducing the error in elementary computations and retaining the integrity of quantum mechanical properties in quantum bits (qubits) - the basic units that carry information within quantum computing. Furthermore, IBM has chosen to employ superconducting qubits which use established microfabrication techniques developed for silicon technology, providing the potential to one day scale up to and manufacture thousands or millions of qubits.



IBM researchers will be presenting their latest results today at the annual American Physical Society meeting taking place February 27-March 1, 2012 in Boston, MA.

The Possibilities of Quantum Computing
The special properties of qubits allow a quantum computer to work on millions of computations at once, while a desktop PC can typically handle minimal computations at a time. For example, a single 250-qubit state contains more bits of information than there are particles in the universe.

These properties will have wide-spread implications foremost for the field of data encryption where quantum computers could factor very large numbers like those used to decode and encode sensitive information.

"The quantum computing work we are doing shows it is no longer just a brute force physics experiment. It's time to start creating systems based on this science that will take computing to a whole new level," says IBM scientist Matthias Steffen, manager of the IBM Research team that's focused on developing quantum computing systems to a point where it can be applied to real-world problems.

Numerous other applications could include searching databases of unstructured information, performing a range of optimization tasks and solving new interesting mathematical problems.

How Quantum Computing Works
The most basic piece of information that a classical computer understands is a bit. Much like a light that can be switched on or off, a bit can have only one of two values: "1" or "0". For qubits, they can hold a value of "1" or "0" as well as both values at the same time. Described as superposition, this is what allows quantum computers to perform millions of calculations at once.

One of the great challenges for scientists seeking to harness the power of quantum computing is controlling or removing quantum decoherence - the creation of errors in calculations caused by interference from factors such as heat, electromagnetic radiation, and materials defects. To deal with this problem, scientists have been experimenting for years to discover ways of reducing the number of errors and of lengthening the time periods over which the qubits retain their quantum mechanical properties. When this time is sufficiently long, error correction schemes become effective making it possible to perform long and complex calculations.

There are many viable systems that can potentially lead to a functional quantum computer. IBM is focusing on using superconducting qubits that will allow a more facile transition to scale up and manufacturing.

IBM has recently been experimenting with a unique "three dimensional" superconducting qubit (3D qubit), an approach that was initiated at Yale University. Among the results, the IBM team has used a 3D qubit [technical paper available] to extend the amount of time that the qubits retain their quantum states up to 100 microseconds. This value reaches just past the minimum threshold to enable effective error correction schemes and suggests that scientists can begin to focus on broader engineering aspects for scalability.

In separate experiments, the group at IBM also demonstrated a more traditional "two-dimensional" qubit (2D qubit) device and implemented a two-qubit logic operation - a controlled-NOT (CNOT) operation [technical paper available], which is a fundamental building block of a larger quantum computing system. Their operation showed a 95 percent success rate, enabled in part due to the long coherence time of nearly 10 microseconds. These numbers are on the cusp of effective error correction schemes and greatly facilitate future multi-qubit experiments.


IBM and Quantum Computing Leadership
The implementation of a practical quantum computer poses tremendous scientific and technological challenges, but all results taken together paint a very favorable picture for realizing the first practical quantum computer in the not too distant future.

Core device technology and performance metrics at IBM have undergone a series of amazing advancements by a factor of 100 to 1,000 times since the middle of 2009, culminating in the recent results that are very close to the minimum requirements for a full-scale quantum computing system as determined by the world-wide research community. In these advances, IBM stresses the importance and value of the ongoing exchange of information and learning with the quantum computing research community as well as direct university and industrial collaborations.

"The superconducting qubit research led by the IBM team has been progressing in a much focused way on the road to a reliable, scalable quantum computer. The device performance that they have now reported brings them nearly to the tipping point; we can now see the building blocks that will be used to prove that error correction can be effective, and that reliable logical qubits can be realized," observes David DiVincenzo, professor at the Institute of Quantum Information, Forschungszentrum Juelich.

Based on this progress, optimism about superconducting qubits and the possibilities for a future quantum computer are rapidly growing. While most of the work in the field to date has focused on improvements in device performance, efforts in the community now must now include systems integration aspects, such as assessing the classical information processing demands for error correction, I/O issues, feasibility, and costs with scaling.

IBM envisions a practical quantum computing system as including a classical system intimately connected to the quantum computing hardware. Expertise in communications and packaging technology will be essential at and beyond the level presently practiced in the development of today's most sophisticated digital computers.

View at TechPowerUp Main Site
 

trickson

OH, I have such a headache
Joined
Dec 5, 2004
Messages
7,595 (1.08/day)
Location
Planet Earth.
System Name Ryzen TUF.
Processor AMD Ryzen7 3700X
Motherboard Asus TUF X570 Gaming Plus
Cooling Noctua
Memory Gskill RipJaws 3466MHz
Video Card(s) Asus TUF 1650 Super Clocked.
Storage CB 1T M.2 Drive.
Display(s) 73" Soney 4K.
Case Antech LanAir Pro.
Audio Device(s) Denon AVR-S750H
Power Supply Corsair TX750
Mouse Optical
Keyboard K120 Logitech
Software Windows 10 64 bit Home OEM
Yes this is all well and good, But can it play Crysis?
 
Joined
Jan 11, 2009
Messages
9,231 (1.66/day)
Location
Montreal, Canada
System Name Homelabs
Processor Ryzen 5900x | Ryzen 1920X
Motherboard Asus ProArt x570 Creator | AsRock X399 fatal1ty gaming
Cooling Silent Loop 2 280mm | Dark Rock Pro TR4
Memory 128GB (4x32gb) DDR4 3600Mhz | 128GB (8x16GB) DDR4 2933Mhz
Video Card(s) EVGA RTX 3080 | ASUS Strix GTX 970
Storage Optane 900p + NVMe | Optane 900p + 8TB SATA SSDs + 48TB HDDs
Display(s) Alienware AW3423dw QD-OLED | HP Omen 32 1440p
Case be quiet! Dark Base Pro 900 rev 2 | be quiet! Silent Base 800
Power Supply Corsair RM750x + sleeved cables| EVGA P2 750W
Mouse Razer Viper Ultimate (still has buttons on the right side, crucial as I'm a southpaw)
Keyboard Razer Huntsman Elite, Pro Type | Logitech G915 TKL
Can it play Metro 2033 with 6x 2560 x 1600 Eyefinity and 16x SSAA at a steady 60 fps?
 

trickson

OH, I have such a headache
Joined
Dec 5, 2004
Messages
7,595 (1.08/day)
Location
Planet Earth.
System Name Ryzen TUF.
Processor AMD Ryzen7 3700X
Motherboard Asus TUF X570 Gaming Plus
Cooling Noctua
Memory Gskill RipJaws 3466MHz
Video Card(s) Asus TUF 1650 Super Clocked.
Storage CB 1T M.2 Drive.
Display(s) 73" Soney 4K.
Case Antech LanAir Pro.
Audio Device(s) Denon AVR-S750H
Power Supply Corsair TX750
Mouse Optical
Keyboard K120 Logitech
Software Windows 10 64 bit Home OEM

qubit

Overclocked quantum bit
Joined
Dec 6, 2007
Messages
17,866 (3.00/day)
Location
Quantum Well UK
System Name Quantumville™
Processor Intel Core i7-2700K @ 4GHz
Motherboard Asus P8Z68-V PRO/GEN3
Cooling Noctua NH-D14
Memory 16GB (2 x 8GB Corsair Vengeance Black DDR3 PC3-12800 C9 1600MHz)
Video Card(s) MSI RTX 2080 SUPER Gaming X Trio
Storage Samsung 850 Pro 256GB | WD Black 4TB | WD Blue 6TB
Display(s) ASUS ROG Strix XG27UQR (4K, 144Hz, G-SYNC compatible) | Asus MG28UQ (4K, 60Hz, FreeSync compatible)
Case Cooler Master HAF 922
Audio Device(s) Creative Sound Blaster X-Fi Fatal1ty PCIe
Power Supply Corsair AX1600i
Mouse Microsoft Intellimouse Pro - Black Shadow
Keyboard Yes
Software Windows 10 Pro 64-bit
Muhahaha, once again I get to take over the world!!! :laugh:
 
Joined
Jan 19, 2006
Messages
34 (0.01/day)
Processor AMD Ryzen 5 2600
Motherboard MSI MAG X570 Tomahawk WIFI
Cooling Noctua NH-U12S
Memory Patriot DDR4 3600 16GB Viper LED CL16
Video Card(s) Sapphire PULSE AMD Radeon RX 6700 10GB
Storage Kingston KC3000 1TB M 2 NVMe, Samsung 970 Evo 250GB, Toshiba DT01ACA300
Display(s) ASUS PB258Q
Case Coolermaster Cavalier 3
Power Supply Cooler Master SilentPro 500W
Mouse G305
Software Microsoft Windows 11
It can play 1000 Crysis and 1000 Metro2033.
Simultaneously.
Easily.
 
Joined
Aug 19, 2011
Messages
528 (0.11/day)
System Name As Himself
Processor 2700X
Motherboard Asrock 370X ThaiChi
Cooling Custom Liquid
Memory 4133MHz Team
Video Card(s) Radeon VII
Storage Samsung 512 SSD's
Display(s) Asus "24 144Hz
Case Tt P5
Audio Device(s) Asus Essence One Muses/Sparkos
Power Supply EVGA 1200
Mouse RAT ProX
Keyboard Drop CTRL
Software W10 steam futuremark
what they could do is play through as an ai......6000 times per second
 
Joined
Jan 14, 2009
Messages
2,644 (0.48/day)
Location
...
System Name MRCOMP!
Processor 5800X3D
Motherboard MSI Gaming Plus
Cooling Corsair 280 AIO
Memory 64GB 3600mhz
Video Card(s) GTX3060
Storage 1TB SSD
Display(s) Samsung Neo
Case No Case... just sitting on cardboard :D
Power Supply Antec 650w
Top