News Posts matching "scientist"

Return to Keyword Browsing

Club 3D Announces its Own Set of Game Bundles for GeForce and Radeon

Club 3D offers a wide range of graphic cards. But which one will you choose ? Perhaps the games which you will get when purchasing your graphic card will help you decide. This page summarizes the games that are available with Club 3D's graphic card line. The page is divided into three sections. The first section,"The games", will lead you through the available games, and will point to the graphic cards that have this game included in the bundle. The second section, "the graphic cards and the bundles", starts with the graphic cards and will point out which game or even multiple games that are included, and the third section identifies the software that is included with which graphic cards.

Intel Xeon Processors and Xeon Phi Powers World's Most Efficient HPC Data Center

Signaling its commitment to energy-efficient high- performance computing, Intel Corporation today announced that it will work with HP to help design and provide the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) with a supercomputing system that will drive research across a number of energy-related initiatives, including renewable energy and energy-efficient technologies. The new High Performance Computer (HPC) data center promises to become one of the world's most efficient installations.

The system is scheduled to deliver full compute capacity in the summer of 2013 and will feature approximately 3,200 Intel Xeon processors including current-generation Intel Xeon processor E5-2670, future 22nm Ivy Bridge based processors and approximately 600 new Intel Xeon Phi co-processors. The total peak performance of the system is expected to exceed 1 Petaflop (equivalent to a thousand trillion floating point operations per second) and it will be the largest supercomputer dedicated solely to renewable energy and energy efficiency research. Leading energy-efficient capabilities of Intel Xeon processors and Intel Xeon Phi co-processors combined with the new HP warm water cooling solution and innovative data center design will result in this facility likely being the world's most efficient data center with a power usage effectiveness (PUE) rating of 1.06 or better.

Intel Federal LLC to Propel Supercomputing Advancements for the U.S. Government

With the U.S. Government increasingly using high- performance computing (HPC) to address current and future national challenges, Intel Corporation today announced it has been awarded two subcontracts totaling $19 million with the U.S. Department of Energy (DOE). As part of these two awards, Intel Federal LLC, a wholly owned subsidiary, will be a major participant in the Lawrence Livermore National Security, LLC (LLNS) managed Extreme-Scale Computing Research and Development "FastForward" program aimed at driving advancements in exascale computing.

The DOE has been a leading developer of supercomputing technology for a broad range of critical applications in the space of national security, economy, energy resources and consumption. The "FastForward" program will harness the talents of the national laboratories, academia and U.S. industry to develop the next generation of HPC technologies.

NVIDIA Pioneers New Standard for HPC With Tesla GPUs Built on Kepler Architecture

NVIDIA today unveiled a new family of Tesla GPUs based on the revolutionary NVIDIA Kepler GPU computing architecture, which makes GPU-accelerated computing easier and more accessible for a broader range of high performance computing (HPC) scientific and technical applications.

The new NVIDIA Tesla K10 and K20 GPUs are computing accelerators built to handle the most complex HPC problems in the world. Designed with an intense focus on high performance and extreme power efficiency, Kepler is three times as efficient as its predecessor, the NVIDIA Fermi architecture, which itself established a new standard for parallel computing when introduced two years ago.

Announcing a Breakthrough in Quantum Communication

A team of scientists at the MPQ realizes a first elementary quantum network based on interfaces between single atoms and photons. Whether it comes to phoning a friend or to using the internet – our daily communication is based on sophisticated networks, with data being transferred at the speed of light between different nodes. It is a tremendous challenge to build corresponding networks for the exchange of quantum information. These quantum networks would differ profoundly from their classical counterparts: Besides giving insights into fundamental questions in physics, they could also have applications in secure communication and the simulation of complex many-body systems, or they could be used for distributed quantum computing. One prerequisite for functional quantum networks are stationary nodes that allow for the reversible exchange of quantum information.

A major breakthrough in this field has now been achieved by scientists in the group of Professor Gerhard Rempe, director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics division: The physicists have set up the first, elementary quantum network (Nature, DOI: 10.1038/nature11023, 12 April 2012). It consists of two coupled single-atom nodes that communicate quantum information via the coherent exchange of single photons. “This approach to quantum networking is particularly promising because it provides a clear perspective for scalability”, Professor Rempe points out.

Heat Key To Faster HDDs...Hundreds of Times Faster

Physicists have discovered a new method of recording data on hard drives that could potentially make mechanical hard drives hundreds of times faster (in terms of performance). Heat holds the key. A hard disk drive is a magnetic storage device, which, unlike magnetic tapes, allows random access. Its recording surfaces consist of hundreds of billions of tiny portions that can be magnetized in a particular polar direction to represent 0s or 1s. To create meaningful arrangements of these portions (bytes), the recording heads apply an external magnetic field to flip their polarities.

A team of researchers led by Thomas Ostler at the University of York, UK concluded that the process of flipping the polarities of these tiny portions can be greatly expedited using short bursts of heat. It has been believed that heat could only assist in remagnetization, when used in conjunction with a magnetic field. Research shows that this can also be achieved using a very, very precise amount of heat generated by beaming a fine laser for less than a trillionth of a second, which momentarily raises its temperature by 800 °C. The results of this study was published here.

'Nanowiggles': Graphene Nanomaterials With Tunable Functionality In Electronics

Troy, N.Y. – Electronics are getting smaller and smaller, flirting with new devices at the atomic scale. However, many scientists predict that the shrinking of our technology is reaching an end. Without an alternative to silicon-based technologies, the miniaturization of our electronics will stop. One promising alternative is graphene - the thinnest material known to man. Pure graphene is not a semiconductor, but it can be altered to display exceptional electrical behavior. Finding the best graphene-based nanomaterials could usher in a new era of nanoelectronics, optics, and spintronics (an emerging technology that uses the spin of electrons to store and process information in exceptionally small electronics).

NVIDIA, Cray, PGI, CAPS Unveil 'OpenACC' Programming Standard for Parallel Computing

In an effort to make it easier for programmers to take advantage of parallel computing, NVIDIA, Cray Inc., the Portland Group (PGI), and CAPS enterprise announced today a new parallel-programming standard, known as OpenACC.

Initially developed by PGI, Cray, and NVIDIA, with support from CAPS, OpenACC is a new open parallel programming standard designed to enable the millions of scientific and technical programmers to easily take advantage of the transformative power of heterogeneous CPU/GPU computing systems.

OpenACC allows parallel programmers to provide simple hints, known as "directives," to the compiler, identifying which areas of code to accelerate, without requiring programmers to modify or adapt the underlying code itself. By exposing parallelism to the compiler, directives allow the compiler to do the detailed work of mapping the computation onto the accelerator.

Cracking a Tough AIDS Research Puzzle: Boffins 0, US Gamers 1. Rock On!

An AIDS protein folding puzzle has stumped scientists for a decade, but US gamers cracked it in a mere three weeks! This was achieved by combining the brute force logic and speed of the digital computer, with the lateral thinking of the distinctly fuzzy human brain. To achieve this, a distributed computing application called Foldit was used, which involved gamers solving individual puzzles in a competitive atmosphere. This amazing merger of minds and machine over the internet creates a sort of distributed "cybernetic organism", which combines the strengths of biological and silicon computers into something far more powerful than either alone.

Return to Keyword Browsing