Saturday, December 25th 2021

Researchers at TU Wien have Developed Adaptive Transistor Using Germanium

Transistors as we know them appear to be in for a big change, at least if the latest development by researchers at TU Wien has anything to say about it. The group of researchers have developed what they call an adaptive transistor, or in other words, a transistor that can do more than hold a 0 or a 1. This has huge implications and although they're currently at a very early stage, the working proof of concept could allow for a whole new range of applications for microchips.

It would appear that the new transistors are tricky to manufacture, based on the explanation by the researchers "We connect two electrodes with an extremely thin wire made of germanium, via extremely clean high-quality interfaces. Above the germanium segment, we place a gate electrode like the ones found in conventional transistors. What is decisive is that our transistor features a further control electrode, which is placed on the interfaces between germanium and metal. It can dynamically program the function of the transistor". The researchers are confident that this should be fairly straightforward to overcome, especially as their transistor doesn't require any "doping", something that is common with more complex transistors today.
Manufacturing issues aside, the new transistors are expected to be able to change between different types of traditional transistor types on the fly, courtesy of its unique design. "This is because germanium has a very special electronic structure: when you apply voltage, the current flow initially increases, as you would expect. After a certain threshold, however, the current flow decreases again - this is called negative differential resistance. With the help of the control electrode, we can modulate at which voltage this threshold lies. This results in new degrees of freedom that we can use to give the transistor exactly the properties that we need at the moment."

The scientists believe that this would allow for fewer transistors in some applications, while at the same time, saving power and gaining performance. "Arithmetic operations, which previously required 160 transistors, are possible with 24 transistors due to this increased adaptability. In this way, the speed and energy efficiency of the circuits can also be significantly increased." The longer term hope is that we'll get to a point where the transistors can adapt by themselves as needed, assuming the right AI can be developed to take advantage of these new transistors.

These new transistors aren't set to entirely replace the traditional transistors we use today, but should apparently be seen as a compliment, somewhat in the same way that FPGA's can't replace traditional processors, but are more and more seen as a compliment for certain applications. There are many applications where an adaptable processor on the fly can come in handy and if this project can be commercialised, it will likely be implemented in everything from simple MCU's to advanced server processors. "Some details still need to be optimized, but with our first programmable germanium transistor we have proved that the basic idea really works. This is a decisive breakthrough for us".
Source: SciTechDaily
Add your own comment

14 Comments on Researchers at TU Wien have Developed Adaptive Transistor Using Germanium

#1
DeathtoGnomes
how much more practical is the vs the nano tube tech? an 85% reduction in die size sounds promising but... questions and more questions..
Posted on Reply
#2
TheLostSwede
DeathtoGnomeshow much more practical is the vs the nano tube tech? an 85% reduction in die size sounds promising but... questions and more questions..
As per the news post, this isn't intended to replace traditional transistors, it's meant for specific parts of a processor or whatever it gets incorporated into. This is not the future of chip making, but rather a complement.
Posted on Reply
#3
_Flare
there are, have been and will be, countless ideas, some will be used, some may fade away and will be forgotten,
some will get reinvented like happend in the past.
there is so much more to learn outthere, stay curious. :lovetpu:
Posted on Reply
#4
Steevo
If they wanted to start at high current devices the audio community would wet themselves, essentially a tube type high efficiency variac transistor amplifier? Even if they had to run discreet stages it would be revolutionary.
Posted on Reply
#5
lexluthermiester
TheLostSwedeThis is not the future of chip making, but rather a complement.
Though to be fair, if engineered properly, it could replace the standard transistor entirely in some CPUs and I can already imagine the applications for GPUs and many ASICs.
Posted on Reply
#6
95Viper
Stay on topic.
Stop the off-topic banter.

Thank You and Have a Good Day
Posted on Reply
#7
natr0n
Interested in the doping.
Posted on Reply
#8
Tartaros
lexluthermiesterThought to be fair, if engineered properly, it could replace the standard transistor entirely in some CPUs and I can already imagine the applications for GPUs and many ASICs.
It seems to be a good technology for fpgas to delve in.
Posted on Reply
#9
lexluthermiester
TartarosIt seems to be a good technology for fpgas to delve in.
Excellent point. That would actually be a very interesting application of this new transistor.
Posted on Reply
#10
Minus Infinity
The era of a single monolithic CPU's that do every thing is well and truly over. Already with neural net accelerators coming on board desktop CPU's within 3 years the idea of adding more complimentary capabilities, is going to accelerate. Technology such as this will find itself being used to enhance the capabilities of many existing products. We already have hybrid CPU+FPGA and GPU + FPGA devices that would greatly benefit from this as well.
Posted on Reply
#11
RealKGB
Weren't transistors originally made of germanium or were those diodes?
Posted on Reply
#12
Tartaros
RealKGBWeren't transistors originally made of germanium or were those diodes?
Yes, the first transistor used germanium alongside other components like gold.
Posted on Reply
#13
bonehead123
TheLostSwedeArithmetic operations,
wtf.... were they just tryin to come up for a restructured, dip-shitty word for "Mathematical Calculations" or what ????????????
Posted on Reply
#14
lexluthermiester
bonehead123wtf.... were they just tryin to come up for a restructured, dip-shitty word for "Mathematical Calculations" or what ????????????
No. That has been the appropriate phrase since the 1960's when that phrase was coined for the Apollo Saturn5 computers. It's been valid ever since.
Posted on Reply
Add your own comment