• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

Announcing a Breakthrough in Quantum Communication

btarunr

Editor & Senior Moderator
Staff member
Joined
Oct 9, 2007
Messages
46,368 (7.67/day)
Location
Hyderabad, India
System Name RBMK-1000
Processor AMD Ryzen 7 5700G
Motherboard ASUS ROG Strix B450-E Gaming
Cooling DeepCool Gammax L240 V2
Memory 2x 8GB G.Skill Sniper X
Video Card(s) Palit GeForce RTX 2080 SUPER GameRock
Storage Western Digital Black NVMe 512GB
Display(s) BenQ 1440p 60 Hz 27-inch
Case Corsair Carbide 100R
Audio Device(s) ASUS SupremeFX S1220A
Power Supply Cooler Master MWE Gold 650W
Mouse ASUS ROG Strix Impact
Keyboard Gamdias Hermes E2
Software Windows 11 Pro
A team of scientists at the MPQ realizes a first elementary quantum network based on interfaces between single atoms and photons. Whether it comes to phoning a friend or to using the internet - our daily communication is based on sophisticated networks, with data being transferred at the speed of light between different nodes. It is a tremendous challenge to build corresponding networks for the exchange of quantum information. These quantum networks would differ profoundly from their classical counterparts: Besides giving insights into fundamental questions in physics, they could also have applications in secure communication and the simulation of complex many-body systems, or they could be used for distributed quantum computing. One prerequisite for functional quantum networks are stationary nodes that allow for the reversible exchange of quantum information.

A major breakthrough in this field has now been achieved by scientists in the group of Professor Gerhard Rempe, director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics division: The physicists have set up the first, elementary quantum network (Nature, DOI: 10.1038/nature11023, 12 April 2012). It consists of two coupled single-atom nodes that communicate quantum information via the coherent exchange of single photons. "This approach to quantum networking is particularly promising because it provides a clear perspective for scalability", Professor Rempe points out.



Quantum information is extremely fragile and cannot be cloned. In order to prevent alteration or even the loss of the information, it is necessary to have perfect control over all quantum network components. The smallest stationary memory for quantum information is a single atom, and single photons represent the perfect messengers. Efficient information transfer between an atom and a photon, however, requires strong interaction between the two, which cannot be achieved with atoms in free space. Following a proposal from Professor Ignacio Cirac (director at the MPQ and head of the Theory division), the group of Professor Rempe has invested many years working on systems in which single atoms are embedded in optical cavities. These cavities are composed of two highly reflecting mirrors placed at a very short distance. The emission of photons from an atom inside a cavity is directed and can therefore be sent to other network nodes in a controlled way. A photon entering the cavity is reflected between the mirrors several thousand times. In this way, the atom-photon interaction is strongly enhanced, and the atom can absorb the photon coherently and with high efficiency.

The first experimental challenge was to quasi-permanently trap the atom in the cavity. This was achieved via fine-tuned laser beams, meaning the least disturbance of the atom. In the next step, the physicists achieved controlled emission of single photons from the trapped atom. Finally, they could prove that the single-atom-cavity system represents a perfect interface for storing the information encoded in a single photon, and they were able to transfer it onto a second single photon after a certain storage time. The present work is another milestone on the way towards a large-scale quantum network. For the first time, two such systems were connected, and quantum information was exchanged between them with high efficiency and fidelity. The two systems, each representing a network node, are installed in two laboratories separated by 21 metres and are connected via a 60-metre long optical fibre.

Quantum networks exhibit peculiar properties not found in their classical counterparts. This is due to the fundamentally different behaviour of the exchanged information: while a classical bit represents either 1 or 0, a quantum bit can take both values at the same time, a phenomenon called "coherent superposition". A measurement however projects the quantum bit onto one of the two values. In the single atom, the quantum information is encoded in a coherent superposition of two energy levels. When the atom at node A emits a photon, stimulated by a light pulses from a control laser, its quantum state is mapped onto the polarization state of the photon. Via the optical fibre the photon reaches node B where it is coherently absorbed. During this process, the quantum state originally prepared in atom A gets transferred onto the atom at node B. As a result, A is capable of receiving the next photon, while B is ready to send the stored information back to A or to any other node. It is this symmetric and reversible feature that makes the scheme scalable to arbitrary network configurations, consisting of many atom-cavity nodes. The atomic quantum states are read out by mapping them again onto the polarization of single photons which can easily be measured. "We were able to prove that the quantum states can be transferred much better than possible with any classical network. In fact, we demonstrate the feasibility of the theoretical approach developed by Professor Cirac," Dr. Stephan Ritter, leader of the experiment, explains.

In yet another step the scientists succeeded in generating "quantum mechanical entanglement" between the two nodes. Entanglement is a feature unique to quantum objects. It connects them in such a way that their properties are strongly correlated in a non-trivial way, no matter how far they are separated in space. This phenomenon, predicted nearly a hundred years ago, was dubbed by Albert Einstein (who did not really believe in it) "spooky action at a distance". In order to achieve entanglement between the two network nodes, the polarization of the single photon emitted by atom A is now entangled with the atomic quantum state. Once the photon gets absorbed, this entanglement gets transferred onto atom B. In fact, this is the first time that entanglement has been created between massive particles separated by such a large distance, making it the world's "largest" quantum system with massive particles.

"We have realized the first prototype of a quantum network", Stephan Ritter concludes. "We achieve reversible exchange of quantum information between the nodes. Furthermore, we can generate remote entanglement between the two nodes and keep it for about 100 microseconds, whereas the generation of the entanglement takes only about one microsecond. Entanglement of two systems separated by a large distance is a fascinating phenomenon in itself. However, it could also serve as a resource for the teleportation of quantum information. One day, this might not only make it possible to communicate quantum information over very large distances, but might enable an entire quantum internet."
Olivia Meyer-Streng

Original Publication:
Stephan Ritter, Christian Nölleke, Carolin Hahn, Andreas Reiserer, Andreas Neuzner, Manuel Uphoff, Martin Mücke, Eden Figueroa, Jörg Bochmann, and Gerhard Rempe
An elementary quantum network of single atoms in optical cavities
Nature, DOI: 10.1038/nature11023, 12 April 2012

View at TechPowerUp Main Site
 

araditus

New Member
Joined
Feb 22, 2009
Messages
172 (0.03/day)
Location
Oklahoma
Holy wall of nerd text batman! Thanks bta, I was able to finish a whole cup of coffee between reading this and going to wiki to understand the terms I didn't know. :)
Riveting
 
Joined
May 22, 2010
Messages
2,516 (0.49/day)
Location
Canada
System Name m1dg3t | DeathBox | HairPi 3
Processor 3570k @ 4.0 1.15v BIOS | q9550 @ 3.77 1.325v BIOS
Motherboard Asrock z77e iTX | p5q Dlx 2301 BIOS
Cooling Custom Water | D-14 & HR-03gt | Passive HSF
Memory Samsung MV-3V4G3D 4g x 2 @ 1866 1.35v | OcZ RpR 2g x 4 @ 1067 2.2v
Video Card(s) MSi 7950 tf3 @1000 / 1350 | Asus 5870 V2 @ 900 / 1275
Storage Adata sx900 256Gb / WD 2500 HHTZ | WD 1001 FALS x 2
Display(s) BenQ gw2750hm | 46" Sharp Quatron
Case BitFenix Prodigy - m0dd3d | Antec Fusion Remote MAX
Audio Device(s) Onboard Toslink > Yamaha HTR 6290 | Xonar HDAV1.3 > Yamaha DSP z7
Power Supply Ocz mXp700w | Ocz zx850w | Cannakit 5v 2.5a
Mouse Logitech G700s | Logitech G9x - Cable Repaired
Keyboard TT Meka G1 - Black w Cherry Blacks| Logitech G11
Software Win7 Home | Xp sp3 & Vista ultimate | Raspbian
Benchmark Scores Epeen!! Who needs epeen??
Sweet! Thanks for posting bta :)
 
Top