• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

World's thinnest light bulb is just ONE ATOM thick

Joined
Mar 26, 2010
Messages
8,788 (2.25/day)
Location
Jakarta, Indonesia
System Name micropage7
Processor Intel Xeon X3470
Motherboard Gigabyte Technology Co. Ltd. P55A-UD3R (Socket 1156)
Cooling Enermax ETS-T40F
Memory Samsung 8.00GB Dual-Channel DDR3
Video Card(s) NVIDIA Quadro FX 1800
Storage V-GEN03AS18EU120GB, Seagate 2 x 1TB and Seagate 4TB
Display(s) Samsung 21 inch LCD Wide Screen
Case Icute Super 18
Audio Device(s) Auzentech X-Fi Forte
Power Supply Silverstone 600 Watt
Mouse Logitech G502
Keyboard Sades Excalibur + Taihao keycaps
Software Win 7 64-bit
Benchmark Scores Classified
Scientists have created the world's thinnest light bulb using the wonder material graphene, in a layer just one atom thick.



Led by Young Duck Kim, a postdoctoral research scientist in James Hone's group at Columbia Engineering, a team of scientists from Columbia, Seoul National University (SNU), and Korea Research Institute of Standards and Science (KRISS) reported today that they have demonstrated—for the first time—an on-chip visible light source using graphene, an atomically thin and perfectly crystalline form of carbon, as a filament. They attached small strips of graphene to metal electrodes, suspended the strips above the substrate, and passed a current through the filaments to cause them to heat up. The study, "Bright visible light emission from graphene," is published in the Advance Online Publication on Nature Nanotechnology's website on June 15.


"We've created what is essentially the world's thinnest light bulb," says Hone, Wang Fon-Jen Professor of Mechanical Engineering at Columbia Engineering and co-author of the study. "This new type of 'broadband' light emitter can be integrated into chips and will pave the way towards the realization of atomically thin, flexible, and transparent displays, and graphene-based on-chip optical communications."

Creating light in small structures on the surface of a chip is crucial for developing fully integrated 'photonic' circuits that do with light what is now done with electric currents in semiconductor integrated circuits. Researchers have developed many approaches to do this, but have not yet been able to put the oldest and simplest artificial light source—the incandescent light bulb—onto a chip. This is primarily because light bulb filaments must be extremely hot—thousands of degrees Celsius—in order to glow in the visible range and micro-scale metal wires cannot withstand such temperatures. In addition, heat transfer from the hot filament to its surroundings is extremely efficient at the microscale, making such structures impractical and leading to damage of the surrounding chip.

By measuring the spectrum of the light emitted from the graphene, the team was able to show that the graphene was reaching temperatures of above 2500 degrees Celsius, hot enough to glow brightly. "The visible light from atomically thin graphene is so intense that it is visible even to the naked eye, without any additional magnification," explains Young Duck Kim, first and co-lead author on the paper and postdoctoral research scientist who works in Hone's group at Columbia Engineering.

http://www.dailymail.co.uk/sciencetech/article-3125157/World-s-thinnest-light-bulb-just-one-atom-Technology-lead-super-flexible-TV-screens.html

http://phys.org/news/2015-06-graphene-bright-world-thinnest-lightbulb.html
 
Top