
Revision 1.1

HD 6900 Series Instruction Set Architecture

Reference Guide

N o v e m b e r 2 0 11

ii

© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI,
the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows
Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic-
tions. Other names are for informational purposes only and may be trademarks of their
respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to
make changes to specifications and product descriptions at any time without notice. The
information contained herein may be of a preliminary or advance nature and is subject to
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever,
and disclaims any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD’s
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

http://www.amd.com/
http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

iii
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Contents

Contents

Preface

Chapter 1 Introduction

Chapter 2 Program Organization and State
2.1 Program Types ... 2-1

2.1.1 Data Flows ..2-2
2.1.2 Geometry Program Absent ...2-3
2.1.3 Geometry Shader Present...2-4
2.1.4 Tessellation Without Geometry Shader ...2-5
2.1.5 Tessellation With Geometry Shader ..2-6

2.2 Instruction Terminology .. 2-7
2.3 Control Flow and Clauses .. 2-9
2.4 Instruction Types and Grouping .. 2-10
2.5 Program State... 2-11
2.6 Data Sharing ... 2-15

2.6.1 Types of Shared Registers..2-16
2.6.2 Local Data Share (LDS) ...2-19
2.6.3 Global Data Share (GDS)...2-19

2.7 Device Memory... 2-19

Chapter 3 Control Flow (CF) Programs
3.1 CF Microcode Encoding.. 3-2
3.2 Summary of Fields in CF Microcode Formats ... 3-3
3.3 Clause-Initiation Instructions.. 3-5

3.3.1 ALU Clause Initiation...3-6
3.3.2 Texture Cache Clause Initiation and Execution ...3-6

3.4 Import and Export Instructions .. 3-6
3.4.1 Normal Exports (Pixel, Position, Parameter Cache) ..3-7
3.4.2 Memory Writes..3-7
3.4.3 Memory Reads..3-9

3.5 Synchronization with Other Blocks ... 3-10
3.6 Conditional Execution ... 3-10

3.6.1 Valid and Active Masks ...3-10

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

iv
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE..3-11
3.6.3 The Condition (COND) Field ..3-13
3.6.4 Computation of Condition Tests ..3-13
3.6.5 Stack Allocation ...3-14

3.7 Branch and Loop Instructions ... 3-15
3.7.1 ADDR Field..3-17
3.7.2 Stack Operations and Jumps ...3-18
3.7.3 DirectX9 Loops ...3-18
3.7.4 DirectX10 Loops ...3-19
3.7.5 Repeat Loops..3-20
3.7.6 Subroutines...3-20
3.7.7 ALU Branch-Loop Instructions...3-20

3.8 Synchronizing Across Threadgroups (Global Wave Sync) .. 3-21

Chapter 4 ALU Clauses
4.1 ALU Microcode Formats ... 4-1
4.2 Overview of ALU Features.. 4-2
4.3 ALU Instruction Slots and Instruction Groups .. 4-3
4.4 Assignment to ALU.[X,Y,Z,W] ... 4-4
4.5 OP2 and OP3 Microcode Formats ... 4-4
4.6 GPRs and Constants ... 4-4

4.6.1 Relative Addressing...4-5
4.6.2 Previous Vector (PV) Registers ..4-6
4.6.3 Out-of-Bounds Addresses...4-6
4.6.4 ALU Constants ...4-7

4.7 Scalar Operands... 4-8
4.7.1 Source Addresses..4-9
4.7.2 Input Modifiers..4-9
4.7.3 Data Flow ..4-10
4.7.4 GPR Read Port Restrictions ...4-10
4.7.5 Constant Register Read Port Restrictions..4-10
4.7.6 Literal Constant Restrictions..4-11
4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units...4-11
4.7.8 Read-Port Mapping Algorithm ..4-13

4.8 ALU Instructions .. 4-15
4.8.1 KILL and PRED_SET* Instruction Restrictions ..4-19
4.8.2 Reduction Instruction Restrictions ..4-19
4.8.3 MOVA* Restrictions..4-19

4.9 ALU Outputs ... 4-20
4.9.1 Output Modifiers...4-20
4.9.2 Destination Registers ..4-21
4.9.3 Predicate Output ..4-21

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

v
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.9.4 NOP Instruction ..4-21
4.9.5 MOVA Instructions ...4-21

4.10 Predication and Branch Counters ... 4-22
4.11 Adjacent-Instruction Dependencies... 4-22
4.12 Double-Precision Floating-Point Operations .. 4-24
4.13 Wavefront Synchronization Within a Work-Group... 4-24

4.13.1 ALU Rounding and Denormals...4-24
4.13.2 Floating-Point Flags...4-25

Chapter 5 Texture Cache Clauses
5.1 Microcode Formats for Fetches Through a Texture Cache Clause... 5-1
5.2 Constant-Fetch Operations... 5-2
5.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE.. 5-2
5.4 Constant Sharing ... 5-2

Chapter 6 Memory Read Clauses
6.1 Memory Address Calculation ... 6-1
6.2 Cached and Uncached Reads .. 6-2
6.3 Burst Memory Reads... 6-2
6.4 UAV Reads and Writes .. 6-2

6.4.1 UAV Writes ..6-2
6.4.2 UAV Reads ..6-3

Chapter 7 Data Share Operations
7.1 Overview ... 7-1
7.2 Dataflow in Memory Hierarchy ... 7-2
7.3 LDS Access .. 7-3

7.3.1 Direct Reads ...7-4
7.3.2 Parameter Reads (Into Interpolation Instructions)...7-5
7.3.3 LDS Parameters..7-5
7.3.4 Indexed and Atomic Reads...7-6

7.4 Examples... 7-7
7.4.1 LDS_READ dst...7-7
7.4.2 LDS_WRITE dst, src0..7-7
7.4.3 LDS_ADD dst, src0...7-8
7.4.4 LDS_ADD_RTN dst, src0...7-8
7.4.5 LDS_READ2 QAB, src0, src1...7-8

7.5 Performance and Optimization... 7-8

Chapter 8 Instruction Set
8.1 Control Flow (CF) Instructions... 8-1
8.2 ALU Instructions .. 8-48
8.3 Instructions for Fetches Through a Texture Cache Clause ... 8-245

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

vi
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.4 Memory Read Instructions.. 8-274
8.5 Data Share Read/Write Instructions .. 8-276
8.6 Local Data Share (LDS) Instructions... 8-280

Chapter 9 Microcode Formats
9.1 Control Flow (CF) Instructions... 9-3
9.2 ALU Instructions .. 9-23
9.3 Vertex Fetch Instruction Formats .. 9-50
9.4 Texture Fetch Instruction Formats .. 9-58
9.5 Memory Read Instructions.. 9-64
9.6 Global Data Share Read/Write Instructions .. 9-69

Appendix A Instruction Table

Glossary of Terms

Index

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

vii
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Figures

1.1 AMD HD 6900 Series Block Diagram ...1-1
1.2 Programmer’s View of HD 69XX Dataflow ...1-4
2.1 Shared Memory Hierarchy on the AMD HD 6900 Series of Stream Processors2-16
2.2 Possible GPR Distribution Between Global, Clause Temps, and Private Registers............2-18
4.1 ALU Microcode Format Pair ..4-1
4.2 Organization of ALU Vector Elements in GPRs..4-2
4.3 ALU Data Flow...4-10
5.1 Microcode-Format 4-Tuple for Fetches Through a Texture Cache Clause............................5-2
7.1 High-Level Memory Configuration ...7-1
7.2 Memory Hierarchy Dataflow ..7-2
7.3 LDS Layout with Parameters and Data Share..7-6
7.4 LDS Dataflow ...7-7

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

viii
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ix
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Tables

2.1 Data Flow When Different Shaders Stages are En/Disabled ...2-2
2.2 Order of Program Execution (Geometry Program Absent)...2-3
2.3 Order of Program Execution (Geometry Program Present) ...2-4
2.4 Order of Program Execution (Geometry Program Absent)...2-5
2.5 Order of Program Execution (Geometry Program Present) ...2-6
2.6 Basic Instruction-Related Terms..2-8
2.7 Flow of a Typical Program...2-10
2.8 Control-Flow State ...2-13
2.9 ALU State...2-14
2.10 Fetch Through Vertex Cache Clause State ..2-16
2.11 Fetch Through Texture Cache Clause and Constant-Fetch State..2-16
3.1 CF Microcode Field Summary...3-4
3.2 Types of Clause-Initiation Instructions...3-5
3.3 Possible ARRAY_BASE Values...3-8
3.4 Condition Tests ..3-14
3.5 Stack Subentries ..3-15
3.6 Stack Space Required for Flow-Control Instructions ..3-15
3.7 Branch-Loop Instructions ...3-16
4.1 Instruction Slots in an Instruction Group...4-4
4.2 Index for Relative Addressing ...4-6
4.3 Example Function’s Loading Cycle ...4-17
4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) ...4-19
4.5 ALU Instructions (ALU.[X,Y,Z,W] Units Only) ..4-23
4.6 ALU Instructions (ALU.Trans Units Only)4-24
9.1 Result of ADD_64 Instruction ..9-49
9.2 Result of FLT32_TO_FLT64 Instruction ..9-92
9.3 Result of FLT64_TO_FLT32 Instruction ..9-94
9.4 Result of FRACT_64 Instruction..9-99
9.5 Result of FREXP_64 Instruction..9-101
9.6 Result of LDEXP_64 Instruction..9-124
9.7 Result of MUL_64 Instruction ..9-148
9.8 Result of PRED_SETE_64 Instruction ..9-177
9.9 Result of PRED_SETGE_64 Instruction ...9-183
9.10 Result of PRED_SETGT_64 Instruction..9-191
9.11 LDS Instructions for the LDS_OP Field ..9-287
10.1 Summary of Microcode Formats ...10-1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

x
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Preface xi
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Preface

About This Document
This document describes the environment, organization, and program state of the
AMD HD 6900 series of devices. It details the instruction set and the microcode
formats native to this family of processors that are accessible to programmers
and compilers.

The document specifies the instructions (including the format of each type of
instruction) and the relevant program state (including how the program state
interacts with the instructions). Some instruction fields are mutually dependent;
not all possible settings for all fields are legal. This document specifies the valid
combinations.

The main purposes of this document are to:

1. Specify the language constructs and behavior, including the organization, of
each type of instruction in both text syntax and binary format.

2. Provide a reference of instruction operation that compiler writers can use to
maximize performance of the processor.

Audience
This document is intended for programmers writing application and system
software, including operating systems, compilers, loaders, linkers, device drivers,
and system utilities. It assumes that programmers are writing compute-intensive
parallel applications (streaming applications) and assumes an understanding of
requisite programming practices.

Organization
This document begins with an overview of the AMD HD 6900 series of proces-
sors’ hardware and programming environment (Chapter 1). Chapter 2 describes
the organization of a HD 6900 series programs and the program state that is
maintained. Chapter 3 describes the control flow (CF) programs. Chapter 4
describes the ALU clauses. Chapter 5 describes texture fetch clauses. Chapter 6
describes memory read clauses. Chapter 7 describes data share clauses.
Chapter 8 describes instruction details, first by broad categories, and following
this, in alphabetic order by mnemonic. Finally, Chapter 9 provides a detailed spec-
ification of each microcode format.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

xii Preface
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Registers
The following list shows the names are used to refer either to a register or to the
contents of that register.

Endian Order
The HD 6900 series architecture addresses memory and registers using little-
endian byte-ordering and bit-ordering. Multi-byte values are stored with their
least-significant (low-order) byte (LSB) at the lowest byte address, and they are
illustrated with their LSB at the right side. Byte values are stored with their least-
significant (low-order) bit (lsb) at the lowest bit address, and they are illustrated
with their lsb at the right side.

Conventions
The following conventions are used in this document.

GPRs General-purpose registers. There are 128 GPRs, each one 128 bits wide,
organized as four 32-bit values.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, orga-
nized as four 32-bit values.

AR Address register.

loop index A register initialized by software and incremented by hardware on each
iteration of a loop.

clause global A 32-bit register to hold a temporary value during an ALU clause. The
value is not preserved between clauses.

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter,
or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Preface xiii
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Related Documents
• CTM HAL Programming Guide. Published by AMD.

• Intermediate Language (IL) Reference Manual. Published by AMD.

• OpenGL Programming Guide, at http://www.glprogramming.com/red/

• Microsoft DirectX Reference Website, at
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/
directx9_c_Summer_04/directx/graphics/reference/reference.asp

• GPGPU: http://www.gpgpu.org

Differences Between the Evergreen Family and HD 6900 Series of Devices
The following bullets provide a brief overview of the more important differences
between the Evergreen family and HD 6900 series of GPUs. Note that other
devices in the 6000 series use the Evergreen architecture.

• Removed the vertex cache (VC). All memory fetches now are serviced by
the texture cache (TC).

• Removed the end_of_program bit from all CF_ instruction formats. Added a
CF_INST_END to end the kernel.

• Added the option to deallocate LDS space early using CF_LDS_DEALLOC.

• Added the CLAUSE_GLOBAL register, which can hold temporary values during
ALU clauses.

• Modified how MOVA and setting the Idx0, Idx1 registers work.

• Added the ability for a wavefront to raise or lower its priority relative to other
wavefronts.

Contact Information
To submit questions or comments concerning this document, contact our
technical documentation staff at: streamcomputing@amd.com.

For questions concerning AMD Accelerated Parallel Processing products, please
email: streamcomputing@amd.com.

For questions about developing with AMD Accelerated Parallel Processing,
please email: streamdeveloper@amd.com.

You can learn more about AMD Accelerated Parallel Processing at:
http://www.amd.com/stream.

We also have a growing community of AMD Accelerated Parallel Processing
users. Come visit us at the AMD Accelerated Parallel Processing Developer
Forum (http://www.amd.com/streamdevforum) to find out what applications other
users are trying on their AMD Accelerated Parallel Processing products.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

xiv Preface
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 1-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 1
Introduction

The AMD HD 6900 series of processors implements a parallel microarchitecture
that provides an excellent platform not only for computer graphics applications
but also for general-purpose streaming applications. Any data-intensive
application that can be mapped to a 2D matrix is a candidate for running on an
AMD HD 6900 series processor.

Figure 1.1 shows a block diagram of the AMD HD 6900 series processors.

Figure 1.1 AMD HD 6900 Series Block Diagram

It includes a data-parallel processor (DPP) array, a command processor, a
memory controller, and other logic (not shown). The HD 69XX command
processor reads commands that the host has written to memory-mapped HD
69XX registers in the system-memory address space. The command processor
sends hardware-generated interrupts to the host when the command is
completed. The HD 69XX memory controller has direct access to all HD 69XX
device memory and the host-specified areas of system memory. To satisfy read
and write requests, the memory controller performs the functions of a direct-
memory access (DMA) controller, including computing memory-address offsets
based on the format of the requested data in memory.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

1-2
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A host application cannot write to the HD 69XX device memory directly, but it can
command the HD 69XX device to copy programs and data between system
memory and device memory. For the CPU to write to GPU memory, there are
two ways:

• Request the GPU’s DMA engine to write data by pointing to the location of
the source data on CPU memory, then pointing at the offset in the GPU
memory.

• Upload a kernel to run on the shaders that access the memory through the
PCIe link, then process it and store it in the GPU memory.

In the HD 69XX environment, a complete application includes two parts:

• a program running on the host processor, and

• programs, called kernels, running on the HD 69XX processor.

The HD 69XX programs are controlled by host commands, which

• set HD 69XX internal base-address and other configuration registers,

• specify the data domain on which the HD 69XX GPU is to operate,

• invalidate and flush caches on the HD 69XX GPU, and

• cause the HD 69XX GPU to begin execution of a program.

The HD 69XX driver program runs on the host.

The DPP array is the heart of the HD 69XX processor. The array is organized
as a set of compute unit pipelines, each independent from the others, that
operate in parallel on streams of floating-point or integer data. The compute unit
pipelines can process data or, through the memory controller, transfer data to, or
from, memory. Computation in a compute unit pipeline can be made conditional.
Outputs written to memory can also be made conditional.

Host commands request a compute unit pipeline to execute a kernel by passing
it:

• an identifier pair (x, y),

• a conditional value, and

• the location in memory of the kernel code.

When it receives a request, the compute unit pipeline loads instructions and data
from memory, begins execution, and continues until the end of the kernel. As
kernels are running, the HD 69XX hardware automatically fetches instructions
and data from memory into on-chip caches; HD 69XX software plays no role in
this. HD 69XX software also can load data from off-chip memory into on-chip
general-purpose registers (GPRs) and caches.

Conceptually, each compute unit pipeline maintains a separate interface to
memory, consisting of index pairs and a field identifying the type of request
(program instruction, floating-point constant, integer constant, boolean constant,
input read, or output write). The index pairs for inputs, outputs, and constants are

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

1-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

specified by the requesting HD 69XX instructions from the hardware-maintained
program state in the pipelines.

The AMD HD 6900 series of devices can detect floating point exceptions, but
does not generate interrupts. In particular, it detects IEEE floating-point
exceptions in hardware; these can be recorded for post-execution analysis. The
software interrupts shown in Figure 1.1 from the command processor to the host
represent hardware-generated interrupts for signalling command-completion and
related management functions.

Figure 1.2 shows a programmer’s view of the dataflow for three versions of an
HD 69XX application. The top version (a) is a graphics application that includes
a geometry shader program and a DMA copy program. The middle version (b)
is a graphics application without a geometry shader and DMA copy program. The
bottom version (c) is a general-purpose application. The square blocks represent
programs running on the DPP array. The circles and clouds represent non-
programmable hardware functions. For graphics applications, each block in the
chain processes a particular kind of data and passes its result on to the next
block. For general-purpose applications, only one processing block performs all
computation.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

1-4
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.2 Programmer’s View of HD 69XX Dataflow

The dataflow sequence starts by reading 2D vertices, 2D textures, or other 2D
data from local HD 69XX device memory or system memory; it ends by writing
2D pixels or other 2D data results to local HD 69XX device memory. The HD
69XX processor hides memory latency by keeping track of potentially hundreds
of work-items in different stages of execution, and by overlapping compute
operations with memory-access operations.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 2-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 2
Program Organization and State

HD 69XX programs consist of control-flow (CF) instructions, ALU instructions,
instructions for fetches through a texture cache, and exports. ALU instructions
can have up to three source operands and one destination operand. The
instructions operate on 32-bit or 64-bit IEEE floating-point values and signed or
unsigned integers. The execution of some instructions cause predicate bits to be
written that affect subsequent instructions. Programs typically use instructions for
fetching through a texture cache for data loads.

2.1 Program Types
The following program types are commonly run on the HD 69XX GPU (see
Figure 1.2, on page 1-4):

• Hull Shader (HS)— Receives patch data and processes it to generate new
patch data along with some constant data and tesselation factors.

• Domain Shader (DS)— Fetches HS output and constant data to compute the
vertex value based on U,V data from the tessellation engine. The tessellation
engine generates U,V coordinates based on tessellation factors computed by
the HS.

• Vertex Shader (VS)—Reads vertices, processes them. If the geometry
shader (GS) is active, the VS outputs its results to export shader-geometry
shader (ESGS) ring buffer. If the hull shader (HS) is active, the VS outputs
its results to the LDS. If neither the GS nor the HS is active, the VS outputs
its results to the parameter cache and position buffer. It does not introduce
new primitives. A vertex shader can invoke a Fetch Subroutine (FS), which
is a special global program for fetching vertex data that is treated, for
execution purposes, as part of the vertex program. The FS provides driver
independence between the process of fetching data required by a VS, and
the VS itself.

• Geometry Shader (GS)—Reads primitives from the VS ring buffer, and, for
each input primitive, writes zero or more primitives as output to the GS ring
buffer. This program type is optional; when active, it requires a DMA copy
(DC) program to be active. The GS simultaneously reads up to six vertices
from an off-chip memory buffer created by the VS; it outputs a variable
number of primitives to a second memory buffer.

• DMA Copy (DC)—Transfers data from the GS ring buffer into the parameter
cache and position buffer. It is required for systems running a geometry
shader.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-2 Program Types
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• Pixel Shader (PS) or Fragment Shader—This type of program:

– receives pixel data from the rasterizer to be shaded,

– processes sets of pixel quads (four pixel-data elements arranged in a 2-
by-2 array (quad) in neighboring lanes of a compute unit), and

– writes output to up to eight local-memory buffers, called multiple render
targets (MRTs), each of which includes a frame buffer.

• Compute Shader (CS)—A generic program (compute kernel) that uses an
input work-item ID as an index to perform:

– gather reads on one or more sets of input data,

– arithmetic computation, and

– scatter writes to one or more set of output data to memory.

Compute shaders can write to multiple (up to eight) surfaces, which can be
a mix of multiple render targets (MRTs), unordered access views (UAVs), and
flat address space.

All program types accept the same instruction types, and all of the program types
can run on any of the available DPP-array pipelines that support these programs;
however, each kernel type has certain restrictions, which are described with that
type.

2.1.1 Data Flows

The host can initialize the HD 69XX GPU to run in multiple configurations. The
compute shader is independent of other shaders. Pipeline configurations depend
on whether tesselation is used and if the geometry shader is being used. Figure
1.2, on page 1-4 illustrates the processing order. Each type of flow is described
in the following subsections. Table 2.1 shows the legal combinations for HS, LS,
and DS.

Table 2.1 Data Flow When Different Shaders Stages are En/Disabled

VS HS DS GS Hardware Data Flow

on on on on Vertex block → tessellation block → GS block
LS → HS → TS → ES → GS → VS → PS

on on on off Vertex block → tesselation block →
LS → HS → TE → VS → PS
In case of streamout, tessellation engine (TE) must
expand the primitive to list the primitive type.

on off off on VS is treated as ES.
ES → GS → VS → PS

on off off off VS → PS

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Program Types 2-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.1.2 Geometry Program Absent

Table 2.2 shows the order in which programs run when a geometry program is
absent.

This processing configuration consists of the following steps.

1. The VS program sends a pointer to a buffer in device memory containing up
to 64 vertex indices.

2. The HD 69XX hardware groups the vectors for these vertices in its input
buffers (remote memory).

3. When all vertices are ready to be processed, the HD 69XX GPU allocates
GPRs and work-item space for the processing of each of the 64 vertices,
based on compiler-provided sizes.

4. The VS program calls the fetch subroutine (FS) program, which fetches
vertex data into GPRs and returns control to the VS program.

5. The transform, lighting, and other parts of the VS program run.

6. The GPU allocates space in the position buffer and exports the vertex
positions (XYZW).

7. The GPU allocates parameter-cache and position-buffer space and exports
parameters and positions for each vertex.

8. The VS program exits, and the HD 69XX GPU deallocates its GPR space.

9. When the VS program completes, the pixel shader (PS) program begins.

10. The HD 69XX hardware assembles primitives from data in the position buffer
and the vertex geometry translator (VGT), performs scan conversion and final
pixel interpolation, and loads these values into GPRs.

11. The PS program then runs for each pixel.

12. The program exports data to a frame buffer, and the HD 69XX GPU
deallocates its GPR space.

Table 2.2 Order of Program Execution (Geometry Program Absent)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. Parameter cache and
position buffer.

PS Pixel Shader Pixels Positions cache, parameter
cache, and vertex geometry
translator (VGT).

Local or system
memory.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-4 Program Types
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.1.3 Geometry Shader Present

Table 2.3 shows the order in which programs run when a geometry program is
present.

This processing configuration consists of the following steps.

1. The HD 69XX hardware loads input indices or primitive and vertex IDs from
the vertex geometry translator (VGT) into GPRs.

2. The VS program fetches the vertex or vertices needed

3. The transform, lighting, and other parts of the VS program run.

4. The VS program ends by writing vertices out to the VS ring buffer.

5. The GS program reads multiple vertices from the VS ring buffer, executes its
geometry functions, and outputs one or more vertices per input vertex to the
GS ring buffer. The VS program can only write a single vertex per single
input; the GS program can write a large number of vertices per single input.
Every time a GS program outputs a vertex, it indicates to the vertex VGT that
a new vertex has been output (using EMIT_* instructions1). The VGT counts
the total number of vertices created by each GS program. The GS program
divides primitive strips by issuing CUT_VERTEX instructions.

6. The GS program ends when all vertices have been output. No positions or
parameters are exported.

7. The DC program reads the vertex data from the GS ring buffer and transfers
this data to the parameter cache and position buffer using one of the MEM*
memory export instructions.

8. The DC program exits, and the HD 69XX GPU deallocates the GPR space.

9. The PS program runs.

10. The HD 69XX GPU assembles primitives from data in the position buffer,
parameter cache, and VGT.

11. The hardware performs scan conversion and final pixel interpolation, and
hardware loads these values into GPRs.

Table 2.3 Order of Program Execution (Geometry Program Present)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. VS ring buffer.

GS Geometry Shader Primitives VS ring buffer. GS ring buffer.

DC DMA Copy Any Data GS ring buffer. Parameter cache or posi-
tion buffer.

PS Pixel Shader Pixels Positions cache, parameter
cache, and vertex geometry
translator (VGT).

Local or system memory.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that
define variants.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Program Types 2-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

12. The PS program runs.

13. When the PS program reaches the end of the data, it exports the data to a
frame buffer or other render target (up to eight) using EXPORT instructions.

14. The program exits upon execution of an EXPORT_DONE instruction, and the
processor deallocates GPR space.

2.1.4 Tessellation Without Geometry Shader

Table 2.4 shows the order in which programs run when a geometry program is
absent.

This processing configuration consists of the following steps.

1. The VS program sends a pointer to a buffer in device memory containing up
to 64 vertex indices.

2. The HD 69XX hardware groups the vectors for these vertices in its input
buffers (remote memory).

3. When all vertices are ready to be processed, the HD 69XX GPU allocates
GPRs and work-item space for the processing of each of the 64 vertices,
based on compiler-provided sizes.

4. The VS program calls the fetch subroutine (FS) program, which fetches
vertex data into GPRs and returns control to the VS program.

5. The transform, lighting, and other parts of the VS program run.

6. The HS takes input from the LDS and computes the new patch data and
tessellation factors, which are output to the LDS.

7. The DS program allocates space in the position buffer and exports the vertex
positions (XYZW).

8. The DS program allocates parameter-cache and position-buffer space and
exports parameters and positions for each vertex.

9. The DS program exits, and the HD 69XX GPU deallocates its GPR space.

10. When the DS program completes, the pixel shader (PS) program begins.

11. The HD 69XX hardware assembles primitives from data in the position buffer
and the vertex geometry translator (VGT), performs scan conversion and final
pixel interpolation, and loads these values into GPRs.

Table 2.4 Order of Program Execution (Geometry Program Absent)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. Local data share (LDS).

HS Hull Shader Control points LDS. Tessellation factor buffer
and LDS.

DS Domain Shader Patches LDS. Parameter cache and
position buffer.

PS Pixel Shader Pixels Positions cache, parameter
cache, and vertex geometry
translator (VGT).

Local or system
memory.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-6 Program Types
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

12. The PS program then runs for each pixel.

13. The program exports data to a frame buffer, and the HD 69XX GPU
deallocates its GPR space.

2.1.5 Tessellation With Geometry Shader

Table 2.5 shows the order in which programs run when a geometry program is
present.

This processing configuration consists of the following steps.

1. The HD 69XX hardware loads input indices or primitive and vertex IDs from
the vertex geometry translator (VGT) into GPRs.

2. The VS program fetches the vertex or vertices needed

3. The transform, lighting, and other parts of the VS program run.

4. The VS program ends by writing vertices out to the VS ring buffer.

5. The HS takes input from the LDS and computes the new patch data and
tessellation factors, which are output to the LDS.

6. The DS reads the address output data from the LDS, computes the vertex
value based on U,V coordinates applied by the tessellation engine, and
writes the vertex data output to the ESGS ring buffer.

7. The GS program reads multiple vertices from the VS ring buffer, executes its
geometry functions, and outputs one or more vertices per input vertex to the
GSVS ring buffer. The VS program can only write a single vertex per single
input; the GS program can write a large number of vertices per single input.
Every time a GS program outputs a vertex, it indicates to the vertex VGT that
a new vertex has been output (using an EMIT_* instruction1). The VGT
counts the total number of vertices created by each GS program. The GS
program divides primitive strips by issuing CUT_VERTEX instructions.

Table 2.5 Order of Program Execution (Geometry Program Present)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. Local data share (LDS).

HS Hull Shader Control points Local data share. Tessellation factor buffer
and LDS.

DS Domain Shader Patches LDS. ESGS ring buffer.

GS Geometry Shader Primitives ESGS ring buffer. GSVS ring buffer.

DC DMA Copy Any Data GSVS ring buffer. Parameter cache and
position buffer.

PS Pixel Shader Pixels Positions cache, parameter
cache, and vertex geometry
translator (VGT).

Local or system memory.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that
define variants.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instruction Terminology 2-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8. The GS program ends when all vertices have been output. No positions or
parameters are exported.

9. The DC program reads the vertex data from the GSVS ring buffer and
transfers this data to the parameter cache and position buffer using one of
the MEM* memory export instructions.

10. The DC program exits, and the HD 69XX GPU deallocates the GPR space.

11. The PS program runs.

12. The HD 69XX GPU assembles primitives from data in the position buffer,
parameter cache, and VGT.

13. The hardware performs scan conversion and final pixel interpolation, and
hardware loads these values into GPRs.

14. The PS program runs.

15. When the PS program reaches the end of the data, it exports the data to a
frame buffer or other render target (up to eight) using EXPORT instructions.

16. The program exits upon execution of an EXPORT_DONE instruction, and the
processor deallocates GPR space.

2.2 Instruction Terminology
Table 2.6 summarizes some of the instruction-related terms used in this
document. The instructions themselves are described in the remaining chapters.
Details on each instruction are given in Chapter 9. The register types are
described in “Registers,” on page xii.

Table 2.6 Basic Instruction-Related Terms

Term Size (bits) Description

Microcode format 32 One of several encoding formats for all instructions. They are described in
Section 3.1, “CF Microcode Encoding,” page 3-2, Section 4.1, “ALU Micro-
code Formats,” page 4-1, Section 5.1, “Microcode Formats for Fetches
Through a Texture Cache Clause,” page 5-1, and Chapter 9, “Microcode
Formats.”

Instruction 64 or 128 Two to four microcode formats that specify:
• Control flow (CF) instructions (64 bits). These include:

general control flow instructions (such as branches and loops),
instructions that allocate buffer space and export data, and
instructions that initiate the execution of ALU, or fetching through a
texture cache.

• ALU instructions (64 bits).
• Instructions for fetching through a texture cache clause (128 bits).
• Data share instructions (128 bits).
• Memory read instructions (128 bits).
Instructions are identified in microcode formats by the _INST_ string in
their field names and mnemonics. The functions of the instructions are
described in Chapter 9, “Microcode Formats.”

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-8 Instruction Terminology
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Instruction
Group

64 to 448 Variable-sized groups of instructions and constants that consist of:
• One to five 64-bit ALU instructions.
• Zero to two 64-bit literal constants.
ALU instruction groups are described in Section 4.3, “ALU Instruction Slots
and Instruction Groups,” page 4-3.

Literal Constant 64 Literal constants specify two 32-bit values, which can represent values
associated with two elements of a 128-bit vector. These constants option-
ally can be included in ALU instruction groups.
Literal constants are described in Section 4.3, “ALU Instruction Slots and
Instruction Groups,” page 4-3.

Slot 64 An ordered position within an ALU instruction group. Each ALU instruction
group has one to seven slots, corresponding to the number of ALU instruc-
tions and literal constants in the instruction group.
Slots are described in Section 4.3, “ALU Instruction Slots and Instruction
Groups,” page 4-3.

Clause 64 to
64x128 bits
(64 128-bit

words)

A set of instructions of the same type. The types of clauses are:
• ALU clauses (which contain ALU instruction groups).
• Clauses for fetching through a texture cache.
Clauses are initiated by control flow (CF) instructions and are described in
Section 2.3, “Control Flow and Clauses,” page 2-9, and Section 3.3,
“Clause-Initiation Instructions,” page 3-5.

Export n/a To do any of the following:
• Write data from GPRs to an output buffer (a “scratch buffer,” “frame

buffer,” “ring buffer,” or “stream buffer”).
• Write an address for data inputs to the memory controller.
• Read data from an input buffer (a “scratch buffer” or “ring buffer”) to

GPRs.

Fetch n/a Load data, using a fetch through a texture cache instruction clause. Loads
are not necessarily to general-purpose registers (GPRs); specific types of
loads may be confined to specific types of storage destinations.

Vertex n/a A heterogeneous record of data.

Quad n/a Four related pixels (for general-purpose programming: [x,y] data elements)
in an aligned 2x2 space.

Primitive n/a A point, line segment, or polygon before rasterization. It has vertices spec-
ified by geometric coordinates. Additional data can be associated with
vertices by means of linear interpolation across the primitive.

Fragment n/a For graphics programming:
• The result of rasterizing a primitive. A fragment has no vertices;

instead, it is represented by (x,y) coordinates.
For general-purpose programming:
• A set of (x,y) data elements.

Pixel n/a For graphics programming:
• The result of placing a fragment in an (x,y) frame buffer.
For general-purpose programming:
• A set of (x,y) data elements.

Thread n/a For graphics programming:
• An instance of a kernel operating on one pixel, vertex, or primitive.
For general-purpose programming:
• A work-item.

Table 2.6 Basic Instruction-Related Terms (Cont.)

Term Size (bits) Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow and Clauses 2-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.3 Control Flow and Clauses
Each program consists of two sections:

• Control Flow—Control flow instructions can:

– initiate execution of ALU instructions.

– fetch through a texture cache clause.

– export data to a buffer.

– control branching, looping, and stack operations.

• Clause—A homogeneous group of instructions; each clause comprises ALU,
fetch through a texture cache clause, fetch through global data share, or
memory read instructions exclusively. A control flow instruction that initiates
an ALU or a fetch through a texture cache clause does so by referring to an
appropriate clause.

Table 2.7 provides a typical program flow example.

Control flow instructions:

• constitute the main program. Jump statements, loops, and subroutine calls
are expressed directly in the control flow part of the program.

• include mechanisms to synchronize operations across work-groups or across
the compute device.

• wait for a clause to complete.

• initiate ALU or texture clauses.

Table 2.7 Flow of a Typical Program

Function

Microcode Formats1

Control Flow (CF) Code Clause Code

Start loop. CF_WORD[0,1]

Initiate a fetch through a texture cache clause. CF_WORD[0,1]

Fetch through a texture cache clause to load
data from memory to GPRs.

TEX_WORD[0,1,2]

Initiate ALU clause. CF_ALU_WORD[0,1]

ALU clause to compute on loaded data and lit-
eral constants. This example shows a single
clause consisting of a single ALU instruction
group containing four ALU instructions (two
quadwords each) and two quadwords of literal
constants.

ALU_WORD[0,1]
ALU_WORD[0,1]
ALU_WORD[0,1]
ALU_WORD[0,1] LAST bit set
Literal[X,Y]
Literal[Z,W]

End loop. CF_WORD[0,1]

Allocate space in an output buffer. CF_ALLOC_EXPORT_WORD0
CF_ALLOC_EXPORT_WORD1_BUF

Export (write) results from GPRs to output
buffer.

CF_ALLOC_EXPORT_WORD0
CF_ALLOC_EXPORT_WORD1_BUF

1. See Chapters 3 through 7 for more information on the microcode format and definitions.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-10 Instruction Types and Grouping
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• are required for buffer allocation in, and writing to, a program block’s output
buffer.

Some program types (VS, GS, DC, PS, LS, HS, CS) have specific control flow
instructions for synchronizing with other program types.

Each clause, invoked by a control flow instruction, is a sequential list of
instructions of limited length (for the maximum length, see sections on individual
clauses). Clauses contain no flow control statements, but ALU clause instructions
can apply a predicate on a per-instruction basis. Instructions within a single
clause execute serially. Multiple clauses of a program can execute in parallel if
they contain instructions of different types and the clauses are independent of
one another. (Such parallel execution is invisible to the high-level programmer
except for increased performance. Low-level programmers must resolve data
dependencies.)

ALU clauses contain instructions for performing operations in each of the four
ALUs (ALU.[X,Y,Z,W]) including setting and using predicates, and pixel kill
operations (see Section 4.8, “ALU Instructions,” page 4-15). Fetches through
texture cache clauses contain instructions for performing texture and constant-
fetch reads from memory.

A predicate is a bit that is set or cleared as the result of evaluating some
condition; subsequently, it is used either to mask writing an ALU result or as a
condition itself. There are two kinds of predicates, both of which are set in an
ALU clause.

• The first is a single predicate local to the ALU clause itself. Once computed,
the predicate can be referred to in a subsequent instruction to conditionally
write an ALU result to the indicated general-purpose register(s).

• The second type is a bit in a predicate stack. An ALU clause computes the
predicate bits in the stack and manipulates the stack. A predicate bit in the
stack can be referred to in a control-flow instruction to induce conditional
branching.

2.4 Instruction Types and Grouping
The AMD HD 6900 series of devices recognizes the following instruction types:

• control flow instructions.

• clause types: ALU, fetch through texture cache, global data share. Memory
read clauses are done in texture cache clauses.

There are separate instruction caches in the processor for each instruction type.

A CF program has a maximum size of 228 bytes; the maximum size of each
clause, however, is 128 slots for ALU clauses (256 dwords), and 16 instructions
for TC and global data share (GDS) clauses (64 dwords).

The CPU host configures the base address of each program type before
executing a program.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Program State 2-11
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.5 Program State
Table 2.8 through Table 2.10 summarize a programmer’s view of the HD 69XX
program state that is accessible by a single work-item in an HD 69XX program.
The tables do not include:

• states that are maintained exclusively by HD 69XX hardware, such as the
internal loop-control registers,

• states that are accessible only to host software, such as configuration
registers, or

• the duplication of states for many execution work-items.

The column headings in Table 2.8 through Table 2.10 have the following
meanings:

• Access by HD 69XX Software—Readable (R), writable (W), or both (R/W) by
software executing on the HD 69XX processor.

• Access by Host Software—Readable, writable, or both by software executing
on the host processor. The tables do not include state objects, such as HD
69XX configuration registers, that accessible only to host software.

• Number per Work-Item—The maximum number of such state objects
available to each work-item. In some cases, the maximum number is shared
by all executing work-items.

• Width—The width, in bits, of the state object.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-12 Program State
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Table 2.8 Control-Flow State

State

Access by
HD 69XX

S/W
Access by
Host S/W

per
Work-
Item

Width
(bits) Description

Integer Constant
Register (I)

R W 1 96
(3 x 32)

The loop-variable constant specified in the
CF_CONST field of the CF_WORD1 microcode for-
mat for the current LOOP* instruction.

Loop Index (aL) R No 1 13 A register that is initialized by LOOP* instructions
and incremented by hardware on each iteration
of a loop, based on values provided in the LOOP*
instruction’s CF_CONST field of the CF_WORD1
microcode format. It can be used for relative
addressing of GPRs by any clause. Loops can
be nested, so the counter and index are stored
in the stack.
ALU instructions can read the current aL index
value by specifying it in the INDEX_MODE field of
the ALU_WORD0 microcode format, or in the
ELEM_LOOP field of CF_ALLOC_EXPORT_WORD1_*
microcode formats.
The register is 13 bits wide, but some instruc-
tions use only the low 9 bits.

Stack No No Chip-
Specific

Chip-
Specific

The hardware maintains a single, multi-entry
stack for saving and restoring the state of nested
loops, pixels (valid mask and active mask, pred-
icates, and other execution details. The total
number of stack entries is divided among all
executing work-items.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Program State 2-13
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Table 2.9 ALU State

State

Access by
HD 69XX

S/W
Access by
Host S/W

Registers
per

Work-
Item

Width
(bits) Description

General-Purpose
Registers (GPRs)

R/W No 128 minus
2 times
Clause-

Temporary
GPRs

128
(4 x 32 bit)

Each work-item has access to up to 127
GPRs, minus two times the number of
Clause-Temporary GPRs. By default, four
GPRs (the number is user-configurable)
are reserved as Clause-Temporary GPRs
that persist only for one ALU clause; thus,
they are not accessible to fetch and export
units.
GPRs can hold data in one of several for-
mats: the ALU can work with 32-bit IEEE
floats (S23E8 format with special values),
32-bit unsigned integers, and 32-bit signed
integers.

Clause Tempo-
rary GPRs

R/W No 4 128
(4 x 32 bit)

GPRs containing clause-temporary vari-
ables. The number of clause-temporary
GPRs used by each work-item reduces the
total number of GPRs available to the
work-item, as described immediately
above.

Clause Global
Register

R/W No 1 per
wavefront

32 One register per wavefront. It can hold
temporary values during an ALU clause.
The value is not preserved between
clauses.

Compute Unit-
Global GPRs

R/W No Defined
by driver

128
(4 x 32 bit)

Set of GPRs that is persistent across all
work-items during the execution of the ker-
nel. Can be used to pass data between
work-items.

Address Regis-
ter (AR)

W No 1 9 bits A register written by MOVA instructions.
Hardware reads this register. The index is
used for relative addressing of a constant
buffer (called constant waterfalling). This
state only persists for one ALU clause.

Constant Regis-
ters (CRs)

R W 512 128
(4 x 32 bit)

Registers that contain constants. Each reg-
ister is organized as four 32-bit elements of
a vector. Software can use either the CRs
or the off-chip constant cache, but not both.
DirectX calls these the Floating-Point Con-
stant (F) Registers.

Index Register W No 2 per
wavefront

8 A register that can be used to index into
texture buffer constants, samplers, con-
stant buffers, and random access targets.
Index registers can be written from ALU
clauses.

Previous Vector
(PV)

R No 1 128
(4 x 32 bit)

Registers that contain the results of the
previous ALU.[X,Y,Z,W] operations. This
state only persists for one ALU clause.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-14 Program State
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Local Data Share
(LDS)

R/W
Up to
32 kB.

No Per compute unit shared memory that
enables an order of magnitude lower
latency sharing of data between work-items
of a given work-group. The application
must query the runtime for the size of the
local shared memory.

Global Data
Share (GDS)

R/W
Up to
64 kB

No Global shared memory that enables low-
latency access between all the work-items
of a kernel concurrently running on the
compute units. This memory also enables
inter-work-item atomic operations and
reductions.

Predicate
Register

R/W No 1 1 A register containing predicate bits. The
bits are set or cleared by ALU instructions
as the result of evaluating some condition;
the bits are subsequently used either to
mask writing an ALU result or as a condi-
tion itself.
An ALU clause computes the predicate bits
in this register. A predicate bit in this regis-
ter can be referred to in a control-flow
instruction to induce conditional branching.
This state only persists for one ALU clause.
Predicate registers must be 1 bit per work-
item or pixel, or 64 bits wide. Valid mask
and active mask width must be the same.

Pixel State No No 1 192
(64 x 2

bits)

State bits that reflect each pixel’s active
status as conditional instructions are exe-
cuted. The state can be Active, Inactive-
branch, Inactive-continue, or Inactive-
break.

Valid Mask No No 1 64 A mask indicating which pixels have been
killed by a pixel-kill operation. The mask is
updated when a CF_INST_KILL instruction
is executed.

Active Mask W
(indirect)

No 1 1 bit per
pixel

A mask indicating which pixels are cur-
rently executing and which are not
(1 = execute, 0 = skip). This can be
updated by PRED_SET* ALU instructions1,
but the updates do not take effect until the
end of the ALU clause.
CF_ALU instructions can update this mask
with the result of the last PRED_SET*
instruction in the clause.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that define
variants.

Table 2.9 ALU State (Cont.)

State

Access by
HD 69XX

S/W
Access by
Host S/W

Registers
per

Work-
Item

Width
(bits) Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Data Sharing 2-15
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.6 Data Sharing
The AMD HD 6900 series of Stream processors can share data between different
work-items. Data sharing can significantly boost performance. Figure 2.1 shows
the memory hierarchy that is available to each work-item.

Table 2.10 Fetch Through Texture Cache Clause and Constant-Fetch State

State

Access by
HD 69XX

S/W
Access by
Host S/W

per
Work-
Item

Width
(bits) Description

Texture Samplers No W 18 96 There are 18 samplers (16 for DirectX plus 2
spares) available for each of the VS, GS, PS
program types, two of which are spares. A tex-
ture sampler constant is used to specify how a
texture is to be accessed. It contains informa-
tion such as filtering and clamping modes.

Texture
Resources

No W 160 160 There are 160 resources available for each of
the VS, GS, PS program types, and 16 for FS
program types.

Border Color No W 1 128
(4 x 32

bits)

This is stored in the texture pipeline, but is ref-
erenced in fetches through texture cache
clause instructions.

Bicubic Weights No W 2 176 These define the weights, one horizontal and
one vertical, for bicubic interpolation. The state
is stored in the texture pipeline, but referenced
in fetches through texture cache clause
instructions.

Kernel Size for
Cleartype
Filtering

No W 2 3 These define the kernel sizes, one horizontal
and one vertical, for filtering with Microsoft's
Cleartype™ subpixel rendering display tech-
nology. The state is stored in the texture
pipeline, but referenced in fetches through tex-
ture cache clause instructions.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-16 Data Sharing
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Figure 2.1 Shared Memory Hierarchy on the AMD HD 6900 Series of
Stream Processors

2.6.1 Types of Shared Registers

There are two types of shared general-purpose registers: global shared and
clause temporary.

2.6.1.1 Shared GPRs

Shared registers enable sharing of data between work-items residing in a lane of
different wavefronts and that are scheduled to execute on a given compute unit.
An absolute addressing mode of each source and destination operand allows
sourcing data from a global (absolute-addressed) register instead of a
wavefront’s private (relative-addressed) registers. The maximum number shared
register is 128 less two times the number of clause temp registers used. The
registers put in this pool are removed from the general pool of wavefront private
registers.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Data Sharing 2-17
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Each source and destination operand has an absolute addressing mode. This
enables each to be accessed relative to address zero, instead of a base of the
allocated pool of registers for the respective wavefront (see Figure 2.2). To use
this pool, a state register must be set up defining the number of registers
reserved for global usage.

The global GPRs are accessed through an index_mode (simd-global) in the
ALU instruction word. This new mode interprets the src or dest GPR address
as an absolute address in the range 0 to 127. This index mode works in
conjunction with the src-rel/dest-rel fields, allowing the instruction to mix
global and wavefront-local GPRs.

Additional index modes allow indexed addressing, where the address = GPR +
offset_from_instruction or INDEX_GLOBAL_AR_X (AR.X only; see Section 4.6.1,
“Relative Addressing,” page 4-5, as well as the opcode description for
ALU_WORD0, page 9-23). This allows inter-work-item communication and
kernel-based addressing. (This requires using a MOVA* instruction to copy the
index to the AR.X register.)

This pool of global GPRs can be used to provide many powerful features,
including:

• Atomic reduction variables per lane (the number depends on the number of
GPRs), such as:

– max, min, small histogram per lane,

– software-based barriers or synchronization primitives.

• A set of constants that is unique per lane. This prevents:

– the overhead of repeated fetches, and

– divergent work-item execution due to constant look-up.

2.6.1.2 Clause Temporary GPRs

Clause temporary GPRs (clause temps) are a separate partition of the GPR pool
that provide extra temporary registers to be used within an ALU clause, but their
values are not preserved between clauses.

The GPR pool can include partitions that hold clause temporary (temp) GPRs.
Clause temp GPRs alleviate register pressure and enable peak performance
because they are stored in two sections, one for the odd, the other for the even
wavefront (see Figure 2.2). Because there are two unique sections set aside for
each wavefront executing on the compute unit, there is no conflict between reads
and writes of clause temps between the even and odd wavefronts.

When using global shared registers, both wavefronts map the registers into the
same locations in memory, which can cause a conflict and a stall. This is because
it takes a full instruction for the write to be visible; thus, if there are a read and
a write happening on the same instruction group but from different wavefronts,
there is a read/write conflict that the hardware resolves by stalling one of the
wavefronts until the write is visible to the read.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-18 Data Sharing
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The clause temp GPRs are accessed using the top GPR address locations. For
example, if four clause temp register are enabled using 124, 125, 126, and 127,
the address selects clause temp registers 0, 1, 2, and 3, respectively.

Clause temp registers can provide atomic (locked, uninterruptable) reduction per
lane to enable higher performance between all work-items in a lane of a compute
unit for the wavefronts that execute on the even or odd instruction slot.

Figure 2.2 Possible GPR Distribution Between Global, Clause Temps, and
Private Registers

Note that the terms even and odd refer to the ALU execution pipelines to which
the scheduler arbitrarily assigns wavefronts. The first instruction slot to which a
wavefront is assigned wavefront is termed odd.

Both global and clause temp shared registers require that the graphics pipeline
(kernel hardware) must be flushed before changing resource allocation sizes
(number of global registers, number of clause temp registers, etc.) for persistent
shared use. They also require initialization prior to use. After any parallel atomic
accumulation or reductions, the kernel pipeline must be flushed, followed by a
special kernel that uses data sharing between lanes and/or compute units for a
fast, on-chip final reduction. The result can be broadcast back to a global
persistent register in each register file of each compute unit. The results can be
used persistently across a subsequent kernel launch as a global src operand.
This process can be very useful for a data collection pass on an image, followed
by a reduction kernel, then followed by a compute kernel that uses the reduced
values to alter the source image. This can be done without CPU intervention or
off-chip traffic.

Physically, the GPRs are ordered from zero as: global, clause_temp, private.
Note that this ordering allows a program to use the MOV_INDEX_GLOBAL
instruction to access beyond the global registers into the clause temp registers.
Global shared registers and clause temp registers must fit within the first 128
GPRs, due to ALU-instruction dest-GPR field-size limits.

Compute unit global GPRs are enabled only in the dynamic GPR mode.

GLB GPR
Pool

Per Wavefront
Pool

ClauseTmp
Even Pool

ClauseTmp
Odd Pool

Private

Clause
Shared

Global
Shared

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Device Memory 2-19
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

2.6.2 Local Data Share (LDS)

Each compute unit has a 32 kB memory space that enables low-latency
communication between work-items within a work-group, or the work-items within
a wavefront; this is the local data share (LDS). This memory is configured with
32 banks, each with 256 entries of 4 bytes. The AMD HD 6900 series uses a 32
kB local data share (LDS) memory for each compute unit; this enables 128 kB
of low-latency bandwidth to the processing elements. The AMD HD 6900 series
of devices has full access to any LDS location for any processor. The shared
memory contains 32 integer atomic units to enable fast, unordered atomic
operations. This memory can be used as a software cache for predictable re-use
of data, a data exchange machine for the work-items of a work-group, or as a
cooperative way to enable more efficient access to off-chip memory.

2.6.3 Global Data Share (GDS)

The AMD HD 6900 series of devices uses a 64 kB global data share (GDS)
memory that can be used by wavefronts of a kernel on all compute units. This
memory enables 128 bytes of low-latency bandwidth to all the processing
elements. The GDS is configured with 32 banks, each with 512 entries of 4 bytes
each. It provides full access to any location for any processor. The shared
memory contains 32 integer atomic units to enable fast, unordered atomic
operations. This memory can be used as a software cache to store important
control data for compute kernels, reduction operations, or a small global shared
surface. Data can be preloaded from memory prior to kernel launch and written
to memory after kernel completion. The GDS block contains support logic for
unordered append/consume and domain launch ordered append/consume
operations to buffers in memory. These dedicated circuits enable fast compaction
of data or the creation of complex data structures in memory.

2.7 Device Memory
The AMD HD 6900 series of devices offers several methods for access to off-
chip memory from the processing elements (PE) within each compute unit. On
the primary read path, the device consists of multiple channels of L2 read-only
cache that provides data to an L1 cache for each compute unit. Special cache-
less load instructions can force data to be retrieved from device memory during
an execution of a load clause. Load requests that overlap within the clause are
cached with respect to each other. The output cache is formed by two levels of
cache: the first for write-combining cache (collect scatter and store operations
and combine them to provide good access patterns to memory); the second is a
read/write cache with atomic units that lets each processing element complete
unordered atomic accesses that return the initial value. Each processing element
provides the destination address on which the atomic operation acts, the data to
be used in the atomic operation, and a return address for the read/write atomic
unit to store the pre-op value in memory. Each store or atomic operation can be
set up to return an acknowledgement to the requesting PE upon write
confirmation of the return value (pre-atomic op value at destination) being stored
to device memory. This acknowledgement has two purposes:

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

2-20 Device Memory
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• enabling a PE to recover the pre-op value from an atomic operation by
performing a cache-less load from its return address after receipt of the write
confirmation acknowledgement, and

• enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel always maintains
order. The acknowledgement enables one processing element to implement a
fence to maintain serial consistency by ensuring all writes have been posted to
memory prior to completing a subsequent write. In this manner, the system can
maintain a relaxed consistency model between all parallel work-items operating
on the system.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 3-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 3
Control Flow (CF) Programs

A control flow (CF) program is a main program. It directs the flow of program
clauses by using control-flow instructions (conditional jumps, loops, and
subroutines), and it can include memory-allocation instructions and other
instructions that specify when vertex and geometry programs have completed
their operations. The HD 69XX hardware maintains a single, multi-entry stack for
saving and restoring active masks, loop counters, and returning addresses for
subroutines.

CF instructions can:

• Execute an ALU, a fetch through a texture cache clause or global data share
clause. These operations take the address of the clause to execute, and a
count indicating the size of the clause. A program can specify that a clause
must wait until previously executed clauses complete, or that a clause must
execute conditionally (only active pixels execute the clause, and the clause
is skipped entirely if no pixels are active).

• Within an ALU clause, wavefronts within a work-group can synchronize with
each other.

• Execute a DirectX9-style loop. There are two instructions marking the
beginning and end of the loop. Each instruction takes the address of its
paired LOOP_START and LOOP_END instructions. A loop reads from one of 32
constants to get the loop count, initial index value, and index increment
value. Loops can be nested.

• Execute a DirectX10-style loop. There are two instructions marking the
beginning and end of the loop. Each instruction takes an address of its paired
LOOP_START and LOOP_END instructions. Loops can be nested.

• Execute a repeat loop (one that does not maintain a loop index). Repeat
loops are implemented with the LOOP_START_NO_AL and LOOP_END
instructions. These loops can be nested.

• Break out of the innermost loop. LOOP_BREAK instructions take an address to
the corresponding LOOP_END instruction. LOOP_BREAK instructions can be
conditional (executing only for pixels that satisfy a break condition).

• Continue a loop, starting with the next iteration of the innermost loop.
LOOP_CONTINUE instructions take an address to the corresponding LOOP_END
instruction. LOOP_CONTINUE instructions can be conditional.

• Execute a subroutine CALL or RETURN. A CALL takes a jump address. A
RETURN never takes an address; it returns to the address at the top of the

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-2 CF Microcode Encoding
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

stack. Calls can be conditional (only pixels satisfying a condition perform the
instruction). Calls can be nested.

• Call the fetch subroutine (FS). The address field in a TC control-flow
instruction is unused

• Jump to a specified address in the control-flow program. A JUMP instruction
can be conditional or unconditional.

• Perform manipulations on the current active mask for flow control (for
example: executing an ELSE instruction, saving and restoring the active mask
on the stack).

• Allocate data-storage space in a buffer and import (read) or export (write)
addresses or data.

• Signal that the geometry shader (GS) has finished exporting a vertex, and
optionally the end of a primitive strip.

• Synchronize with other wavefronts (global wave sync).

• Send an interrupt to the host

• Raise or lower the priority of the wavefront.

• Deallocate LDS space.

• End the kernel.

The end of the CF program is marked by the CF_INST_END instruction. The CF
program terminates after the end of this instruction, regardless of whether the
instruction is conditionally executed.

3.1 CF Microcode Encoding
The microcode formats and all of their fields are described in Chapter 9,
“Microcode Formats.” An overview of the encoding is given below. The following
instruction-related terms are used throughout the remainder of this document:

• Microcode Format—An encoding format whose fields specify instructions and
associated parameters. Microcode formats are used in sets of two or four 32-
bit doublewords (dwords). For example, the two mnemonics, CF_WORD[0,1]
indicate a microcode-format pair, CF_WORD0 and CF_WORD1, described in
Section 9.1, “Control Flow (CF) Instructions,” page 9-3.

• Instruction—A computing function specified by the CF_INST field of a
microcode format. For example, the mnemonic CF_INST_JUMP is an
instruction specified by the CF_WORD[0,1] microcode-format pair. All
instructions have the _INST_ string in their mnemonic; for example, CF
instructions have a CF_INST_ prefix. The instructions are listed in the
Description columns of the microcode-format field tables in Chapter 9. In the
remainder of this document, the CF_INST_ prefix is omitted when referring to
instructions, except in passages for which the prefix adds clarity.

• Opcode—The numeric value of the CF_INST field of an instruction. For
example, the opcode for the JUMP instruction is decimal 16 (0x10).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Summary of Fields in CF Microcode Formats 3-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• Parameter—An address, index value, operand size, condition, or other
attribute required by an instruction and specified as part of it. For example,
CF_COND_ACTIVE (condition test passes for active pixels) is a field of the JUMP
instruction.

The doubleword layouts in memory for CF microcode encodings are shown
below, where +0 and +4 indicate the relative byte offset of the doublewords in
memory, {BUF, SWIZ} indicates a choice between the strings BUF and SWIZ, and
LSB indicates the least-significant (low-order) byte.

• CF microcode instructions that initiate ALU clauses use the following memory
layout.

• CF microcode instructions that reserve storage space in an input or output
buffer, write data from GPRs into an output buffer, or read data from an input
buffer into GPRs use the following memory layout.

• All other CF microcode encodings use the following memory layout.

3.2 Summary of Fields in CF Microcode Formats
Table 3.1 summarizes the fields in various CF microcode formats and indicate
which fields are used by the different instruction types. Each column represents
a type of CF instruction. The fields in this table have the following meanings.

• Yes—The field is present in the microcode format and required by the
instruction.

31 24 23 16 15 8 7 0

CF_ALU_WORD1 +4

CF_ALU_WORD0 +0

<------------ LSB ------------>

31 24 23 16 15 8 7 0

CF_ALLOC_EXPORT_WORD1_{BUF, SWIZ} +4

CF_ALLOC_EXPORT_WORD0 +0

<------------ LSB ------------>

31 24 23 16 15 8 7 0

CF_WORD1 +4

CF_WORD0 +0

<------------ LSB ------------>

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-4 Summary of Fields in CF Microcode Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• No—The field is present in the microcode format but ignored by the
instruction.

• Blank—The field is not present in the microcode format for that instruction.

For descriptions of the CF fields listed in Table 3.1, see Section 9.1, “Control
Flow (CF) Instructions,” page 9-3.

Table 3.1 CF Microcode Field Summary

CF Microcode Field

CF Instruction Type

ALU1
Fetch Through Texture

Cache Clause2 Memory3 Branch or Loop4 Other5

CF_INST Yes Yes Yes Yes Yes

ADDR Yes Yes Note6 No

CF_CONST No Note7 Yes

POP_COUNT No Note8 No

COND No Yes No

COUNT9 Yes Yes No No

CALL_COUNT No Note No

KCACHE_BANK[0,1] Yes

KCACHE_ADDR[0,1] Yes

KCACHE_MODE[0,1] Yes

VALID_PIXEL_MODE Yes Yes Yes Yes

WHOLE_QUAD_MODE Yes Yes Yes Yes Yes

BARRIER Yes Yes Yes Yes Yes

TYPE Yes

INDEX_GPR Note10

ELEM_SIZE Yes

ARRAY_BASE Yes

ARRAY_SIZE Yes

SEL_[X,Y,Z,W]

COMP_MASK Note11

BURST_COUNT Yes

RW_GPR Yes

RW_REL Yes

1. CF ALU instructions contain the string CF_INST_ALU_.
2. CF fetch via texture cache instructions contain the string TC.
3. CF memory instructions contain the string CF_INST_MEM_.
4. CF branch or loop instructions include LOOP*, PUSH*, POP*, CALL*, RETURN*, JUMP, and ELSE.
5. CF other instructions include NOP, EMIT_VERTEX, EMIT_CUT_VERTEX, CUT_VERTEX, and KILL.
6. Some flow control instructions accept an address for another CF instruction.
7. Required if COND refers to the boolean constant, and for loop instructions that use DirectX9-style loop

indexes.
8. Used by CF instructions that pop the stack. Not available to ALU clause instructions that pop the stack (see

the ALU instructions for similar control).
9. COUNT has three uses: a) Call instructions use it as a ‘call-count.’ b) EMIT/EMITCUT/CUT uses it to mean

‘stream-id.’ c) ALU/TC clauses use it to indicate clause length.
10. INDEX_GPR is used if the TYPE field indicates an indexed write.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Clause-Initiation Instructions 3-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The following fields are available in most of the CF microcode formats.

• BARRIER — This expresses dependencies between instructions and allows
parallel execution. If the this bit is set, all prior instructions complete before
the current instruction begins. If this bit is cleared, the current instruction can
co-issue with other instructions. Instructions of the same clause type never
co-issue; however, instructions in a fetch through a texture cache clause and
an ALU clause can co-issue if this bit is cleared. If in doubt, set this bit;
results are identical whether it is set or not, but using it only when required
can increase program performance.

• VALID_PIXEL_MODE — If set, instructions in the clause are executed as if
invalid pixels were inactive. This field is the complement to the
WHOLE_QUAD_MODE field. Set only WHOLE_QUAD_MODE or VALID_PIXEL_MODE at
any one time.

• WHOLE_QUAD_MODE — If set, instructions in the clause are executed as if all
pixels were active and valid. This field is the complement to the
VALID_PIXEL_MODE field. Set only WHOLE_QUAD_MODE or VALID_PIXEL_MODE
at any one time.

3.3 Clause-Initiation Instructions
Table 3.2 shows the clause-initiation instructions for the three types of clauses
that can be used in a program. Every clause-initiation instruction contains in its
microcode format an address field, ADDR (ignored for vertex clauses), that
specifies the beginning of the clause in memory. ADDR specifies a quadword (64-
bit) aligned address. Table 3.2 describes the alignment restrictions for clause-
initiation instructions. ADDR is relative to the program base (configured in the
PGM_START_* register by the host). There is also a COUNT field in the CF_WORD1
microcode format that indicates the size of the clause. The interpretation of COUNT
is specific to the type of clause being executed, as shown in Table 3.2. The actual
value stored in the COUNT field is the number of slots or instructions to execute,
minus one.

11. COMP_MASK is used if the TYPE field indicates a write operation.

Table 3.2 Types of Clause-Initiation Instructions

Clause Type
CF

Instructions
COUNT
Meaning

COUNT
Range

ADDR Alignment
Restriction

ALU ALU*1 Number of ALU slots2 [1, 128] Varies (64-bit alignment is
sufficient)

Fetch through Texture Cache TC3 Number of instructions [1, 16] Double quadword (128-bit)

1. These instructions use the CF_ALU_WORD[0,1] microcode formats, described in Section 9.1 on page 9-3.
2. See Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-3, for a description of ALU slots.
3. These instructions use the CF_WORD[0,1] microcode formats, described in Section 9.1 on page 9-3.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-6 Import and Export Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

3.3.1 ALU Clause Initiation

ALU* control-flow instructions1 (such as ALU, ALU_BREAK, ALU_POP_AFTER, etc.)
initiate an ALU clause. ALU clauses can contain OP2_INST_PRED_SET*
instructions (abbreviated PRED_SET* instructions in this manual) that set new
predicate bits for the processor’s control logic. The ALU control-flow instructions
control how the predicates are applied for subsequent flow control.

ALU* control-flow instructions are encoded using the ALU_WORD[0,1] microcode
formats, described in Section 9.1 on page 9-3. The ALU instructions within an
ALU clause are described in Chapter 4, “ALU Clauses,” and Section 9.2, “ALU
Instructions,” page 9-23.

ALU* control-flow instructions support locking up to four pages in the constant
registers. The KCACHE_* fields control constant-cache locking for this ALU clause;
the clause does not begin execution until all pages are locked, and the locks are
held until the clause completes. There are two banks of 16 constants available
for KCACHE locking; once locked, the constants are available within the ALU
clause using special selects. See Section 4.6.4, “ALU Constants,” page 4-7, for
more about ALU constants.

3.3.2 Texture Cache Clause Initiation and Execution

The TC control-flow instruction initiates a fetch through a texture cache clause or
a constant-fetch clause, starting at the double-quadword-aligned (128-bit) offset
in the ADDR field and containing COUNT + 1 instructions. There is only one
instruction for a fetch through a texture cache clause, and there are no special
fields in the instruction for texture clause execution.

The TC control-flow instruction is encoded using the CF_WORD[0,1] microcode
formats, which are described in Section 9.1 on page 9-3. The instructions for a
fetch through the texture cache clause are described in Chapter 5, “Texture
Cache Clauses,” and Section 9.4, “Texture Fetch Instruction Formats,” page 9-
58.

3.4 Import and Export Instructions
Importing means reading data from an input buffer (a scratch buffer, or ring
buffer) to GPRs. Exporting means writing data from GPRs to an output buffer (a
scratch buffer, ring buffer, or stream buffer), or writing an address for data inputs
from a scratch buffer.

Exporting is done using the CF_ALLOC_EXPORT_WORD0 and
CF_ALLOC_EXPORT_WORD1_{BUF, SWIZ} microcode formats. Two instructions,
EXPORT and EXPORT_DONE, are used for normal pixel, position, and parameter-
cache imports and exports. Importing is done using memory-read clauses (MEM*).

1. An asterisk (*) after a mnemonic string indicates that there are additional characters
in the string that define variants.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Import and Export Instructions 3-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

3.4.1 Normal Exports (Pixel, Position, Parameter Cache)

Most exports from a vertex shader (VS) and a pixel shader (PS) use the EXPORT
and EXPORT_DONE instructions. The last export of a particular type (pixel, position,
or parameter) uses the EXPORT_DONE instruction to signal hardware that the
wavefront is finished with output for that type. These import and export
instructions can use the CF_ALLOC_EXPORT_WORD1_SWIZ microcode format, which
provides optional swizzles for the outputs. These instructions can be used only
by VS and PS threads; GS and DC threads must use one of the memory export
instructions, MEM*.

Software indicates the type of export to perform by setting the TYPE field of the
CF_ALLOC_EXPORT_WORD0 microcode format equal to one of the following values:

• EXPORT_PIXEL — Pixel value output (from PS shaders). Send the output to
the pixel cache.

• EXPORT_POS — Position output (from VS shaders). Send the output to the
position buffer.

• EXPORT_PARAM — Parameter cache output (from VS shaders). Send the
output to the parameter cache.

The RW_GPR and RW_REL fields indicate the GPR address (first_gpr) from which
to read the first value or to which to write the first value (the GPR address can
be relative to the loop index (aL). The value BURST_COUNT + 1 is the number of
GPR outputs being written (the BURST_COUNT field stores the actual number
minus one). The Nth export value is read from GPR (first_gpr + N). The
ARRAY_BASE field specifies the export destination of the first export and can take
on one of the values shown in Table 3.3, depending on the TYPE field. The value
increments by one for each successive export.

Each memory write may be swizzled with the fields SEL_[X,Y,Z,W]. To disable
writing an element, write SEL_[X,Y,Z,W] = SEL_MASK.

3.4.2 Memory Writes

All memory writes use one of the following instructions:

• MEM_SCRATCH — Scratch buffer.

Table 3.3 Possible ARRAY_BASE Values

TYPE

ARRAY_BASE

InterpretationField Mnemonic

EXPORT_PIXEL
7:0 CF_PIXEL_MRT[7,0] Frame Buffer multiple render target (MRT), no fog.

61 CF_PIXEL_Z Computed Z.

EXPORT_POS 63:60 CF_POS_[3,0] Position index of first export.

EXPORT_PARAM 31:0 Parameter index of first export.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-8 Import and Export Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• MEM_STREAM[0,3] — Stream buffer, for DirectX10 compliance, used by VS
output for up to four streams.

• MEM_RING — Ring buffer, used for DC and GS output.

• MEM_EXPORT — Scatter writes.

These instructions always use the CF_ALLOC_EXPORT_WORD1_BUF microcode
format, which provides an array size for indexed operations and an element mask
for writes (there is no element mask for reads from memory). No arbitrary swizzle
is available; any swizzling must be done in an ALU clause. These instructions
can be used by any program type.

There is one scratch buffer available for writes per program type (four scratch
buffers in total). Stream buffers are available only to VS programs; ring buffers
are available to GS, DC, and PS programs, and to VS programs when no GS
and DC are present. Pixel-shader frame buffers use the ring buffer (MEM_RING).

The operation performed by these instructions is modified by the TYPE field,
which can be one of the following:

• EXPORT_WRITE — Write to buffer.

• EXPORT_WRITE_IND — Write to buffer, using offset supplied by INDEX_GPR.

The RW_GPR and RW_REL fields indicate the GPR address (FIRST_GPR) to write the
first value to (the GPR address can be relative to the loop register). The value
(BURST_COUNT + 1) * (ELEM_SIZE + 1) is the number of doubleword outputs
being written. The BURST_COUNT and ELEM_SIZE fields store the actual number
minus one. ELEM_SIZE must be 3 (representing four doublewords) for scratch
buffers, and ELEM_SIZE = 0 (doubleword) is intended for stream-out and ring
buffers.

The memory address is based on the value in the ARRAY_BASE field (see
Table 3.3, on page 3-7). If the TYPE field is set to EXPORT_*_IND
(use_index == 1), the value contained in the register specified by the
INDEX_GPR field, multiplied by (ELEM_SIZE + 1), is added to this base. The final
equation for the first address in memory to write to (in doublewords) is:

first_mem = (ARRAY_BASE + use_index * GPR[INDEX_GPR]) * (ELEM_SIZE + 1)

The ARRAY_SIZE field specifies a point at which the burst is clamped; no memory
is written past (ARRAY_BASE + ARRAY_SIZE) * (ELEM_SIZE + 1) doublewords. The
exact units of ARRAY_BASE and ARRAY_SIZE differ depending on the memory type;
for scratch buffers, both are in units of four doublewords (128 bits); for stream
and ring buffers, both are in units of one doubleword (32 bits).

Indexed GPRs can stray out of bounds. If the index takes a GPR address out of
bounds, then the rules specified for ALU GPR writes apply. See Section 4.6.3,
“Out-of-Bounds Addresses,” page 4-6.

The AMD HD 6900 series of GPUs supports a general memory export in which
shader threads can write to arbitrary addresses within a specified memory range.
This allows array-based and scatter access to memory. All threads share a

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Import and Export Instructions 3-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

common memory buffer, and there is no synchronization or ordering of writes
between threads. A thread can read data that it has written and be guaranteed
that previous writes from this thread have completed; however, a flush must take
place before reading data from the memory-export area that another thread has
written. Exports can only be written to a linear memory buffer (no tiling).

Each thread is responsible for determining the addresses it accesses.

The MEM_EXPORT instruction outputs data along with a unique dword address per
pixel from a GPR, plus the global export-memory base address. Data is from one
to four dwords.

3.4.3 Memory Reads

All memory reads use one of the following instructions:

• MEM_SCRATCH — Scratch buffer.

• MEM_EXPORT — Gather reads.

There is an element mask for reads from memory. Arbitrary swizzle is available.
These instructions can be used by any program type.

There is one scratch buffer available for reads per program type (four scratch
buffers in total).

The operation performed by these instructions is modified by the INDEXED field,
which can be one of the following:

• INDEXED = 0 — Read from buffer.

• INDEXED = 1 — Read from buffer using offset supplied by SRC_GPR.

The DST_GPR and DST_REL fields indicate the GPR address (FIRST_GPR) to read
the first value from (the GPR address can be relative to the loop register).

The memory address is based on the value in the ARRAY_BASE field (see
Table 3.3, on page 3-7). If the INDEXED field is set, the value contained in the
register specified by the SRC_GPR field, multiplied by (ELEM_SIZE + 1), is added
to this base. The final equation for the first address in memory to read from (in
doublewords) is:

first_mem = (ARRAY_BASE + use_index * GPR[INDEX_GPR]) * (ELEM_SIZE + 1)

The ARRAY_SIZE field specifies a point at which the burst is clamped; no memory
is read past (ARRAY_BASE + ARRAY_SIZE) * (ELEM_SIZE + 1) doublewords. The
exact units of ARRAY_BASE and ARRAY_SIZE differ depending on the memory type;
for scratch buffers, both are in units of four doublewords (128 bits); for stream
and ring buffers, both are in units of one doubleword (32 bits).

Indexed GPRs can stray out of bounds. If the index takes a GPR address out of
bounds, then the rules specified for ALU GPR reads apply, except for a memory
read in which the result is written to GPR0. See Section 4.6.3, “Out-of-Bounds
Addresses,” page 4-6.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-10 Synchronization with Other Blocks
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The AMD HD 6900 series supports a general memory export (read and write) in
which shader threads can read from, and write to, arbitrary addresses within a
specified memory range. This allows array-based and scatter access to memory.
All threads share a common memory buffer, and there is no synchronization or
ordering of writes between threads. A thread can read data that it has written and
be guaranteed that previous writes from this thread have completed; however, a
flush must take place before reading data from the memory-export area to which
another thread has written.

Each thread is responsible for determining the addresses it accesses.

3.5 Synchronization with Other Blocks
Three instructions, EMIT_VERTEX, EMIT_CUT_VERTEX, and CUT_VERTEX, notify the
processor’s primitive-handling blocks that new vertices are complete or primitives
finished. These instructions typically follow the corresponding export operation
that produces a new vertex:

• EMIT_VERTEX indicates that a vertex has been exported.

• EMIT_CUT_VERTEX indicates that a vertex has been exported and that the
primitive has been cut after the vertex.

• CUT_VERTEX indicates that the primitive has been cut, but does not indicate
a vertex has been exported by itself.

These instructions use the CF_WORD[0,1] microcode formats and can be
executed only by a GS program; they are invalid in other programs.

3.6 Conditional Execution
The remaining CF instructions include conditional execution and manipulation of
the branch-loop states. The following subsections describes how conditional
executions operate and describe the specific instructions.

3.6.1 Valid and Active Masks

Every element in the three bits that specify its state associated can be
manipulated by a program.

• a one-bit valid mask and a 2-bit per-pixel state. The valid mask is set for any
pixel that is covered by the original primitive and has not been killed by an
ALU KILL operation.

• a two-bit per-pixel state that reflects the pixel’s active status as conditional
instructions are executed; it can take on the following states:

– Active: The pixel is currently executing.

– Inactive-branch: The pixel is inactive due to a branch (ALU PRED_SET*)
instruction.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Conditional Execution 3-11
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

– Inactive-continue: The pixel is inactive due to a ALU_CONTINUE instruction
inside a loop.

– Inactive-break: The pixel is inactive due to a ALU_BREAK instruction inside
a loop.

Once the valid mask is cleared, it can not be restored. The per-pixel state can
change during the lifetime of the program in response to conditional-execution
instructions. Pixels that are invalid at the beginning of the program are put in one
of the inactive states and do not normally execute (but they can be explicitly
enabled, see below). Pixels that are killed during the program maintain their
current active state (but they can be explicitly disabled, see below).

Branch-loop instructions can push the current pixel state onto the stack. This
information is used to restore the pixel state when leaving a loop or conditional
instruction block. CF instructions allow conditional execution in one of the
following ways:

• Perform a condition test for each pixel based on current processor state:

– The condition test determines which pixels execute the current
instruction, and per-pixel state is unmodified, or

– The per-pixel state is modified; pixels that pass the condition test are put
into the active state, and pixels that fail the condition test are put into one
of the inactive states, or

– If at least one pixel passes, push the current per-pixel state onto the
stack, then modify the per-pixel state based on the results of the test. If
all pixels fail the test, jump to a new location. Some instructions can also
pop the stack multiple times and change the per-pixel state to the result
of the last pop; otherwise, the per-pixel state is left unmodified.

• Pop per-pixel state from the stack, replacing the current per-pixel state with
the result of the last pop. Then, perform a condition test for each pixel based
on the new state. Update the per-pixel state again based on the results of
the test.

The condition test is computed on each pixel based on the current per-pixel state
and, optionally, the valid mask. Instructions can execute in whole quad mode or
valid pixel mode, which include the current valid mask in the condition test. This
is controlled with the WHOLE_QUAD_MODE and VALID_PIXEL_MODE bits in the CF
microcode formats, as described in the section immediately below. The condition
test can also include the per-pixel state and a boolean constant, controlled by the
COND field.

3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE

A quad is a set of four pixels arranged in a 2-by-2 array, such as the pixels
representing the four vertices of a quadrilateral. The whole quad mode
accommodates instructions in which the result can be used by a gradient
operation. Any instruction with the WHOLE_QUAD_MODE bit set begins execution as
if all pixels were active. This takes effect before a condition specified in the COND

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-12 Conditional Execution
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

field is applied (if available). For most CF instructions, it does not affect the active
mask; inactive pixels return to their inactive state at the end of the instruction.
Some branch-loop instructions that update the active mask reactivate pixels that
were previously disabled by flow control or invalidation. These parameters assert
whole quad mode for multiple CF instructions without setting the
WHOLE_QUAD_MODE bit every time. Details for the relevant branch-loop instructions
are described in Section 3.7, “Branch and Loop Instructions,” page 3-15. In
general, instructions that can compute a value used in a gradient computation
are executed in whole quad mode. All CF instructions support this mode.

In certain cases during whole quad mode, it can be useful to deactivate invalid
pixels. This can occur in two cases:

• The program is in whole quad mode, computing a gradient. Related
information not involved in the gradient calculation must be computed. As an
optimization, the related information can be calculated without completely
leaving whole quad mode by deactivating the invalid pixels.

• The ALU executes a KILL instruction. Killed pixels remain active because the
processor does not know if the pixels are currently being used to compute a
result that is used in a gradient calculation. If the recently invalidated pixels
are not used in a gradient calculation, they can be deactivated.

Invalid pixels can be deactivated by entering valid pixel mode. Any instruction
with the VALID_PIXEL_MODE bit set begins execution as if all invalid pixels were
inactive. This takes effect before a condition specified in the COND field is
applied (if available). For most CF instructions, it does not affect the active mask;
however, as in whole quad mode, it influences the active mask for branch-loop
instructions that update the active mask. These instructions can be used to
permanently disable pixels that were recently activated. Valid pixel mode
normally is not used to exit whole quad mode; whole quad mode normally is
exited automatically when reaching the end of scope for the branch-loop
instruction that began in whole quad mode.

Instructions using the CF_WORD[0,1] or the CF_ALLOC_EXPORT_WORD[0,1]
microcode formats have VALID_PIXEL_MODE fields. ALU clause instructions
behave as if the VALID_PIXEL_MODE bit were cleared. Valid pixel mode is not the
default mode; normal programs that do not contain gradient operations clear the
VALID_PIXEL_MODE bit. The valid pixel mode is used only to deactivate pixels
invalidated by a KILL instruction and to temporarily inhibit the effects of whole
quad mode. Do not set both the WHOLE_QUAD_MODE bit and VALID_PIXEL_MODE
bit.

Branch-loop instructions that pop from the stack interpret the valid pixel mode
differently. If the mode is set on an instruction that pops the stack, invalid pixels
are deactivated after the active mask is restored from the stack. This can make
the effect of the valid pixel mode permanent for a killed pixel that is executed
inside a conditional branch. By default, the per-pixel active state is overwritten
with the stack contents on each pop, without regard for the current active state;
however, when VALID_PIXEL_MODE is set, the invalid pixels are deactivated even
though they were active going into the conditional scope.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Conditional Execution 3-13
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

3.6.3 The Condition (COND) Field

Instructions that use the CF_WORD[0,1] microcode formats have a COND field that
lets them be conditionally executed. The COND field can have one of the following
values:

• CF_COND_ACTIVE — Pixel currently active. Non-branch-loop instructions can
use only this setting.

• CF_COND_BOOL — Pixel currently active, and the boolean referenced by
CF_CONST is one.

• CF_COND_NOT_BOOL — Pixel currently active, and the boolean referenced by
CF_CONST is zero.

For most CF instructions, COND is used only to determine which pixels are
executing that particular instruction; the result of the test is discarded after the
instruction completes. Branch-loop instructions that manipulate the active state
can use the result of the test to update the new active mask; these cases are
described below. Non-branch-loop instructions can use only the CF_COND_ACTIVE
setting. Generally, branch-loop instructions that push pixel state onto the stack
push the original pixel state before beginning the instruction, and use the result
of COND to write the new active state. Some instructions that pop from the stack
can pop the stack first, then evaluate the condition code, and update the per-
pixel state based on the result of the pop and the condition code.

Instructions that do not have a COND field behave as if CF_COND_ACTIVE were
used. ALU clauses do not have a COND field; they execute pixels based on the
current active mask. ALU clauses can update the active mask using PRED_SET*
instructions, but changes to the active mask are not observed for the remainder
of the ALU clause (however, the clause can use the predicate bits to observe the
effect). Changes to the active mask from the ALU take effect at the beginning of
the next CF instruction.

3.6.4 Computation of Condition Tests

The COND, WHOLE_QUAD_MODE, and VALID_PIXEL_MODE fields combine to form the
condition test results shown in Table 3.4.

Table 3.4 Condition Tests

COND Default WHOLE_QUAD_MODE VALID_PIXEL_MODE

CF_COND_ACTIVE True if and only if pixel is
active.

True if and only if quad con-
tains active pixel.

True if and only if pixel is
both active and valid.

CF_COND_BOOL True if and only if pixel is
active and boolean refer-
enced by CF_CONST is one.

True if quad contains active
pixel and boolean referenced
by CF_CONST is one.

True if and only if pixel is
both active and valid, and
boolean referenced by
CF_CONST is one.

CF_COND_NOT_BOOL True if and only if pixel is
active and boolean refer-
enced by CF_CONST is one.

True if quad contains active
pixel and boolean referenced
by CF_CONST is one.

True if and only if pixel is
both active and valid, and
boolean referenced by
CF_CONST is one.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-14 Conditional Execution
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The following steps indicate how the per-pixel state can be updated during a CF
instruction that does not unconditionally pop the stack:

1. Evaluate the condition test for each pixel using current state, COND,
WHOLE_QUAD_MODE, and VALID_PIXEL_MODE.

2. Execute the CF instruction for pixels passing the condition test.

3. If the CF instruction is a PUSH, push the per-pixel active state onto the stack
before updating the state.

4. If the CF instruction updates the per-pixel state, update the per-pixel state
using the results of condition test.

ALU clauses that contain multiple PRED_SET* instructions can perform some of
these operations more than once. Such clause instructions push the stack once
per PRED_SET* operation.

The following steps loosely illustrate how the active mask (per-pixel state) can
be updated during a CF instruction that pops the stack. These steps only apply
to instructions that unconditionally pop the stack; instructions that can jump or
pop if all pixels fail the condition test do not use these steps:

1. Pop the per-pixel state from the stack (can pop zero or more times). Change
the per-pixel state to the result of the last POP.

2. Evaluate the condition test for each pixel using new state, COND,
WHOLE_QUAD_MODE, and VALID_PIXEL_MODE.

3. Update the per-pixel state again using results of condition test.

3.6.5 Stack Allocation

Each program type has a stack for maintaining branch and other program states.
The maximum number of available stack entries is controlled by a host-written
register or by the hardware implementation of the processor. The minimum
number of stack entries required to correctly execute a program is determined by
the deepest control-flow instruction.

Each stack entry contains a number of subentries. The number of subentries per
stack entry varies, based on the physical work-group width of the processor. If a
processor that supports 64 thread groups per program type is configured logically
to use only 48 thread groups per program type, the stack requirement for a 64-
item processor still applies. Table 3.5 shows the number of subentries per stack
entry, based on the physical thread-group width of the processor.

Table 3.5 Stack Subentries

Physical Thread-Group Width of Processor

16 32 48 64

Subentries per Entry 8 8 4 4

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Branch and Loop Instructions 3-15
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The CALL*, LOOP_START*, and PUSH* instructions each consume a certain
number of stack entries or subentries. These entries are released when the
corresponding POP, LOOP_END, or RETURN instruction is executed. The additional
stack space required by each of these flow-control instructions is described in
Table 3.6.

At any point during the execution of a program, if A is the total number of full
entries in use, and B is the total number of subentries in use, then STACK_SIZE
is calculated by:

A + B / (# of subentries per entry) <= STACK_SIZE

3.7 Branch and Loop Instructions
Several CF instructions handle conditional execution (branching), looping, and
subroutine calls. These instructions use the CF_WORD[0,1] microcode formats
and are available to all thread types. The branch-loop instructions are listed in
Table 3.7, along with a summary of their operations. The instructions listed in this
table implicitly begin with CF_INST_.

Table 3.6 Stack Space Required for Flow-Control Instructions

Instruction

Stack Usage per Physical Thread-Group
Width

Comments16 32 48 64

PUSH, PUSH_ELSE when
whole quad mode is not
set, and ALU_PUSH_BEFORE

one
subentry

one
subentry

one
subentry

one
subentry

If a PUSH instruction is invoked, two
subentries on the stack must be
reserved to hold the current active
(valid) masks.

PUSH, PUSH_ELSE when
whole quad mode is set

one entry one entry one entry one entry

LOOP_START* one entry one entry one entry one entry

CALL, CALL_FS two
subentries

one
subentry

one
subentry

one
subentry

A 16-bit-wide processor needs two
subentries because the program
counter has more than 16 bits.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-16 Branch and Loop Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Table 3.7 Branch-Loop Instructions

Instruction

Condition
Test

Computed Push Pop Jump Description

PUSH Yes, before
push.

Yes, if a
pixel
passes
test.

Yes, if all
pixels fail
test.

Yes, if all
pixels fail
test.

If all pixels fail the condition test, pop
POP_COUNT entries from the stack, and
jump to the jump address; otherwise,
push per-pixel state (active mask) onto
stack. After the push, active pixels that
failed the condition test transition to the
inactive-branch state.

PUSH_ELSE Yes, before
push.

Yes,
always.

No. Yes, if all
pixels fail
test.

Push current per-pixel state (active
mask) onto the stack, and compute new
active mask. The instruction implement
the ELSE part of a higher-level IF
statement.

POP Yes, before
pop.

No. Yes. Yes Pop POP_COUNT entries from the stack.
Also, jump if condition test fails for all
pixels.

PUSH_WQM Yes, before
push.

Yes, if a
pixel
passes
test.

Yes, if all
pixels fail
test.

Yes, if all
pixels fail
test.

PUSH, then apply whole quad mode to
the active mask.

POP_WQM Yes, before
pop.

No. Yes. Yes, if no
pixels are
enabled
after pop.

Pop, then apply whole quad mode to the
active mask.

ELSE_WQM Yes, after
ELSE.

No. Yes, if no
pixels
remain
active.

Yes, if all
pixels are
inactive
after
ELSE.

ELSE, then apply whole quad mode to
the active mask.

JUMP_ANY At beginning. No. Yes, if all
pixels fail
test.

Yes, if all
pixels fail
test.

Jump to ADDR unless all pixels fail the
condition test.

REACTIVATE No. No. No. No. Reactivate all valid work-items on the
top of the branch stack. Do not do this
inside a loop or WQM-frame.

REACTIVATE_WQM No. No. No. No. Reactivate and apply whole quad mode.
Do not do this inside a loop or WQM-
frame.

LOOP_START
LOOP_START_NO_AL
LOOP_START_DX10

At beginning.
All pixels fail if
loop count is
zero.

Yes, if a
pixel
passes
test.
Pushes
loop state.

Yes, if all
pixels fail
test.

Yes, if all
pixels fail
test.

Begin a loop. Failing pixels go to inac-
tive-break.

LOOP_END At beginning.
All pixels fail if
loop count is
one.

No. Yes, if all
pixels fail
test. Pops
loop
state.

Yes, if
any pixel
passes
test.

End a loop. Pixels that have not explic-
itly broken out of the loop are
reactivated. Exits loop if all pixels fail
condition test.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Branch and Loop Instructions 3-17
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

3.7.1 ADDR Field

The address specified in the ADDR field of a CF instruction is a quadword-aligned
(64 bit) offset from the base of the program (host-specified PGM_START_*

LOOP_CONTINUE At beginning. No. Yes, if all
pixels
done with
iteration.

Yes, if all
pixels
done with
iteration.

Pixels passing test go to inactive-con-
tinue. In the event of a jump, the stack
is popped back to the original level at
the beginning of the loop; the POP_COUNT
field is ignored.

LOOP_BREAK At beginning. No. Yes, if all
pixels
done with
iteration.

Yes, if all
pixels
done with
iteration.

Pixels passing test go to inactive-break.
In the event of a jump, the stack is
popped back to the original level at the
beginning of the loop; the POP_COUNT
field is ignored.

JUMP At beginning. No. Yes, if all
pixels fail
test.

Yes, if all
pixels fail
test.

Jump to ADDR if all pixels fail the condi-
tion test.

ELSE After last pop. No. Yes. Yes, if all
pixels are
inactive
after
ELSE.

Pop the stack, then invert status of
active or inactive-branch pixels that pass
conditional test and were active on last
PUSH.

CALL
CALL_FS

After last pop. Yes, if a
pixel
passes
test.
Pushes
address.

Yes. Yes, if
any pixel
passes
test.

Call a subroutine if any pixel passes the
condition test and the maximum call
depth limit is not exceeded. POP_COUNT
must be zero.

RETURN
RETURN_FS

No. No. Yes. Pops
address
from
stack if
jump
taken.

Yes, if all
active
pixels
pass test.

Return from a subroutine.

ALU No. No. No. N/A PRED_SET* with exec mask update puts
active pixels in to the inactive-branch
state.

ALU_PUSH_BEFORE No. Before
ALU
clause.

No. N/A Equivalent to PUSH; ALU clause.

ALU_POP_AFTER No. No. Yes. N/A Equivalent to ALU, POP.

ALU_POP2_AFTER Equivalent to ALU, POP, POP.

ALU_CONTINUE No. No. No. N/A Change active pixels masked by ALU to
inactive-continue. Equivalent to PUSH,
ALU, ELSE, CONTINUE, POP.

ALU_BREAK No. No. No. N/A Change active pixels masked by ALU to
inactive-break. Equivalent to PUSH,
ALU, ELSE, CONTINUE, POP.

ALU_ELSE_AFTER No. No. Yes. N/A Equivalent to ALU; ELSE.

Table 3.7 Branch-Loop Instructions (Cont.)

Instruction

Condition
Test

Computed Push Pop Jump Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-18 Branch and Loop Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

register). The execution continues from this offset. Branch-loop instructions
typically implement conditional jumps, so execution continues either at the next
CF instruction, or at the CF instruction located at the ADDR address.

3.7.2 Stack Operations and Jumps

Several stack operations are available in the CF instruction set: PUSH, POP, and
ELSE. There also is a JUMP instruction that jumps if all pixels fail a condition test.

• PUSH - pushes the current per-pixel state from hardware-maintained registers
onto the stack, then updates the per-pixel state based on the condition test.
If all pixels fail the test, PUSH does not push anything onto the stack; instead,
it performs POP_COUNT number of pops (may be zero), then jumps to a
specified address if all pixels fail the test.

• POP - pops per-pixel state from the stack to hardware-maintained registers; it
pops the POP_COUNT number of entries (can be zero). POP can apply the
condition test to the result of the POP, this is useful for disabling pixels that
are killed within a conditional block. To disable such pixels, set the POP
instruction’s VALID_PIXEL_MODE bit, and set the condition to
CF_COND_ACTIVE. If POP_COUNT is zero, the POP instruction simply modifies
the current per-pixel state based on the result of the condition test. Pop
instructions never jump.

• ELSE - performs a conceptual else operation. It starts by popping
POP_COUNT entries (can be zero) from the stack. Then, it inverts the sense
of active and branch-inactive pixels for pixels that are both active (as of the
last surviving PUSH operation) and pass the condition test. The ELSE
operation will then jump to the specified address if all pixels are inactive.

• JUMP - is used to jump over blocks of code that no pixel wants to execute.
JUMP first pops POP_COUNT entries (may be zero) from the stack. It then
applies the condition test to all pixels. If all pixels fail the test, it jumps to the
specified address; otherwise, it continues execution on the next instruction.

3.7.3 DirectX9 Loops

DirectX9-style loops are implemented with the LOOP_START and LOOP_END
instructions. Both instructions specify the DirectX9 integer constant using the
CF_CONST microcode field. This field specifies the integer constant to use for the
loop’s trip count (maximum number of loops), beginning value (loop index
initializer), and increment (step). The constant is a host-written vector, and the
three loop parameters are stored as three elements of the vector. The COND field
also can refer to the CF_CONST field for its boolean value. It is not be possible to
conditionally enter a loop based on a boolean constant unless the boolean
constant and integer constant have the same numerical address.

The LOOP_START instruction jumps to the address specified in the instruction’s
ADDR field if the initial loop count is zero. Software normally sets the ADDR field to
the CF instruction following the matching LOOP_END instruction. If LOOP_START
does not jump, hardware sets up the internal loop state. Loop-index-relative
addressing (as specified by the INDEX_MODE field of the ALU_WORD0 microcode

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Branch and Loop Instructions 3-19
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

format) is well-defined only within the loop. If multiple loops are nested, relative
addressing refers to the loop register of the innermost loop. The loop register of
the next-outer loop is automatically restored when the innermost loop exits.

The LOOP_END instruction jumps to the address specified in the instruction’s ADDR
field if the loop count is nonzero after it is decremented, and at least one pixel
has not been deactivated by a LOOP_BREAK instruction. Normally, software sets
the ADDR field to the CF instruction following the matching LOOP_START. The
LOOP_END instruction continues to the next CF instruction when the processor
exits the loop.

DirectX9-style break and continue instructions are supported. The LOOP_BREAK
instruction disables all pixels for which the condition test is true. The pixels
remain disabled until the innermost loop exits. LOOP_BREAK jumps to the end of
the loop if all pixels have been disabled by this (or a prior) LOOP_BREAK or
LOOP_CONTINUE instruction. Software normally sets the ADDR field to the address
of the matching LOOP_END instruction. If at least one pixel has not been disabled
by LOOP_BREAK or LOOP_CONTINUE, execution continues to the next CF
instruction.

The LOOP_CONTINUE instruction disables all pixels for which the condition test is
true. The pixels remain disabled until the end of the current iteration of the loop,
and are re-activated by the innermost LOOP_END instruction. The LOOP_CONTINUE
instruction jumps to the end of the loop if all pixels have been disabled by this
(or a prior) LOOP_BREAK or LOOP_CONTINUE instruction. The ADDR field points to
the address of the matching LOOP_END instruction. If at least one pixel has not
been disabled by LOOP_BREAK or LOOP_CONTINUE, the program continues to the
next CF instruction.

Each instruction can manipulate the stack. LOOP_START pushes the current per-
pixel state and the prior loop state onto the stack. If LOOP_START does not enter
the loop, it pops POP_COUNT entries (may be zero) from the stack, similar to the
PUSH instruction when all pixels fail. The LOOP_END instruction evaluates the
condition test at the beginning of the instruction. If all pixels fail the test, the
instruction exits the loop. LOOP_END pops the loop state and one set of the per-
pixel state from the stack when it exits the loop. It ignores POP_COUNT. The
LOOP_BREAK and LOOP_CONTINUE instructions pop the POP_COUNT entries (may be
zero) from the stack if the jump is taken.

3.7.4 DirectX10 Loops

DirectX10 loops are implemented with the LOOP_START_DX10 and LOOP_END
instructions. The LOOP_START_DX10 instruction enters the loop by pushing the
stack. The LOOP_END instruction jumps to the address specified in the ADDR field
if at least one pixel has not yet executed a LOOP_BREAK instruction. The ADDR field
points to the CF instruction following the matching LOOP_START_DX10 instruction.
The LOOP_END instruction continues to the next CF instruction, at which the
processor exits the loop. The LOOP_BREAK and LOOP_CONTINUE instructions are
allowed in DirectX10-style loops.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-20 Branch and Loop Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Manipulations of the stack are the same for LOOP_{START_DX10,END} instructions
and LOOP_{START,END} instructions.

3.7.5 Repeat Loops

Repeat loops are implemented with the LOOP_START_NO_AL and LOOP_END
instructions. These loops do not push the loop index (aL) onto the stack, nor do
they update aL; otherwise, they are identical to LOOP_{START,END} instructions.

3.7.6 Subroutines

The CALL and RETURN instructions implement subroutine calls and the
corresponding returns. For CALL, the ADDR field specifies the address of the first
CF instruction in the subroutine. The ADDR field is ignored by the RETURN
instruction (the return address is read from the stack). Calls have a nesting depth
associated with them that is incremented on each CALL instruction by the
CALL_COUNT field. The nesting depth is restored on a RETURN instruction. If the
program exceeds the maximum nesting depth (32) on the subroutine call (current
nesting depth + CALL_COUNT > 32), the call is ignored. Setting CALL_COUNT to
zero prevents the nesting depth from being updated on a subroutine call.
Execution of a RETURN instruction when the program is not in a subroutine is
illegal.

The CALL_FS instruction calls a fetch subroutine (FS) whose address is relative
to the address specified in a host-configured register. The instruction also
activates the fetch-program mode, which affects other operations until the
corresponding RETURN instruction is reached. Only a vertex shader (VS) program
can call an FS subroutine, as described in Section 2.1, “Program Types,” page 2-
1.

The CALL and CALL_FS instructions can be conditional. The subroutine is skipped
if and only if all pixels fail the condition test or the nesting depth exceeds 32 after
the call. The POP_COUNT field typically is zero for CALL and CALL_FS.

3.7.7 ALU Branch-Loop Instructions

Several instructions execute ALU clauses:

• ALU

• ALU_PUSH_BEFORE

• ALU_POP_AFTER

• ALU_POP2_AFTER

• ALU_ELSE_AFTER

• ALU_REACTIVATE_BEFORE

• ALU_VALID_PIXEL_MODE

The ALU instruction performs no stack operations. It is the most common method
of initiating an ALU clause. Each PRED_SET* operation in the ALU clause

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Synchronizing Across Threadgroups (Global Wave Sync) 3-21
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

manipulates the per-pixel state directly, but no changes to the per-pixel state are
visible until the clause completes execution.

The other ALU* instructions correspond to their CF-instruction counterparts. The
ALU_PUSH_BEFORE instruction performs a PUSH operation before each PRED_SET*
in the clause. The ALU_POP{,2}_AFTER instructions pop the stack (once or twice)
at the end of the ALU clause. The ALU_ELSE_AFTER instruction pops the stack,
then performs an ELSE operation at the end of the ALU clause. The major
limitation is that none of the ALU* instructions can jump to a new location in the
CF program. They can only modify the per-pixel state and the stack.

3.8 Synchronizing Across Threadgroups (Global Wave Sync)
Each compute device (1 or 2 per GPU) contains 16 global wave sync (GWS)
resources for implement barriers, semaphores, and other synchronization
primitives. GWS resources can be shared by multiple wavefronts running on
different compute units and on different compute devices (if multiple devices are
present). This makes them more powerful than threadgroup barriers, which allow
only for basic barrier-style synchronization between a set of wavefronts running
on an individual compute unit. The state of each resource is described by an
integer value that can be read and updated by each wavefront on the GPU. A
set of GWS instructions is provided that describe for each resource specified as
part of the instruction:

• the initial integer value of that resource,

• how the value of that resource is altered upon execution of the instruction
(increment, decrement, no change), and

• for which resource values the execution of the instruction is stalled until
another wavefront has altered the resource value.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

3-22 Synchronizing Across Threadgroups (Global Wave Sync)
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 4-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 4
ALU Clauses

Software initiates an ALU clause with one of the CF_INST_ALU* control-flow
instructions, all of which use the CF_ALU_WORD[0,1] microcode formats.
Instructions within an ALU clause, called ALU instructions, perform operations
using the scalar ALU.[X,Y,Z,W] unit, which is described in this chapter.

NOTE: For the 54xx and 55xx AMD GPU series only, the CF_INST_ALU*
instructions do not save the active mask correctly. The branching can be wrong,
possibly producing incorrect results and infinite loops. The three possible work-
arounds are:

a. Avoid using the CF_ALU_PUSH_BEFORE and CF_ALU_ELSE_AFTER
instructions.

b. Do not use the CF_INST_ALU* instructions when your stack depth
exceeds three elements (not entries); for the 54XX series AMD GPUs,
do not exceed a stack size of seven, since this GPU series has a vector
size 32.

c. Do not use these instructions when your non-zero stack depth mod 4 is
0 (or mod 8 is 0, for vector size 32).

4.1 ALU Microcode Formats
ALU instructions are implemented with ALU microcode formats that are
organized in pairs of two 32-bit doublewords. The doubleword layouts in memory
are shown in Figure 4.1.

• +0 and +4 indicate the relative byte offset of the doublewords in memory.

• {OP2, OP3} indicates a choice between the strings OP2 and OP3 (which
specify two or three source operands).

• LSB indicates the least-significant (low-order) byte.

Figure 4.1 ALU Microcode Format Pair

31 24 23 16 15 8 7 0

ALU_WORD1_{OP2, OP3} +4

ALU_WORD0 +0

<------------ LSB ------------>

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-2 Overview of ALU Features
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.2 Overview of ALU Features
An ALU vector is 128 bits wide and consists of four 32-bit elements. The data
elements need not be related. The elements are organized in GPRs in little-
endian order, as shown in Figure 4.2. Element ALU.X is the least-significant (low-
order) element; element ALU.W is the most-significant (high-order) element.

Figure 4.2 Organization of ALU Vector Elements in GPRs

The processor contains multiple sets of four scalar ALUs. These can perform
scalar operations on up to three 32-bit data elements each, with one 32-bit result.
The ALUs are called ALU.X, ALU.Y, ALU.Z, and ALU.W (or simply
ALU.[X,Y,Z,W]). Although the processor has multiple sets of these four scalar
ALUs, HD 69XX software can assume that, within a given ALU clause, all
instructions are processed by a single set of four ALUs.

Software issues ALU instructions in variable-length groups called instruction
groups. These perform parallel operations on different elements of a vector, as
described in Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-
3. The ALU.[X,Y,Z,W] units are nearly identical in their functions. They differ only
in the vector elements to which they write their result at the end of the instruction
and in certain reduction operations (see Section 4.8.2, “Reduction Instruction
Restrictions,” page 4-19).

ALU instructions can access 256 constants (from the constant registers) and 128
GPRs (each thread accesses its own set of 128 GPRs). Constant-register
addresses and GPR addresses can be absolute, relative to the loop index (aL),
or relative to an index GPR. In addition to reading constants from the constant
registers, an ALU instruction can refer to elements of a literal constant that is
embedded in the instruction group. Instructions also have access to a temporary
register that contains the results of the previous instruction groups. The previous
vector (PV) register contains a four-element vector that is the previous result from
the ALU.[X,Y,Z,W] units.

Each instruction has its own set of source operands:

• SRC0 and SRC1 for instructions using the ALU_WORD1_OP2 microcode format,
and SRC0, SRC1,

• SRC2 for instructions using the ALU_WORD1_OP3 microcode format.

An instruction group that operates on a four-element vector is specified as at
least four independent scalar instructions, one for each vector element. As a
result, vector operations can perform a complex mix of vector-element and
constant swizzles, and even swizzles across GPR addresses (subject to read-
port restrictions described in the next paragraph). Traditional floating-point and

127 96 95 64 63 32 31 0

ALU.W ALU.Z ALU.Y ALU.X

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instruction Slots and Instruction Groups 4-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

integer constants for common values (for example, 0, -1, 0.0, 0.5, and 1.0) can
be specified for any source operand.

Each ALU.[X,Y,Z,W] unit writes to an instruction-specified GPR at the end of the
instruction. The GPR address can be absolute, relative to the loop index, or
relative to an index GPR. The ALU.[X,Y,Z,W] units always write to their
corresponding vector element, but each unit can write to a different GPR
address. The outputs of each ALU unit can be clamped to the range [0.0, 1.0]
prior to being written, and some operations can multiply the output by a factor of
2.0 or 4.0.

4.3 ALU Instruction Slots and Instruction Groups
An ALU instruction group is listed in Table 2.7 on page 2-9. Each group consists
of one to four ALU instructions, optionally followed by one or two literal constants,
each of which can hold two vector elements. Each instruction is 64 bits wide
(composed of two 32-bit microcode formats). Two elements of a literal constant
are also 64 bits wide. Thus, the basic memory unit for an ALU instruction group
is a 64-bit slot, which is a position for an ALU instruction or an associated literal
constant. An instruction group consists of one to six slots, depending on the
number of instructions and literal constants. All ALU instructions occupy one slot,
except double-precision floating-point instructions, which occupy either two or
four slots (see Section 4.12, “Double-Precision Floating-Point Operations,”
page 4-24). The ALU clause size in the CF program is specified as the total
number of slots occupied by the ALU clause.

Each instruction in a group has a LAST bit that is set only for the last instruction
in the group. The LAST bit delimits instruction groups from one another, allowing
the HD 69XX hardware to implement parallel processing for each instruction
group. Each instruction is distinguished by the destination vector element to
which it writes.

The instructions in an instruction group must be in instruction slots 0 through 3,
in the order shown in Table 4.1. Up to three of the four instruction slots can be
omitted. Also, if any instructions refer to a literal constant by specifying the
ALU_SRC_LITERAL value for a source operand, the first, or both, of the two-
element literal constant slots (slots 5 and 6) must be provided; the second of
these two slots cannot be specified alone. There is no LAST bit for literal
constants. The number of the literal constants is known from the operations
specified in the instruction.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-4 Assignment to ALU.[X,Y,Z,W]
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Given the options described above, the size of an ALU instruction group can
range from 64 bits to 384 bits, in increments of 64 bits.

4.4 Assignment to ALU.[X,Y,Z,W]
Assignment of instructions to the ALU.[X,Y,Z,W] slots is observable by software
since it determines the value PV registers hold at the end of an instruction group.
An instruction’s slot is determined by the channel of destination register. An
instruction that writes to the X channel must be in the X slot, etc. At most one
instruction is allowed per slot. Unused slots act as if they contained NOPs.

4.5 OP2 and OP3 Microcode Formats
To keep the ALU slot size at 64 bits while not sacrificing features, the microcode
formats for ALU instructions have two versions: ALU_WORD1_OP2 (page 9-26) and
ALU_WORD1_OP3 (page 9-32). The OP2 format is used for instructions that require
zero, one, or two source operands plus destination operand. The OP3 format is
used for the smaller set of instructions requiring three source operands plus
destination operand.

Both versions have an ALU_INST field, which specifies the instruction opcode.
The ALU_WORD1_OP2 format has a 10-bit instruction field; ALU_WORD1_OP3 format
has a five-bit instruction field. The fields are aligned so that their MSBs overlap.
In the OP2 version, the ALU_INST field uses a seven-bit opcode, and the high
three bits are always 000b. In the OP3 version, at least one of the high three bits
of the ALU_INST field is nonzero.

4.6 GPRs and Constants
Within an ALU clause, instructions can access to up to 127 GPRs and 256
constants from the constant cache. Some GPR addresses can be reserved for
clause temporaries. These are temporary values typically stored at
GPR[124,127]1 that do not need to be preserved past the end of a clause. This

Table 4.1 Instruction Slots in an Instruction Group

Slot Entry Bits Type

0 Scalar instruction for ALU.X unit 64 src.X and dst.X vector-element slot

1 Scalar instruction for ALU.Y unit 64 src.Y and dst.Y vector-element slot

2 Scalar instruction for ALU.Z unit 64 src.Z and dst.Z vector-element slot

3 Scalar instruction for ALU.W unit 64 src.W and dst.W vector-element slot

4 X, Y elements of literal constant (X is the first dword) 64 Constant slot

5 Z, W elements of literal constant (Z is the first dword) 64 Constant slot

1. The number of clause temporaries can be programed only by the host processor using the configu-
ration-register field GPR_RESOURCE_MGMT_1.NUM_CLAUSE_TEMP_GPRS. A typical setting for this field is
4. If the field has N > 0, then GPR[127 – N + 1, 127] are set aside as clause temporaries.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

GPRs and Constants 4-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

gives a program access to temporary registers that do not count against its GPR
count (the number of GPRs that a program can use), thus allowing more
programs to run simultaneously.

For example, if the result of an instruction is required for another instruction
within a clause, but not needed after the clause executes, a clause temporary
can be used to hold the result. The first instruction specifies GPR[124, 127] as
its destination, while the second instruction specifies GPR[124, 127] as its
source. After the clause executes, GPR[124, 127] can be used by another
clause.

Any constant-register address can be absolute, relative to the loop index, or
relative to one of four elements in the address register (AR) that is loaded by a
prior MOVA* instruction in the same clause. Any GPR (source or destination)
address can be absolute, relative to the loop index, or relative to the X element
in the address register (AR) that is loaded by a prior MOVA* instruction in the
same clause.

In addition to reading constants from the constant registers, any operand can
refer to an element in a literal constant, as described in Section 4.3, “ALU
Instruction Slots and Instruction Groups,” page 4-3.

Constants also can come from one of two banks of kcache constants that are
read from memory before the clause executes. Each bank is a set of 16
constants locked into the cache for the duration of the clause by the CF
instruction that started it.

4.6.1 Relative Addressing

Each instruction can use only one index for relative addressing. Relative
addressing is controlled by the SRC_REL and DST_REL fields of the instruction’s
microcode format. The index used is controlled by the INDEX_MODE field of the
instruction’s microcode format. Each source operand in the instruction then
declares whether it is absolute or relative to the common index. The index used
depends on the operand type and the setting of INDEX_MODE, as shown in Table
4.2.

The term flow-control loop index refers to the DirectX9-style loop index. Each
instruction has its own INDEX_MODE control, so a single instruction group can refer
to more than one type of index.

Table 4.2 Index for Relative Addressing

INDEX_MODE GPR Operand Constant Register Operand Kcache Operand

INDEX_AR_X AR.X AR.X not valid

INDEX_AR_Y AR.X AR.Y not valid

INDEX_AR_Z AR.X AR.Z not valid

INDEX_AR_W AR.X AR.W not valid

INDEX_LOOP Loop Index (aL) Loop Index (aL) Loop Index (aL)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-6 GPRs and Constants
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

When using an AR index, the index must be initialized by a MOVA* operation that
is present in a prior instruction group of the same clause. Thus, AR indexing is
never valid on the first instruction of a clause.

An AR index cannot be used in an instruction group that executes a MOVA*
instruction in any slot. Any slot in an instruction group with a MOVA* instruction
using relative constant addressing can use only an INDEX_MODE of INDEX_LOOP.
To issue a MOVA* from an AR-relative source, the source must be split into two
separate instruction groups, the first performing a MOV from the relative source
into a temporary GPR, and the second performing a MOVA* on the temporary
GPR.

Only one AR element can be used per instruction group. For example, it is not
legal for one slot in an instruction group to use INDEX_AR_X, and another slot in
the same instruction group to use INDEX_AR_Y. Also, AR cannot be used to
provide relative indexing for a kcache constant; kcache constants can use only
the INDEX_LOOP mode for relative indexing.

GPR clause temporaries cannot be indexed.

4.6.2 Previous Vector (PV) Registers

Instructions can read from the previous vector (PV) temporary registers. These
contain the results from the ALU.[X,Y,Z,W], of the previous instruction group.
Together, these registers provide four 32-bit elements; PV contains a four-
element vector originating from the ALU.[X,Y,Z,W] output. The registers can be
used freely in an ALU instruction group (although using one in the first instruction
group of the clause makes no sense). NOP instructions do not preserve PV
values, nor are PV values preserved past the end of the ALU clause.

4.6.3 Out-of-Bounds Addresses

GPR and constant-register addresses can stray out of bounds after relative
addressing is applied. In some cases, an address that strays out of bounds has
a well-defined behavior, as described below.

Assume N GPRs are declared per thread, and K clause temporaries are also
declared. The GPR base address specified in SRC*_SEL must be in either the
interval [0, N – 1] (normal clause GPR) or [128 – K, 127] (clause temporary),
before any relative index is applied. If SRC*_SEL is a GPR address and does not
fall into either of these intervals, the resulting behavior is undefined. For example,
you cannot write code that generates GPRN[-1] to read from the last GPR in a
program.

If a GPR read with base address in [0, N – 1] is indexed relatively, and the base
plus the index is outside the interval [0, N – 1], the read value is always GPR0
(including instructions for fetch through a texture cache clause, as well as imports
and exports). If a GPR write with base address in [0, N – 1] is indexed relatively,
and the base plus the index is outside the interval [0, N – 1], the write is inhibited
(including for instructions for a fetch through a texture cache clause), unless the
instruction is a memory read. If the instruction is a memory read, the result are

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

GPRs and Constants 4-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

written to GPR0. Relative addressing on GPR clause temporaries is illegal. Thus,
the behavior is undefined if a GPR with a base address in the [128 – K, 127]
range is used with a relative index.

A constant-register base address is always in-bounds. If a constant-register read
is indexed relatively, and the base plus the index is outside the interval [0, 255],
the value read is NaN (0x7FFFFFFF).

If a kcache base address refers to a cache line that is not locked, the result is
undefined. You cannot refer to kcache constants [0, 15] if the mode (as set by
the CF instruction initiating the ALU clause) is KCACHE_NOP, and you cannot refer
to kcache constants [16, 31] if the mode is KCACHE_NOP or KCACHE_LOCK_1. If a
kcache read is indexed relatively, one cache line is locked with KCACHE_LOCK_1,
and the base plus the index is outside the interval [0, 15], the value read is NaN
(0x7FFFFFFF). If a kcache read is indexed relatively, two cache lines are locked,
and the base plus the index is outside the interval [0, 31], the value read is NaN
(0x7FFFFFFF).

4.6.4 ALU Constants

Each ALU instruction in the X,Y,Z or W slots can reference up to three constants;
an instruction in the T slot can reference up to two constants. All ALU constants
are 32 bits. There are four types of constants:

• ALU constant buffers (constant cache)

• Literal constants

• Inline constants

Each kernel can use up to 16 constant buffers. A constant buffer is a collection
of constants in memory anywhere from 1 to 4096 128-bit constants. Each ALU
clause can use only two windows of 32 constants. The can be windows into the
same or different constant buffers.

4.6.4.1 Constant Cache

Each ALU clause can lock up to four sets of constants into the constant cache.
Each set (one cache line) is 16 128-bit constants. These are split into two groups.
Each group can be from a different constant buffer (out of 16 buffers). Each
group of two constants consists of either [Line] and [Line+1], or [line + loop_ctr]
and [line + loop_ctr +1].

4.6.4.2 Literal Constants

Literal constants count against the total number of instructions that a clause can
have. Up to four dword constants can be supplied and swizzled arbitrarily.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-8 Scalar Operands
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.6.4.3 Inline Constants

Inline constants can be swizzled in to any source position and do not count
against the total number of instructions in a clause or the maximum number of
ALU constants in use. Literal constants supply common values: 0, 1, -1, 1.0 etc.

4.6.4.4 Statically-Indexed Constant Access

The constant-buffer entries can be accessed either with absolute addresses, or
addresses relative to the current loop index (aL, static indirect access). In both
cases, all pixels in the vector pick the same constant to use, and there is no
performance penalty. Swizzling is allowed.

4.6.4.5 Dynamically-Indexed Constant Access (AR-relative, Constant Waterfalling)

We provide dynamic indexing of constant-buffer constants. This means that a
GPR value is used as the index into the constant buffer. Since the value comes
from a GPR, it can be unique for each pixel. In the worst case, it may take 64
times as long to execute this instruction, since up to 64 constant-buffer reads can
be required.

Dynamic indexing requires two instructions:

• MOVA: Move one element of a GPR into the Address Register (AR) to be used
as the index value.

• <any ALU instruction>: Use the indices from the MOVA and perform
the indirect lookup.

There is a two-instruction delay slot between loading and using the GPR index
value. Hardware inserts delays if the kernel does not. The GPR indices loaded
by a MOVA instruction only persist for one clause; at the end of the clause they
are invalidated.

4.6.4.6 ALU Constant Buffer Sharing

ES, GS, and VS kernels can, on a per-ALU-clause basis, access their own
constant buffers or those of the other shader type.

ES/VS can use their own or use GS constant buffers, and GS can use its own
or ES/VS ones. This is provided for cases when the GS and VS shaders can be
merged into a single hardware shader stage.

This capability is activated by setting the ALT_CONSTS bit in the
SQ_CF_ALU_WORD1.

4.7 Scalar Operands
For each instruction, the operands src0, src1, and src2 are specified in the
instruction’s SRC*_SEL and SRC*_ELEM fields. GPR and constant-register
addresses can be relative-addressed, as specified in the SRC*_REL and
INDEX_MODE fields. In the OP2 microcode format, src2 is undefined.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Scalar Operands 4-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.7.1 Source Addresses

The data source address is specified in the SRC*_SEL field. This can refer to one
of the following.

• A GPR address, GPR[0, 127], with values [0, 127].

• A kcache constant in bank 0, kcache0[0, 31], with values [128, 159];
kcache0[16, 31] are accessible only if two cache lines have been locked.

• A kcache constant in bank 1, kcache1[0, 31], with values [160, 191];
kcache1[16, 31] are accessible only if two cache lines are locked.

• The previous vector (PV) result.

• A literal constant (two constants are present if any operand uses a Z or W
constant).

• A floating-point inline constant (0.0, 0.5, 1.0).

• An integer inline constant (-1, 0, 1).

If the SRC*_SEL field specifies a GPR or constant-register address, then the
relative index specified by the INDEX_MODE field is added to the address if the
SRC*_REL bit is set.

The definitions of the selects for PV, literal constant, and the special inline
constant values are given in the microcode specification. Also, the following
constant values are defined to assist in encoding and decoding the SRC*_SEL
field:

• ALU_SRC_GPR_BASE = 0 — Base value for GPR selects.

• ALU_SRC_KCACHE0_BASE = 128 — Base value for kcache bank 0 selects.

• ALU_SRC_KCACHE1_BASE = 144 — Base value for kcache bank 1 selects.

The SRC*_ELEM field specifies from which vector element of the source address
to read. If a literal constant is selected, and SRC*_ELEM specifies the Z or W
element; then, both slots of the literal constant must be specified at the end of
the instruction group.

4.7.2 Input Modifiers

Each input operand can be modified. The modifiers available are negate,
absolute value, and absolute-then-negate; they are specified using the SRC*_NEG
and SRC*_ABS fields. The modifiers are meaningful only for floating-point inputs.
Integer inputs must leave these fields cleared (zero), which is the pass-through
value. If the SRC*_NEG and SRC*_ABS bits are set, the absolute value is performed
first. Instructions with three source operands have only the negation modifier,
SRC*_NEG; absolute value, if desired, must be performed by a separate instruction
with two source operands.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-10 Scalar Operands
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.7.3 Data Flow

A simplified data flow for the ALU operands is given in Figure 4.3. The data flow
is discussed in more detail in the following sections.

Figure 4.3 ALU Data Flow

4.7.4 GPR Read Port Restrictions

In hardware, the X, Y, Z, and W elements are stored in separate memories. Each
element memory has three read ports per instruction. As a result, an instruction
can refer to at most three distinct GPR addresses (after relative addressing is
applied) per element. The processor automatically shares a read port for multiple
operands that use the same GPR address or element. For example, all scalar
src0 operands can refer to GPR2.X with only one read port. Thus, there are only
12 GPR source elements available per instruction (three for each element).
Additional GPR read restrictions are imposed for ALU.[X,Y,Z,W], as described
below.

4.7.5 Constant Register Read Port Restrictions

Software can read any four distinct elements from the constant registers in one
instruction group, after relative addressing is applied. The four constants must be
two pairs of constants from any address: either Cn.x,Cn.y or Cn.z,Cn.w. No more
than four distinct elements can be read from the constant buffer in one instruction
group.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Scalar Operands 4-11
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.7.6 Literal Constant Restrictions

A literal constant is fetched if any source operand refers to the literal constant,
regardless of whether the operand is used by the instruction group; so, be sure
to clear unused operands in instruction fields. If all operands referencing the
literal refer only to the X and Y vector elements, a two-element literal (one slot)
is fetched. If any operand referencing the literal refers to the Z or W vector
elements, a four-element literal (two slots) is fetched.

4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units

For ALU.[X,Y,Z,W] operations, source operands src0, src1, and src2 are loaded
during three cycles. At most one GPR.X, one GPR.Y, one GPR.Z and one
GPR.W can be read per cycle. The GPR values requested on cycle N are
assembled into a four-element vector, CYCLEN_GPR. In addition, four constant
elements are sent to the pipeline from a combination of sources: the constant-
register constant, a literal constant, and the special inline constants. The constant
elements sent on cycle N are assembled into a four-element vector, CYCLEN_K.
Collectively, these two vectors are referred to as CYCLEN_DATA.

The values in CYCLEN_DATA populate the logical operands src[0, 2]. The mapping
of CYCLE[0, 2]_DATA to src[0, 2] must be specified in the microcode, using the
BANK_SWIZZLE field. Read port restrictions must be respected across the
instructions in an instruction group, described below. Each slot has its own
BANK_SWIZZLE field, and these fields can be coordinated to avoid the read port
restrictions.

For ALU.[X,Y,Z,W] operations, BANK_SWIZZLE specifies from which cycle each
operand data comes from, if the operand’s source is GPR data. Constant data
for srcN is always from CYCLEN_K. The setting, ALU_VEC_012, is the identity
setting that loads operand N using data in CYCLEN_GPR.

In this configuration, if an operand is referenced more than once in a scalar
operation, it must be loaded in two different cycles, sacrificing two read ports. For
example:

BANK_SWIZZLE src0 src1 src2

ALU_VEC_012 CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

ALU_VEC_021 CYCLE0_GPR CYCLE2_GPR CYCLE1_GPR

ALU_VEC_120 CYCLE1_GPR CYCLE2_GPR CYCLE0_GPR

ALU_VEC_102 CYCLE1_GPR CYCLE0_GPR CYCLE2_GPR

ALU_VEC_201 CYCLE2_GPR CYCLE0_GPR CYCLE1_GPR

ALU_VEC_210 CYCLE2_GPR CYCLE1_GPR CYCLE0_GPR

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X + GPR1.X ALU_VEC_012 GPR1.X GPR2.X GPR1.X

GPR0.Y <= GPR1.Y * GPR2.Y + GPR1.Y ALU_VEC_012 GPR1.Y GPR2.Y GPR1.Y

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-12 Scalar Operands
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

However, as a special case, if src0 and src1 in an instruction refer to the same
GPR element, only one read port is used, on the cycle corresponding to src0 in
the bank swizzle. This optimization exists to facilitate squaring operations (MUL*
x, x, and DOT* v, v). The following example illustrates the use of this optimization
to perform square operations that do not consume more than one read port per
GPR element.

In the above example, the swizzle selects for src0 determine on which cycle to
load the shared operand. The swizzle selects for src1 are ignored. The following
programming is legal, even though at first glance the bank swizzles might
suggest it is not.

This optimization only applies when src0 and src1 share the same GPR element
in an instruction. It does not apply when src0 and src2, nor when src1 and src2,
share a GPR element.

Software cannot read two or more values from the same GPR vector element on
a single cycle. For example, software cannot read GPR1.X and GPR2.X on cycle
0. This restriction does not apply to constant registers or literal constants. For
example, the following programming is illegal.

Software can use BANK_SWIZZLE to work around this limitation, as shown below.

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X —1 —

GPR0.Y <= GPR1.Y * GPR1.Y ALU_VEC_120 —1 GPR1.Y —

1. src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used in the
marked cycles.

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X —1 —

GPR0.Y <= GPR1.Y * GPR1.Y ALU_VEC_102 —1 GPR1.Y —

GPR0.Z <= GPR2.Y * GPR2.X ALU_VEC_012 GPR2.Y GPR2.X —

1. src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used up in
the marked cycles.

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_012 invalid GPR2.X —

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y —

GPR0.Z <= GPR2.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y** —

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_012 GPR1.X GPR2.X —

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_201 GPR1.Y — GPR3.X

GPR0.Z <= GPR2.X * GPR1.Y ALU_VEC_102 GPR1.Y1 GPR2.X** —

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Scalar Operands 4-13
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The temporary registers PV have no cycle restrictions. Any element in these
registers can be accessed on any cycle. Constant operands can be accessed on
any cycle.

4.7.8 Read-Port Mapping Algorithm

This section describes the algorithm that determines what combinations of
source operands are permitted in a single instruction. For this algorithm, let:

• HW_GPR[0,1,2]_[X,Y,Z,W] store addresses for the [0, 2] GPR read port
reservations

• HW_CBUFFER[0,1,2,3]_ADDR represent a constant-buffer address, and

• HW_CBUFFER[0,1,2,3]_ELEM represent an element (X, Y, Z, W) for the [0, 3]
constant-buffer read port reservation.

For simplicity, this algorithm ignores relative addressing; if relative addressing is
used, address references below are after the relative index is applied.

The function, cycle_for_bank_swizzle($swiz, $sel), returns the cycle
number that the operand $sel must be loaded on, according to the bank swizzle
$swiz. The return value is shown in Table 4.3.

4.7.8.1 Initialization Execution

The following procedure is executed on initialization.

procedure initialize
begin

HW_GPR[0,1,2]_[X,Y,Z,W] := undef;
HW_CBUFFER[0,1,2,3]_ADDR := undef;
HW_CBUFFER[0,1,2,3]_ELEM := undef;

end

4.7.8.2 Reserving GPR Read

The following procedure reserves the GPR read for address $sel and vector
element $elem on cycle number $cycle.

1. The above examples illustrate that once a value is read into CYCLEN_DATA, multiple instructions can ref-
erence that value.

Table 4.3 Example Function’s Loading Cycle

$swiz $sel == 0 $sel == 1 $sel == 2

ALU_VEC_012 0 1 2

ALU_VEC_021 0 2 1

ALU_VEC_120 1 2 0

ALU_VEC_102 1 0 2

ALU_VEC_201 2 0 1

ALU_VEC_210 2 1 0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-14 Scalar Operands
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

procedure reserve_gpr($sel, $elem, $cycle)
if !defined(HW_GPR$cycle _$elem)

HW_GPR$cycle_$elem := $sel;
elsif HW_GPR$cycle_$elem != $sel

assert “Another instruction has already used GPR read port
$cycle

for vector element $elem”;
end

4.7.8.3 Reserving Constant Buffer Read

The following procedure reserves the constant buffer read for address $sel and
vector element $elem.

4.7.8.4 Execution for Each ALU.[X,Y,Z,W] Operation

The following procedure is executed for each ALU.[X,Y,Z,W] operation specified
in the instruction group.

procedure check_vector
begin

for $src in {0, ..., number_of_operands(ALU_INST)}
$sel := SRC$src_SEL;
$elem := SRC$src_ELEM;
if isgpr($sel)

$cycle := cycle_for_bank_swizzle(BANK_SWIZZLE, $src);
if $src == 1 and $sel == SRC0_SEL and $elem == SRC0_ELEM

// Nothing to do; special-case optimization,
second source uses first source’s reservation

else
reserve_gpr($sel, $elem, $cycle);

elsif isconst($sel)
// Any constant, including literal and inline constants
if iscbuffer($sel)

reserve_cbuffer($sel, $elem);
else

// No restrictions on PV
end

begin
$resmatch := undef;
$resempty := undef;
for $res in {1, 0}
if !defined(HW_CONST$res_ADDR)
$resempty := $res;

elsif HW_CONST$res_ADDR == $sel and HW_CONST$res_CHAN == int($chan/2)
$resmatch := $res;

if defined($resmatch)
// Read for this scalar component already reserved, nothing to do here.

elsif defined($resempty)
HW_CONST$resempty_ADDR := $sel;
HW_CONST$resempty_CHAN := int($chan/2);

else
assert “All CONST read ports are used, cannot reference C$sel, channel pair ($chan/2).”;

end

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 4-15
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.8 ALU Instructions
This section gives a brief summary of ALU instructions. See Section 9.2, “ALU
Instructions,” page 9-23, for details about the instructions.

Table 4.4 ALU Instructions

Mnemonic Description

Integer Operations
AND_INT Logical bit-wise AND.

ASHR_INT Arithmetic shift right. The sign bit is shifted into the vacated locations. src1 is inter-
preted as an unsigned integer. The component-wise shift right of each 32-bit value
in src0 by an unsigned integer bit count is provided by the LSB 5 bits (0-31 range)
in src1.selected_component, inserting 0.

CNDE_INT Integer conditional move equal based on integer (either signed or unsigned).

CNDE Conditional move equal based on floating point compare of first argument being
equal to 0.0.

CNDGE_INT Integer conditional move greater than or equal based on signed integer values.

CNDGE Conditional move equal based on floating point compare of first argument being
greater than, or equal to, 0.0.

CNDGT_INT Integer conditional move greater than based on signed integer values.

CNDGT Conditional move equal based on floating point compare of first argument being
greater than 0.0.

KILLE_INT Integer pixel kill equal. Set kill bit.

KILLGE_INT Integer pixel kill greater or equal. Set kill bit.

KILLGE_UINT Unsigned integer pixel kill greater or equal. Set kill bit.

KILLGT_INT Integer pixel kill greater than. Set kill bit.

KILLGT_UINT Unsigned integer pixel kill greater than. Set kill bit.

KILLNE_INT Integer pixel kill not equal. Set kill bit.

LSHL_INT Logical shift left. Zero is shifted into the vacated locations. src1 is interpreted as an
unsigned integer. If src1 is > 31, the result is 0x0.

LSHR_INT Logical shift right. Zero is shifted into the vacated locations. src1 is interpreted as
an unsigned integer. If src1 is > 31, the result is 0x0.

MAX_INT Integer maximum based on signed integer elements.

MAX_UINT Integer maximum based on unsigned integer elements.

MIN_INT Integer minimum based on signed integer elements.

MIN_UINT Integer minimum based on signed unsigned integer elements.

MOV Single-operand move.

NOP No operation.

NOT_INT Logical bit-wise NOT.

OR_INT Logical bit-wise OR.

PRED_SETE_INT Integer predicate set equal. Update predicate register.

PRED_SETE_PUSH_INT Integer predicate counter increment equal. Update predicate register.

PRED_SETGE_INT Integer predicate set greater than or equal. Update predicate register.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-16 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

PRED_SETGE_PUSH_INT Integer predicate counter increment greater than or equal. Update predicate
register.

PRED_SETGE_UINT Unsigned integer predicate set greater than or equal. Update predicate register.

PRED_SETGT_INT Integer predicate set greater than. Updates predicate register.

PRED_SETGT_PUSH_INT Integer predicate counter increment greater than. Update predicate register.

PRED_SETGT_UINT Unsigned integer predicate set greater than. Updates predicate register.

PRED_SETLE_INT Integer predicate set if less than or equal. Updates predicate register.

PRED_SETLE_PUSH_INT Predicate counter increment less than or equal. Update predicate register.

PRED_SETLT_INT Integer predicate set if less than. Updates predicate register.

PRED_SETLT_PUSH_INT Predicate counter increment less than. Update predicate register.

PRED_SETNE_INT Predicate set not equal. Update predicate register.

PRED_SETNE_PUSH_INT Predicate counter increment not equal. Update predicate register.

SETE_INT Integer set equal based on signed or unsigned integers.

SETGE_INT Integer set greater than or equal based on signed integers.

SETGE_UINT Integer set greater than or equal based on unsigned integers.

SETGT_INT Integer set greater than based on signed integers.

SETGT_UINT Integer set greater than based on unsigned integers.

SETNE_INT Integer set not equal based on signed or unsigned integers.

SUB_INT Integer subtract based on signed or unsigned integer elements.

XOR_INT Logical bit-wise XOR.

Floating-Point Operations
ADD Floating-point add.

ADD_64 Floating-point 64-bit add.

CEIL Floating-point ceiling function.

FLOOR Floating-point floor function.

FRACT Floating-point fractional part of src1.

KILLE Floating-point kill equal. Set kill bit.

KILLGE Floating-point pixel kill greater than equal. Set kill bit.

KILLGT Floating-point pixel kill greater than. Set kill bit.

KILLNE Floating-point pixel kill not equal. Set kill bit.

MAX Floating-point maximum.

MAX_DX10 Floating-point maximum. DX10 implies slightly different handling of NaNs.

MIN Floating-point minimum.

MIN_DX10 Floating-point minimum. DX10 implies slightly different handling of NaNs.

MUL Floating-point multiply. 0*anything = 0.

MUL_INT24 24-bit integer multiply returning lowest 32-bits of result.

MULHI_INT24 24-bit integer multiply returning upper 16 bits of result.

MUL_IEEE IEEE Floating-point multiply. Uses IEEE rules for 0*anything.

MULADD Floating-point multiply-add (MAD).

MULADD_D2 Floating-point multiply-add (MAD), followed by divide by 2.

Table 4.4 ALU Instructions

Mnemonic Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 4-17
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

MULADD_M2 Floating-point multiply-add (MAD), followed by multiply by 2.

MULADD_M4 Floating-point multiply-add (MAD), followed by multiply by 4.

MULADD_IEEE Floating-point multiply-add (MAD). Uses IEEE rules for 0*anything.

MULADD_IEEE_D2 IEEE Floating-point multiply-add (MAD), followed by divide by 2. Uses IEEE rules
for 0*anything.

MULADD_IEEE_M2 IEEE Floating-point multiply-add (MAD), followed by multiply by 2. Uses IEEE rules
for 0*anything.

MULADD_IEEE_M4 IEEE Floating-point multiply-add (MAD), followed by multiply by 4. Uses IEEE rules
for 0*anything.

PRED_SET_CLR Predicate counter clear. Update predicate register.

PRED_SET_INV Predicate counter invert. Update predicate register.

PRED_SET_POP Predicate counter pop. Updates predicate register.

PRED_SET_RESTORE Predicate counter restore. Update predicate register.

PRED_SETE Floating-point predicate set equal. Update predicate register.

PRED_SETE_PUSH Predicate counter increment equal. Update predicate register.

PRED_SETGE Floating-point predicate set greater than equal. Update predicate register.

PRED_SETGE_PUSH Predicate counter increment greater than equal. Update predicate register.

PRED_SETGT Floating-point predicate set greater than. Update predicate register.

PRED_SETGT_PUSH Predicate counter increment greater than. Update predicate register.

PRED_SETNE Floating-point predicate set not equal. Update predicate register.

PRED_SETNE_PUSH Predicate counter increment not equal. Update predicate register.

RNDNE Floating-point Round-to-Nearest-Even Integer.

SETE Floating-point set equal.

SETE_DX10 Floating-point equal based on floating-point arguments. The result, however, is
integer.

SETGE Floating-point set greater than equal.

SETGE_DX10 Floating-point greater than or equal based on floating-point arguments. The result,
however, is integer.

SETGT Floating-point set greater than.

SETGT_DX10 Floating-point greater than based on floating-point arguments. The result, however,
is integer.

SETNE Floating-point set not equal.

SETNE_DX10 Floating-point not equal based on floating-point arguments. The result, however, is
integer.

TRUNC Floating-point integer part of src0.

Reduction Operations

ADD_INT Integer add based on signed or unsigned integer elements.

CUBE Cubemap instruction. It takes two source operands (SrcA = Rn.zzxy, SrcB =
Rn.yxzz). All four vector elements must share this instruction. Output clamp and
modifier do not affect FaceID in the resulting W vector element.

DOT4 Four-element dot product. The result is replicated in all four vector elements. All four
vector elements must share this instruction. Only the PV.X register element holds
the result; the processor is responsible for selecting this swizzle code in the bypass
operation.

Table 4.4 ALU Instructions

Mnemonic Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-18 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

DOT4_IEEE Four-element dot product.The result is replicated in all four vector elements. Uses
IEEE rules for 0*anything. All four ALU.[X,Y,Z,W] instructions must share this
instruction. Only the PV.X register element holds the result; the processor is respon-
sible for selecting this swizzle code in the bypass operation.

FLT32_TO_FLT64 Floating-point 32-bit convert to 64-bit floating-point.

FLT64_TO_FLT32 Floating-point 64-bit convert to 32-bit floating-point.

FRACT_64 Positive fractional part of a 64-bit floating-point value.

FREXP_64 Split double-precision floating-point into fraction and exponent.

LDEXP_64 Combine separate fraction and exponent into double-precision.

MAX4 Four-element maximum.The result is replicated in all four vector elements.
All four vector elements must share this instruction. Only the PV.X register element
holds the result, and the processor is responsible for selecting this swizzle code in
the bypass operation.

MUL_64 Floating-point multiply, 64-bit.

MULADD_64 Floating-point multiply-add, 64-bit.

PRED_SETE_64 Floating-point predicate set if equal, 64-bit.

PRED_SETGE_64 Floating-point predicate set if greater than or equal, 64-bit.

PRED_SETGT_64 Floating-point predicate set, if greater than, 64-bit.

Non-Reduction Operations

MOVA Round floating-point to the nearest integer in the range [-256, +255], and copy to
address register (AR) and to a GPR.

MOVA_FLOOR Truncate floating-point to the nearest integer in the range [-256, +255], and copy to
address register (AR) and to a GPR.

MOVA_INT Clamp signed integer to the range [-256, +255], and copy to address register (AR)
and to a GPR.

Integer Operations

FLT_TO_INT Floating-point input is converted to a signed integer value using truncation. If the
value does fit in 32 bits, the low-order bits are used.

FLT_TO_UINT Convert floating point to integer.

INT_TO_FLT The input is interpreted as a signed integer value and converted to a floating-point
value.

MULHI_INT The arguments are interpreted as signed integers. The result represents the high-
order 32 bits of the multiply result.

MULHI_UINT The arguments are interpreted as unsigned integers. The result represents the high-
order 32 bits of the multiply result.

MULLO_INT The arguments are interpreted as signed integers. The result represents the low-
order 32 bits of the multiply result.

MULLO_UINT The arguments are interpreted as unsigned integers. The result represents the low-
order 32 bits of the multiply result.

RECIP_INT Integer reciprocal. The argument is interpreted as a signed integer. The result is
interpreted as a fractional signed integer. The result for 0x0 is undefined.

RECIP_UINT Unsigned integer reciprocal. The argument is interpreted as an unsigned integer.
The result is interpreted as a fractional unsigned integer. The result for 0x0 is
undefined.

UINT_TO_FLT The input is interpreted as an unsigned integer value and converted to a float.

Table 4.4 ALU Instructions

Mnemonic Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 4-19
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.8.1 KILL and PRED_SET* Instruction Restrictions

Only a pixel shader (PS) program can execute a pixel kill (KILL) instruction. This
instruction is illegal in other program types. A KILL instruction is the last
instruction in an ALU clause, because the remaining instructions executed in the
clause do not reflect the updated valid state after the kill operation. Two KILL
instructions cannot be co-issued.

The term PRED_SET* is any instruction that computes a new predicate value that
can update the local predicate or active mask. Two PRED_SET* instructions
cannot be co-issued. Also, PRED_SET* and KILL instructions cannot be co-issued.
Behavior is undefined if any of these co-issue restrictions are violated.

4.8.2 Reduction Instruction Restrictions

When any reduction instruction (DOT4, DOT4_IEEE, CUBE, and MAX4) is used,
it must be executed on all four elements of a single vector. Reduction operations
compute only one output; so, ensure that the values in the OMOD and CLAMP
fields are the same for all four instructions.

4.8.3 MOVA* Restrictions

All MOVA* instructions shown in Table 4.4 write vector elements of the address
register (AR). They do not need to execute on all of the ALU.[X,Y,Z,W] operands
at the same time. One ALU.[X,Y,Z,W] unit can execute a MOVA* operation while

Floating-Point Operations

COS Cosine function. Valid input domain [-PI, +PI].

EXP_IEEE Base2 exponent function.

LOG_CLAMPED Base2 log function.

LOG_IEEE Base2 log function.

MUL_LIT The result is replicated in all four vector elements. It is used primarily when emu-
lating a LIT operation (Blinn's lighting equation). Zero times anything is zero.
Instruction takes three inputs.

MUL_LIT_D2 MUL_LIT operation, followed by divide by 2.

MUL_LIT_M2 MUL_LIT operation, followed by multiply by 2.

MUL_LIT_M4 MUL_LIT operation, followed by multiply by 4.

RECIP_CLAMPED Reciprocal where the result is clamped to + or - max float

RECIP_FF Reciprocal where infinity is replaced with zero.

RECIP_IEEE Standard reciprocal following IEEE rules.

RECIPSQRT_CLAMPED Reciprocal square root where the result is clamped to + or - max float

RECIPSQRT_FF Reciprocal square root where infinity is replaced with zero.

RECIPSQRT_IEEE Standard reciprocal square root following IEEE rules.

SIN Sine function. Valid input domain [-PI, +PI].

SQRT_IEEE Standard square root following IEEE rules.

Table 4.4 ALU Instructions

Mnemonic Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-20 ALU Outputs
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

other ALU.[X,Y,Z,W] units execute other operations. Software can issue up to
four MOVA instructions in a single instruction group to change all four elements of
the AR register. A MOVA* instruction issued in ALU.X writes AR.X, regardless of
any GPR write mask used.

Predication is allowed on any MOVA* instruction.

MOVA* instructions must not be used in an instruction group that uses AR
indexing in any slot (even slots that are not executing MOVA*, and even for an
index not being changed by MOVA*). To perform this operation, split it into two
separate instruction groups: the first performing a MOV with GPR-indexed source
into a temporary GPR, and the second performing the MOVA* on the temporary
GPR.

MOVA* instructions produce undefined output values. To inhibit the GPR
destination write, clear the WRITE_MASK field for any MOVA* instruction. Do not use
the corresponding PV vector element(s) in the following ALU instruction group.

4.9 ALU Outputs
The following subsections describe the output modifiers, destination registers,
predicate output, NOP instruction, and MOVA instructions.

4.9.1 Output Modifiers

Each ALU output passes through an output modifier before being written to the
PV registers and the destination GPRs. This output modifier works for floating-
point outputs only.

The first part of the output modifier is to scale the result by a factor of 2.0 (either
multiply or divide) or 4.0 (multiply only). For instructions with two source
operands, this output modifier is specified in the instruction’s OMOD field. For
instructions with three source operands, the modifier is specified as part of the
opcode. As a result, it is available only for certain instructions. The modifier works
with floating-point values only; it is not valid for integer operations. For non-
reduction operations, each instruction can specify a different value for OMOD.
Reduction operations compute only one output. Each instruction for a reduction
operation must use the same OMOD value (for instructions with two source
operands).

The second part of the output modification is to clamp the result to [0.0, 1.0]. This
is controlled by the instruction’s CLAMP field. The clamp modifier works only with
floating-point values; it is not valid, and should be disabled, for integer
operations. For non-reduction operations, each instruction can specify a different
value for CLAMP. Reduction operations only compute one output. Each instruction
for a reduction operation must use the same CLAMP value.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Outputs 4-21
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.9.2 Destination Registers

The results are written to PV registers and to the destination GPR specified in
the DST_GPR field of the instruction. The destination GPR can be relative to an
index. To enable this, set the DST_REL bit, and specify an appropriate
INDEX_MODE. The INDEX_MODE parameter is shared with the input operands for
the instruction. If the resulting GPR address is not in [0, GPR_COUNT – 1],
which are the declared GPRs for this thread, and are not in [127 – N + 1, 127],
which are the N temporary GPRs, then no GPR write is performed; only PV
registers are updated.

Instructions with two source operands have a write mask, WRITE_MASK, that
determines if the result is written to a GPR. The PV registers result is updated
even if WRITE_MASK is 0. Instructions with three source operands have no write
mask; however, you can specify an out-of-bounds GPR destination to inhibit their
write. For example, if the thread is using four clause temporaries and less than
124 GPRs, it is safe to use DST_GPR = 123 to ignore the result. Otherwise, you
must sacrifice one of the temporary GPRs for instructions with three source
operands. The PV registers result is updated for instructions with three source
operands even if the destination GPR address is invalid.

Two instructions running on the ALU.[X,Y,Z,W] units cannot write to the same
GPR element.

4.9.3 Predicate Output

Instructions with two source operands that affect the internal predicate have two
additional bits: UPDATE_PRED and UPDATE_EXEC_MASK. The UPDATE_PRED bit
determines whether to write the updated predicate results internally (only valid
until the end of the clause). If UPDATE_PRED is set, the new predicate takes effect
on the next ALU instruction group. The UPDATE_EXEC_MASK bit determines
whether to send the new predicate result back to the CF program. The active
mask persists across clauses and is used by the CF program, but does not take
affect until the end of the current ALU clause. UPDATE_PRED and
UPDATE_EXEC_MASK must be cleared for instructions that do not compute a new
predicate result.

4.9.4 NOP Instruction

NOP instructions perform no writes to GPRs, and they invalidate PV registers.

4.9.5 MOVA Instructions

MOVA* instructions update the constant register and AR. They are not designed
to write values into the GPR registers. Writing to PV registers and any write to a
GPR has undefined results. It is strongly recommended that software clear the
WRITE_MASK bit for any MOVA* instruction, and does not attempt to use the
corresponding PV register value in the following instruction. At most one MOVA
instruction can be present in an instruction group. The MOVA instruction also can
update the clause global register.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-22 Predication and Branch Counters
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.10 Predication and Branch Counters
The processor maintains one predicate bit per pixel within an ALU clause. This
predicate initially reflects the active Mask from the processor. The predicate can
be updated during the ALU clause using various PRED_SET* and stack
operations. The predicate bit does not persist past the end of an ALU clause. To
carry a predicate across clauses, an ALU instruction group can update the active
Mask that is used for subsequent clauses, as described in Section 4.9.3.

Each instruction can be conditioned on the predicate, using the instruction’s
PRED_SEL field. Different instructions in the same instruction group can be
predicated differently. The predicate condition can be one of three values:

• PRED_SEL_OFF — Always execute the instruction.

• PRED_SEL_ZERO — Execute the instruction if the pixel’s predicate bit is
currently zero.

• PRED_ZEL_ONE — Execute the instruction if the pixel’s predicate bit is
currently one.

If an instruction is disabled by the predicate bit, then no GPR value is written,
the PV registers are not updated. Also, the PRED_SET*, MOVA, and KILL
instructions, which have an effect on non-register state, have no effect for that
pixel. An instruction that modifies the ALU predicate (for example: PRED_SET*)
can choose to update the predicate bit using UPDATE_PRED, and it can separately
choose to send a new active Mask based on the computed predicate using
UPDATE_EXEC_MASK. An instruction can compute a new predicate and choose to
update only the processor’s active Mask. In this case, the processor sees the
computed predicate, not the old predicate that persists.

Instruction groups that do not compute a new predicate result must clear the
UPDATE_PRED and UPDATE_EXEC_MASK fields of their instructions. At most one
instruction in an instruction group can be a PRED_SET* instruction; thus, at most
one instruction can have either of these bits set.

In addition to predicates, flow control relies on maintenance of branch counters.
Branch counters are maintained in normal GPRs and are manipulated by the
various predicate operations. Software can inhibit branch-counter updating by
simply disabling the GPR write for the operation, using the instruction’s
WRITE_MASK field.

4.11 Adjacent-Instruction Dependencies
Register write or read dependencies can exist between two adjacent ALU
instruction groups. When an ALU instruction group writes to a GPR, the value is
not immediately available for reading by the next instruction group. In most
cases, the processor avoids stalling by detecting when the second instruction
group references a GPR written by the first instruction group, then substituting
the dependent register read with a reference to the previous ALU.[X,Y,Z,W] result
(in the PV register). If the write is predicated, a special override is used to ensure

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Adjacent-Instruction Dependencies 4-23
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

the value is read from the original register or PV register, depending on the
previous predication. A compiler does not need to do anything special to enable
this behavior. However, there are cases where this optimization is not available,
and the compiler must either insert a NOP or otherwise defer the dependent
register read for one instruction group.

Application software does not need to do anything special in any of the following
cases. These are cases in which the processor explicitly detects a dependency
and optimizes the instruction-group pair to avoid a stall.

• Write to RN or RN[LOOP_INDEX], followed by read from RM or
RM[LOOP_INDEX]; N may or may not equal M.

• Write to RN[GPR_INDEX], followed by read from RM[gpr_index]; N may
or may not equal M.

Application software also does not need to do anything special in the following
cases. In these cases, the processor does nothing special, but the pairing is legal
because there is no aliasing or dependency.

• Write to RN, followed by read from RM[GPR_INDEX]. The compiler ensures
N != M + GPR_INDEX.

• Write to RN[LOOP_INDEX], followed by read from RM[GPR_INDEX]. The
compiler ensures N + loop_index != M + GPR_INDEX.

• Write to RN[GPR_INDEX], followed by read from RM. The compiler ensures
N + GPR_INDEX != M.

• Write to RN[GPR_INDEX], followed by read from RM[LOOP_INDEX]. The
compiler ensures N + GPR_INDEX != M + LOOP_INDEX.

To illustrate, the following example instruction-group pairs are legal.

R1 = R0;
R2 = R1;// rewritten to R2 = PV.
R2 = R0;
R2 = R1 predicated;
R3 = R2;// rewritten to R3 = PV, override for R2.
R1[gpr_index] = R0;
R2 = R1[gpr_index];// rewritten to R2 = PV.
R2[gpr_index] = R0;
R2[gpr_index] = R1 predicated;
R3 = R2[gpr_index];// rewritten to R3 = PV, override for R2[GPR_INDEX].
R1[gpr_index] = R0;// compiler guarantees GPR_INDEX != 0.
R2 = R1;// never a dependent read.
R1[loop_index] = R0;// LOOP_INDEX might be 0.
R2 = R1;// can be dependent, the processor will detect if it is.

The following example instruction-group pairs are illegal.

R1[gpr_index] = R0;// GPR_INDEX might be zero.
R2 = R1;// can be dependent, the processor doesn’t catch this.
R1[gpr_index] = R0;// GPR_INDEX can equal loop_index.
R2 = R1[loop_index];// can be dependent, the processor doesn’t catch

this.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-24 Double-Precision Floating-Point Operations
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

4.12 Double-Precision Floating-Point Operations
Unless otherwise stated in this document, floating-point operations and operands
are single-precision. There are, however, some double-precision floating-point
instructions. These double-precision instructions support higher precision
calculations and conversion between single- and double-precision formats. Basic
add, multiply, and multiply-add operations are implemented using the IEEE 754
round-to-nearest mode. Note that double-precision floating-point (DPFP) is not
available on all R7xx products; therefore, check the specifications of your
particular product to determine if DPFP is supported.

The mnemonics and 64-bit operands of double-precision instructions contain the
suffix _64. The instructions occupy either two or four slots in an instruction group
(Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-3), as
specified in their descriptions in Section 9.2, “ALU Instructions,” page 9-23. All
source operands are double-precision numbers, except 32-bit operands in
format-conversion operations. Source operands are stored in GPRs as a 32-bit
high (most-significant) doubleword and a 32-bit low (least-significant)
doubleword, in elements ALU.[X,Y] and/or elements ALU.[Z,W]. The result of a
double-precision operation is also stored similarly, but the order of doublewords
is usually inverted with respect to the source operands.

4.13 Wavefront Synchronization Within a Work-Group
Wavefronts within a work-group can synchronize with each other to share data
or to provide mutually exclusive access to shared data. This is done by:

• inst_group_barrier (sync_barrier) – when a wavefront reaches this
point, it remains inactive until all wavefronts in the group reach it, then all
become active.

When a wavefront executes an instruction, the wavefront becomes inactive and
remains inactive until all other wavefronts in the work-group have completed
execution of the instruction. At this point, all wavefronts become active again.

4.13.1 ALU Rounding and Denormals

The default rounding modes for a kernel and default denorm handling are set in
the SQ_PGM_RESOURCES2 register. This applies to all ALU instructions. Within an
ALU clause, the kernel can include a SET_MODE instruction, which temporarily
overrides the rounding and denorm modes. SET_MODE affects other instructions
in the current group (x,y,z,w,t) and stays in effect either until the next SET_MODE
or until the end of the clause, when it returns to the default register value.

Note that the SET_MODE instruction changes all round and denorm values; it is not
possible to override some and leave others at the default setting.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Wavefront Synchronization Within a Work-Group 4-25
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Round modes:

Round to nearest

Round toward 0 (truncate)

Round toward +infinity

Round toward -infinity

Denormal handling:

single_denorm_flush_input (on/off)

single_denorm_force_underflow_to_zero (on/off)

double_denorm_flush_input (on/off)

double_denorm_force_underflow_to_zero (on/off)

4.13.2 Floating-Point Flags

This feature exists only on GPUs that support double-precision floating-point
operations.

Each floating point operation generates a six-bit flag per work-item (combined
result of x,y,z,w); this indicates which (if any) floating-point exception occurred
during this instruction group. These flags can be moved to, and from, GPRs.

The flags are:

These flags are cleared to zero automatically at the beginning of each ALU
clause. Flags are set by every instruction, and the flags are accumulated by
logically ORing the flags from the current instruction with the results from
previous ones.

Two ALU instructions operate on these flags:

OP2_INST_STORE_FLAGS: copies the flag values into the destination GPR.

OP2_INST_LOAD_STORE_FLAGS: copies the flag values into destination GPR, and
copies the value from source GPR into the flags, overwriting the previous flag
values.

[5] [4] [3] [2] [1] [0]

Inexact Underflow Overflow Division by Zero Denormal Invalid Operation

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

4-26 Wavefront Synchronization Within a Work-Group
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 5-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 5
Texture Cache Clauses

Software initiates a fetch through a texture cache clause with the TC control-flow
instruction, which uses the CF_WORD[0 1] microcode formats. Instructions for a
fetch through a texture cache clause use the TEX_WORD[0,1,2] microcode
formats, with a fourth (high-order) doubleword of zeros.

A fetch through a texture cache clause consists of instructions that lookup texture
elements, called texels, based on a GPR address. Texture instructions are used
for both fetches through a texture cache clause and constant-fetch operations. A
texture clause can be at most eight instructions long.

Each texture instruction has a RESOURCE_ID field, which specifies an ID for the
buffer address, size, and format to read, and a SAMPLER_ID field, which specifies
an ID for filter and other options. The instruction reads the texture coordinate
from the SRC_GPR. The SRC_REL bit determines if the address is absolute or
relative to the loop index (aL). The result is written to the DST_GPR. The DST_REL
bit determines if the address is absolute or relative to the loop index (aL). Both
the fetch coordinate and the resulting four-element data from memory can be
swizzled. The source elements for the swizzle are specified with the
SRC_SEL_[X,Y,Z,W] fields; a source element also can use the swizzle constants
0.0 and 1.0. The destination elements for the swizzle are specified with the
DST_SEL_[X,Y,Z,W] fields; it can write any of the fetched elements, the value
0.0, or the value 1.0. To disable an element write, set the DST_SEL_[X,Y,Z,W]
fields to the SEL_MASK value.

Individual texture instructions cannot be predicated; predicated fetches through
a texture cache clause must be done at the CF level, by making the texture-
clause instruction conditional. All texture instructions in the clause are executed
with the conditional constraint specified by the CF instruction.

5.1 Microcode Formats for Fetches Through a Texture Cache Clause
Microcode formats for fetches through a texture cache clause are organized in
4-tuples of 32-bit doublewords. Figure 5.1 shows the doubleword layouts in
memory, in which +0, +4, +8, and +12 indicate the relative byte offset of the
doublewords in memory; LSB indicates the least-significant (low-order) byte; and
the high-order doubleword is padded with zeros.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

5-2 Constant-Fetch Operations
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Figure 5.1 Microcode-Format 4-Tuple for Fetches Through a Texture
Cache Clause

5.2 Constant-Fetch Operations
The buffer ID space, specified in the RESOURCE_ID field of the TEX_WORD0
microcode format, is eight bits wide, allowing a constant and a fetch through a
texture cache clause to coexist in the same ID space. The two types of fetches
differ according to the manner in which their resources are organized.

5.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE
The processor executes pixel threads in groups of four, called quads. Sometimes
the edge of a primitive (such as a triangle) cuts through a quad so that some
pixels in the quad are outside the primitive. The threads executing these pixels
are placed in the invalid state.

The following two features are sometimes helpful when computing the inputs to
gradient operations:

• Instructions for fetch through a texture cache clause contain a bit
(FETCH_WHOLE_QUAD) if this bit is set the fetches from invalid pixels are still
executed.

• Within a quad, some pixels may have the active Mask set to execute while
others may be set to skip. Normally the pixels which are set to skip, to do
NOT execute instructions, however if the WHOLE_QUAD_MODE bit is set, the all
four thread in the quad execute if at least one pipeline is set to execute.

5.4 Constant Sharing
ES, GS, and VS kernels can, on a per-clause basis, either their own texture and
sampler constants or those of the other shader type.

31 24 23 16 15 8 7 0

0 +12

TEX_WORD2 +8

TEX_WORD1 +4

TEX_WORD0 +0

<------------ LSB ------------>

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Constant Sharing 5-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ES/VS can use their own or use GS constant buffers, and GS can use its own
or ES/VS ones. This is for cases when the GS and VS shaders can be merged
into a single hardware shader stage.

This capability is activated by setting the ALT_CONSTS bit in the SQ_TEX_WORD0.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

5-4 Constant Sharing
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 6-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 6
Memory Read Clauses

Software initiates a memory read clause with the VC or TC control-flow
instructions, both of which use CF_WORD[0,1] microcode formats. Memory read
instructions within the clause use the MEM_RD_WORD[0,1,2], with a fourth double-
dword of zeros.

A memory-read clause consists of instructions that fetch data from one of three
types of buffers:

• Scratch

• Reduction

• Scatter (general read/write)

Reads from these buffer types can be intermixed within a clause, and the clause
can consist of up to 16 memory read instructions. Memory read instructions can
be in the same clause as instructions for fetches through texture clauses, but not
in the same clause as global data share instructions.

Many of the instruction word fields are identical to those of a buffer read. The
fields that differ are:

• elem_size

• uncached

• array_base

• array_size

• indexed

Uncached is described in the next section.

The other four are identical to the fields with the same name in the EXPORT
instructions that write to those memory buffers.

6.1 Memory Address Calculation
Scratch:

memory_address = Array_base + (burst_counter + Indexed*SRC_GPR) * vectorsize * (elemsize+1)
+ component_offset + ThreadInWavefront*vectorsize*(elemsize+1)

Before this calculation, SRC_GPR is clamped to the range: [0, array_size-1].

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

6-2 Cached and Uncached Reads
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Vectorsize is the number of threads in a wavefront. ThreadInWavefront is a
constant value unique to each thread: 0...63. The component_offset is 0 for x,
1 for y, 2 for z, and 3 for w.

Scatter:

memory address = Array_base + SRC_GPR + (burst_counter * (elemsize+1))

Array-size is not used.

6.2 Cached and Uncached Reads
Memory read instructions have a bitfield that controls whether to use or bypass
the on-chip memory cache: MEM_RD_WORD0.UNCACHED. This bit must be set
whenever a kernel writes data to a buffer and reads it back within the same
invocation of the kernel. It can only be cleared when data written to memory has
been flushed to memory before the kernel is executed.

6.3 Burst Memory Reads
Burst memory reads allow up to 16 consecutive locations to be read into up to
16 consecutive GPRs. The burst count is specified in the
MEM_RD_WORD0.BURST_CNT field. For each iteration of the burst, the DST_GPR is
incremented by 1, and the ARRAY_BASE is incremented by
(elemsize + 1) * vectorSize.

6.4 UAV Reads and Writes
Note that the term Random Access Target (RAT), which is part of numerous
instruction names, is synonymous with unordered access view (UAV).

UAV buffers permit unordered accesses (the order of multiple writes is not
guaranteed) and allows the user to perform atomic arithmetic operations on the
contents of the buffer. These atomic operations combine data from the GPRs
with data in memory, and write the result back to memory. Optionally, these
operations can also return the value that was in memory prior to the instruction
back to the shader.

6.4.1 UAV Writes

The following instructions are used to write to UAVs:

• CF_INST_MEM_RAT - This is the basic version of the write instruction. It sends
an address and write-data from the shader to the memory system along with
the RAT operation (write, add, sub_rtn, etc.).

• CF_INST_MEM_RAT_CACHELESS - Used only for store_typed and store_raw,
but improve performance when data reuse is not likely.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

UAV Reads and Writes 6-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• CF_INST_MEM_RAT_COMBINED_CACHELESS - Improves performance by sending
both the address and data at the same time. This only works when the
address and data can be packed into fewer than five contiguous GPRs.

• CF_INST_MEM_RAT_COMBINED - Improves performance by sending both the
address and data at the same time. This only works when the address and
data can be packed into fewer than five contiguous GPRs.

Each of these instructions has a RAT_INST field, which determines what operation
to perform on the data: write, add to data in memory, etc. The _RTN versions of
these instructions cause the memory system to return the value in memory back
to the shader before RAT_INST is executed. The data is not returned directly to
the GPR, but is copied into a special memory buffer where the kernel can later
read it through the texture cache (TC).

6.4.2 UAV Reads

UAV buffers can be read in one of two ways:

1. Use the CF_INST_MEM_RAT instructions above with the RAT_INST field set to
READ. This causes data from the UAV buffer to be copied to the ‘return’ buffer (as
if an _RTN type instruction were executed). The shader then reads the value from
the return buffer through the TC.

2. Go directly through the TC by using uncached buffer reads.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

6-4 UAV Reads and Writes
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 7-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 7
Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for temporary data
with at least one order of magnitude higher effective bandwidth than direct,
uncached global memory. It permits sharing of data between work-items in a
work-group, as well as holding parameters for pixel shader parameter
interpolation. Unlike read-only caches, the LDS permits high-speed write-to-read
re-use of the memory space (full gather/read/load and scatter/write/store
operations).

7.1 Overview
Figure 7.1 shows the conceptual framework of the LDS is integration into the
memory of AMD GPUs using OpenCL.

Figure 7.1 High-Level Memory Configuration

Physically located on-chip, directly next to the ALUs, the LDS is approximately
two orders of magnitude faster than global memory (assuming no bank conflicts).

Compute Device

Host

Global/Constant Memory
Frame Buffer

LDS

Work-Group

Private
Memory
Work-
Item

Private
Memory
Work-
Item

LDS

Work-Group

Private
Memory
Work-
Item

Private
Memory
Work-
Item

Host Memory

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

7-2 Dataflow in Memory Hierarchy
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

There are 32 kB memory per compute unit, segmented into 32 or 16 banks
(depending on the GPU type) of 1 k dwords (for 32 banks) or 2 k dwords (for 16
banks). Each bank is a 256x32 two-port RAM (1R/1W per clock cycle). Dwords
are placed in the banks serially, but all banks can execute a store or load
simultaneously. Wavefronts are split over two or four banks, depending on the
GPU. One work-group can request up to 32 kB memory. Reads across wavefront
are dispatched over four cycles in waterfall.

The high bandwidth of the LDS memory is achieved not only through its proximity
to the ALUs, but also through simultaneous access to its memory banks. Thus,
it is possible to concurrently execute 16 write or read instructions, each nominally
32-bits; extended instructions, read2/write2, can be 64-bits each. If, however,
more than one access attempt is made to the same bank at the same time, a
bank conflict occurs. In this case, for indexed and atomic operations, hardware
prevents the attempted concurrent accesses to the same bank by turning them
into serial accesses. This decreases the effective bandwidth of the LDS. For
maximum throughput (optimal efficiency), therefore, it is important to avoid bank
conflicts. For direct reads/writes, the developer must avoid bank conflicts by
selecting strides. A knowledge of request scheduling and address mapping is key
to achieving this.

7.2 Dataflow in Memory Hierarchy
Figure 7.2 is a conceptual diagram of the dataflow within the memory structure.

Figure 7.2 Memory Hierarchy Dataflow

To load data into LDS from global memory, it is read from global memory and
placed into the work-item’s registers; then, a store is performed to LDS. Similarly,
to store data into global memory, data is read from LDS and placed into the work-
item’s registers, then placed into global memory. To make effective use of the
LDS, an algorithm must perform many operations on what is transferred between
global memory and LDS.

(Buffers)

Global Memory VRAM

(Global)

(per
Compute

Unit)
LDS

(Images)

Compute Unit
Private
Memory
Work-
Item

Private
Memory
Work-
Item

Texture
L1

Color Buffer/Depth Buffer
Write-Only Coherence Cache

Texture
L2

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

LDS Access 7-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are not
directly used for these operations, latency is incurred by the LDS executing this
function.) If the algorithm does not require write-to-read reuse (the data is read
only), it usually is better to use the image dataflow (see right side of Figure 7.2)
because of the cache hierarchy.

Actually, buffer reads may use L1 and L2. When caching is not used for a buffer,
reads from that buffer bypass L2; however, there is data sharing in L1 within a
clause. After a buffer read, the line is invalidated; then, on the next read, it is
read again (from the same wavefront or from a different clause). After a buffer
write, the changed parts of the cache line are written to memory.

Buffers and images are written through the CB/DB cache, but this is flushed
immediately after an image write.

The data in private memory is first placed in registers. If more private memory is
used than can be placed in registers, or dynamic indexing is used on private
arrays, the overflow data is placed (spilled) into scratch memory. Scratch memory
is a private subset of global memory, so performance can be dramatically
degraded if spilling occurs.

Global memory can be in the high-speed GPU memory (VRAM) or in the host
memory, which is accessed by the PCIe bus. A work-item can access global
memory either as a buffer or a memory object. Buffer objects are generally read
and written directly by the work-items. Data is accessed through the L2 and L1
data caches on the GPU, but immediately invalidated at the end of a clause.
Thus, data reuse is available within a wavefront for a given clause. This limited
form of caching provides read coalescing among work-items in a wavefront.
Similarly, writes are executed through the “fast-path” (depth buffer or DB) or
“complete-path” (color buffer or CB), which have write-only caches that are
invalidated, and all update bits are sent to memory at the end of a clause. The
DB is the raw, high-speed, 32-bit only data write path. The CB is used for format
conversion and atomics.

Global atomic operations are executed through the complete-path; the CB
caches perform the atomic. Atomic operations in which the return value is not
used (“fire-and-forget”) can be pipelined, and the work-item does not have to wait
for the atomic to complete before continuing. If the return value is used, the work-
item must wait for the atomic to complete, the line to be flushed, and a read from
global memory.

Image objects are limited to read-only or write-only (no concurrent r/w). Thus, on
reads, the data is cached through the L2 and L1 data caches; on writes, the data
is cached through the CB/DB buffers.

7.3 LDS Access
The LDS is accessed using only ALU instructions. These instructions can direct
the ALUs to read out up to three dwords per thread (1 address + 2 data) and
store them into the LDS. The data is read from the GPRs similar to a MOVA,

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

7-4 LDS Access
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

then transferred to the LDS input-queue (IQ). The address and data are then
written into the RAMs over as many cycles are necessary to avoid write port
conflicts. There are three ways to read data out of the LDS in one of three ways:

• Direct

• Parameter

• Indexed or atomic

7.3.1 Direct Reads

The address comes directly from the instruction and has a uniform stride from
thread to thread in the wave. Reads bypass the output queue and are directed
straight to the shader processors. These reads can be part of any ALU operation,
but must not cause LDS RAM read-port conflicts (bank conflicts), regardless of
active mask.

Direct reads have an address and stride in the instruction word and can read src0
and src1 from the LDS so long as they do not conflict on LDS banks with
themselves or each other (based on the strides and ignoring the active mask).
Any ALU instruction in slot XYZW (not T) then can select src0 or src1 instead of
a GPR or constant as a source operand by selecting src0 or src1 through the
ALU_WORD0 instruction (see page 9-23). Direct reads require many extra
instruction fields. These are held in literal-constant 0 (xy). When an instruction
uses lds_directa or lds_directb, Literal0 exists and defines the data on the
A and B busses; it is not available as a constant. Each pixel receives a unique
value (unless stride = 0).

The instruction's bank-swizzle must be set to place src0 on cycle 0, and src1 on
cycle 1.

Literal0 holds:

A Bus

[12:0] offset_a — Dword offset

[19:13] stride_a — Dword stride. Work-items in a wavefront must not
conflict. Legal values are: 0, 1, 3, … (any odd number). A single
direct fetch reads 16 dwords per cycle out of 32 banks.

[21:20] reserved.

[22] thread_rel_a — Add (wavefront_in_work-group * vectorsize * stride) to
offset_a.

[31:23] reserved.

B Bus

[44:32] offset_b — Dword offset

[51:45] stride_b — Dword stride. Work-items in a wavefront must not
conflict. Legal values are: 0, 1, 3, ... (any odd number). A single
direct fetch reads 16 dwords per cycle out of 32 banks.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

LDS Access 7-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

[53:52] reserved.

[54] thread_rel_b — add (wavefront_in_work-group * vectorsize * stride) to
offset_b.

[62:55] reserved.

[63] direct_read_32 — Read 32 dwords of src0 in one cycle, then read 32
dwords of src1 in the next cycle, then read the last 32 dwords of src0
in next cycle, and finally read the last 32 dwords of src1 in fourth
cycle (rather than 16 dwords of src0 and src1 in same cycle).
In this mode, the legal strides are: 0, 1, or any number that is not an
even multiple of 4.

7.3.2 Parameter Reads (Into Interpolation Instructions)

Parameter values are read directly out of the LDS for parameter interpolation.
Unlike normal direct reads, the data is grouped so the four values sent to each
shader processor are shared by the four pixels in the quad (since they all come
from the same primitive). The data can represent either XY or ZW of [P0, P1-P0,
and P2-P0]. Direct parameter reads are available only to the following
instructions: interp_xy and interp_zw, interp_x, and interp_z. This generally
is used in the graphics, not the OpenCL paths.

Parameter interpolation instructions interpolate two parameters (either XY or ZW)
in one set of four vector instructions. The parameter AB select must be the same
in all slots. The source-GPR varies when selecting either barycentric input
register I or J. The output of interp_xy appears in the X and Y slots; ZW in the
Z and W slots. Other slots must be masked-out. The bank swizzle must be 210
(read the I/J GPR in the third cycle). Interp_xy or _zw must occupy all four
instruction slots, even if only interpolating one parameter (write-mask out the
other one if unused). These four slots interpolate two parameters.

X: interp_xy (210) <dstgpr>.x, <srcIgpr>.*, param_(0..32) // X = ytmp + paramA*J
Y: interp_xy (210) <dstgpr>.y, <srcJgpr>.*, param_(0..32) // Ytmp = paramA+paramB*I
Z: interp_xy (210) <dstgpr>.z, <srcIgpr>.*, param_(0..32) // result send to Y
W: interp_xy (210) <dstgpr>.w, <srcJgpr>.*, param_(0..32)

7.3.3 LDS Parameters

The LDS has two busses to send parameter data to the shader processors (A
and B bus). Each shader processor can read from one or the other bus, but not
both. The two busses send parameters for two different primitives. Interpolation
can run at full rate if no cycle has more than two unique primitives among the
four pixel quads across the four shader processors. If there are more than two
primitives, the SQ waterfalls the operation over two cycles.

Parameter interpolation can occur in two ways:

• Direct Parameter Reads: The shader program reads parameter data directly
from the LDS at a fixed offset and stride per instruction. Each read returns
two of the three parameters (XYZW or P0, P1-P0, or P2-P0). All of the
addressing is handled in hardware.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

7-6 LDS Access
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

• General Parameter Interpolation: This is the more flexible bus slower mode,
in which the shader program computes the parameter’s address per pixel in
LDS and uses indexed-LDS-reads to retrieve the data. In this case, each
pixel only receives one dword on each of the src0 and src1 busses per
instruction.

Parameters are stored in LDS memory. Each parameter is 12 dwords: xyzw of
P0, P1-P0, and P2-P0. They are stored in the order shown in Figure 7.3.
Parameter data is always four-dword aligned. In general interpolation mode, the
pixel shader must calculate the LDS address to read parameters:

LDS Address = param_start_offset + (attr# * NumPrimsInVec * 12dwords) +
Prim#*12 + attributeoffset(0,4,8 = p0xyzw,p10xyzw,p21xyzw)

Param_start_offset is available as an inline-ALU-constant and is the value:
LDS_ALLOC_PS (see Figure 7.3).

Figure 7.3 LDS Layout with Parameters and Data Share

7.3.4 Indexed and Atomic Reads

For indexed reads, the address comes from a GPR (see Figure 7.4). First, for
each work-item, an lds_indexed_op instruction reads the LDS address from the
GPR into the input queue. Then, the LDS performs the reads over as many
cycles as necessary to avoid conflicts, and places the data into the output queue.
Last, a separate ALU instruction uses the data from the output queue as an ALU
source (via src_sel in the microcode).

For indexed writes, the address and data come from the GPRs. First an
lds_indexed_op instruction reads GPR values (address and data) from the
shader processor into the input queue. Then, the LDS performs the writes over
as many cycles as necessary to avoid conflicts.

Atomic operations are a variant of the indexed read where the data after the
GPRs is placed into the input queue. As data is read out from the LDS banks, it
also passes through the atomic math unit (AMU) and is written back into the LDS.
Optionally, the value before the arithmetic can be placed into the output queue
to be read by a later ALU instruction.

Increasing Addresses ->

In
cr

ea
si

ng
 A

dd
re

ss
es

 ->

4 dwords

Total LDS
space owned
by the current
wavefront

LDS_ALLOC_PS
(controls the size
of the Data space)

Prim 2,
Attribute 0
P20: X Y Z W P0: X Y Z W P10: X Y Z W P20: X Y Z W

P0: X Y Z W P10: X Y Z W P20: X Y Z W P0: X Y Z W P10: X Y Z W P20: X Y Z W P0: X Y Z W P10: X Y Z W

etc.

Parameter Space

Data Space

Prim 2, Attribute 0Prim 1, Attribute 0Prim 0, Attribute 0

Prim 0, Attribute 1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Examples 7-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Figure 7.4 LDS Dataflow

Indexed and atomic instructions read the LDS and place data either into the
AMU, in which case the result of the arithmetic manipulation is written back into
the LDS, or it is placed in one of the two available output queues. If it is written
back into the LDS, it requires another ALU instruction to get the data out. From
the output queues, data is pulled by an ALU instruction into the ALU as a source
(either src0 or src1) for the operation specified by the instruction.

Indexed reads cause data to be loaded into the output queue. This queue is
logically split into an A and B queue. Any ALU instruction can select to use the
head of the A or B queue as a source operand (much like direct LDS reads). The
instruction's src_sel uses lds_oqa or lds_oqb to select this, and the FIFO is
optionally popped after the entire XYZWT instruction group is executed. It is
illegal for a shader to leave any data in the output queue at the end of the clause.
Within an instruction group (xyzwt), all usages of the output queue must be of
the same type (all pop or not pop; A and B must be the same.).

 Note: this instruction does not require use of the literal constant.

7.4 Examples

7.4.1 LDS_READ dst

One GPR (dst) holds the LDS address from which to read. The value from the
GPR is sent to the LDS unit; the LDS reads its memory at that address and
places that value into output queue A.

7.4.2 LDS_WRITE dst, src0

One GPR (dst) holds the LDS address. Another GPR (src0) holds the data to
write into LDS at that address. The two GPR values (address and data) are read
out of the GPRs and sent to the LDS. When the LDS receives the address and
data, it writes the data (src0) into the LDS at address (dst).

Output
Queue A

Input
Queue

AMU

ALU GPR

LDS

Indexed/
Atomic

Instruction

Output
Queue B

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

7-8 Performance and Optimization
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

7.4.3 LDS_ADD dst, src0

One GPR (dst) holds the LDS address. Another GPR (src0) holds the data to
add to the data already in LDS at that address. The two GPR values (address
and data) are read out of the GPRs and sent to the LDS. After receiving the
address, LDS reads its memory at that address, adds the data value (from the
src0 GPR), and writes the result into LDS at the specified address (dst).

7.4.4 LDS_ADD_RTN dst, src0

One GPR (dst) holds the LDS address. Another GPR (src0) holds the data to
add to the data already in LDS at that address. The two GPR values (address
and data) are read out of the GPRs and sent to the LDS. When the LDS receives
the address, it reads the LDS memory at that address, writes the value read from
memory into the output queue (OQA), adds the data value from the src0 GPR,
and writes the result into LDS at the dst address.

7.4.5 LDS_READ2 QAB, src0, src1

Two addresses are sent to LDS for lookups; their values are returned on the LDS
stack. This works on all AMD GPUs, but only those with 32 LDS banks can take
advantage of this. The following pseudo-code demonstrates this concept:

lid =local thread id
val1 = lds[lid]
val2 = lds[lid + stride]

When compiled, this is:

MOV r0.x, lid
ADD_INT r1.x r0.x, stride
LDS_READ2 QAB, r0.x, r1.x

Since there are no bank conflicts (lid is unique for thread in a wavefront), it is
possible to achieve the peak LDS read bandwidth. Peak bandwidth requires that
there are no bank conflicts across 32 threads. For a single wavefront of 64
threads, the first 32 threads are grouped, and their LDS addresses are checked
for conflicts. If no conflicts exist, the read is executed in one cycle. If conflicts
exist, then multiple cycles are taken. Similarly, the threads in the second half of
the wavefront are checked for conflicts.

7.5 Performance and Optimization
See Chapter 4, “OpenCL Performance and Optimization,” in the AMD
Accelerated Parallel Processing OpenCL Programming Guide.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 8-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 8
Instruction Set

This section describes the instruction set used by assemblers. The instructions
grouped by the clauses in which they are used. Within each grouping, they are
listed alphabetically, by mnemonic. All of the instructions have mnemonic
prefixes, such as CF_INST_, OP2_INST_, or OP3_INST_. In this section’s
instruction list, only the portion of the mnemonic following the prefix is shown,
although the full prefix is described in the text. The opcode and microcode
formats for each instruction are also given. The microcode formats are described
in Chapter 9, where the instructions are ordered by their microcode formats,
rather than alphabetically by mnemonic. That chapter also defines the microcode
field-name acronyms.

8.1 Control Flow (CF) Instructions
The CF instructions mnemonics begin with CF_INST_ in the CF_INST field of their
microcode formats.

Initiate ALU Clause
Instruction ALU

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET*
instruction updates the active state but does not perform a stack operation.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU, opcode 8 (0x8).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-2 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Loop Break
Instruction ALU_BREAK

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET*
instruction causes a break operation on the unmasked pixels. The instruction takes the
address to the corresponding LOOP_END instruction.

ALU_BREAK is equivalent to PUSH, ALU, ELSE, CONTINUE, and POP.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_BREAK, opcode 14 (0xE).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Continue Unmasked Pixels
Instruction ALU_CONTINUE

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET*
instruction causes a continue operation on the unmasked pixels. The instruction takes an
address to the corresponding LOOP_END instruction.

ALU_CONTINUE is equivalent to PUSH, ALU, ELSE, CONTINUE, and POP.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_CONTINUE, opcode 13 (0xD).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-4 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Stack Push and Else After
Instruction ALU_ELSE_AFTER

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET*
instruction causes a stack push first, then updates the hardware-maintained active state,
then performs an ELSE operation to invert the pixel state after the clause completes
execution.

The instruction can be used to implement the ELSE part of a higher-level IF statement.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_ELSE_AFTER, opcode 15 (0xF).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Clause Instruction Extension
Instruction ALU_EXTENDED

Description ALU clause instruction extension for constant buffers and four constant buffers per clause.
This is the first half of the ALU instruction pair. It defines constant buffers 2 and 3, and index-
select for all four constant buffers.

Microcode

Format CF_ALU_WORD0 (page 9-8), CF_ALU_WORD1 (page 9-9), CF_ALU_WORD0_EXT (page 9-11), and
CF_ALU_WORD1_EXT (page 9-13).

Instruction Field CF_INST == CF_INST_ALU_EXTENDED, opcode 12 (0xC).

B R CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +12

KM0 KB1 KB0 ADDR +8

B CF_INST Reserved KCACHE_ADDR3 KCACHE_ADDR2 KM3 +4

KM2 KB3 KB2 Reserved KBIM3 KBIM2 KBIM1 KBIM0 Reserved +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-6 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Pop Stack After
Instruction ALU_POP_AFTER

Description Initiates an ALU clause, and pops the stack after the clause completes execution.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_POP_AFTER, opcode 10 (0xA).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Pop Stack Twice After
Instruction ALU_POP2_AFTER

Description Initiates an ALU clause, and pops the stack twice after the clause completes execution.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_POP2_AFTER, opcode 11 (0xB).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-8 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate ALU Clause, Stack Push Before
Instruction ALU_PUSH_BEFORE

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, the first PRED_SET*
instruction causes a stack push and an update of the hardware-maintained active execution
state. Subsequent PRED_SET* instructions only update the execution state.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU
Clauses,” page 4-1 and Section 8.2, “ALU Instructions,” page 8-48.

Microcode

Format CF_ALU_WORD0 (page 9-8) and CF_ALU_WORD1 (page 9-9).

Instruction Field CF_INST == CF_INST_ALU_PUSH_BEFORE, opcode 9 (0x9).

B
W
Q
M

CF_INST A
C COUNT KCACHE_ADDR1 KCACHE_ADDR0 KM1 +4

KM0 KB1 KB0 ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Call Subroutine
Instruction CALL

Description Execute a subroutine call (push call variables onto stack). The ADDR field specifies the
address of the first CF instruction in the subroutine.

Calls can be conditional (only pixels satisfying a condition perform the instruction). A
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This
field is interpreted in the range [0,31]. The instruction is skipped if the current nesting depth
+ CALL_COUNT > 32. CALLs can be nested. Setting CALL_COUNT to zero prevents the nesting
depth from being updated on a subroutine call.

The POP_COUNT field must be zero for CALL.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_CALL, opcode 18 (0x12).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-10 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Call Fetch Subroutine
Instruction CALL_FS

Description Execute a fetch subroutine (FS) with an address relative to the address specified in a host-
configured register. The instruction also activates the fetch-program mode, which affects
other operations until the corresponding RETURN instruction is reached. Only a vertex shader
(VS) program can call an FS subroutine, as described in Section 2.1, “Program Types,”
page 2-1.

Calls can be conditional (only pixels satisfying a condition perform the instruction). A
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This
field is interpreted in the range [0,31]. The instruction is skipped if the current nesting depth
+ CALL_COUNT > 32. The subroutine is skipped if and only if all pixels fail the condition test
or the nesting depth exceeds 32 after the call.

The POP_COUNT field must be zero for CALL_FS.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_CALL_FS, opcode 19 (0x13).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-11
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

End Primitive Strip, Start New Primitive Strip
Instruction CUT_VERTEX

Description Emit an end-of-primitive strip marker. The next emitted vertex starts a new primitive strip.
Indicates that the primitive strip has been cut, but does not indicate that a vertex has been
exported by itself.

Available only to the Geometry Shader (GS).

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_CUT_VERTEX, opcode 23 (0x17).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-12 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Else
Instruction ELSE

Description Pop POP_COUNT entries (can be zero) from the stack, then invert the status of active and
branch-inactive pixels for pixels that are both active (as of the last surviving PUSH operation)
and pass the condition test. Control then jumps to the specified address if all pixels are
inactive.

The operation can be conditional.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_ELSE, opcode 13 (0xD).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-13
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Emit Vertex, End Primitive Strip
Instruction EMIT_CUT_VERTEX

Description Emit a vertex and an end-of-primitive strip marker. The next emitted vertex starts a new
primitive strip. Indicates that a vertex has been exported and that the primitive strip has been
cut after the vertex. The instruction must follow the corresponding export operation that
produces a new vertex.

Available only to the Geometry Shader (GS).

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_EMIT_CUT_VERTEX, opcode 22 (0x16).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-14 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Vertex Exported to Memory
Instruction EMIT_VERTEX

Description Signal that a geometry shader (GS) has finished exporting a vertex to memory. Indicates that
a vertex has been exported. The instruction must follow the corresponding export operation
that produces a new vertex.

Available only to the Geometry Shader (GS).

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_EMIT_VERTEX, opcode 21 (0x15).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-15
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

End Kernel
Instruction END

Description This instruction marks the end of the kernel.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_END, opcode 32 (0x20).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-16 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export from VS or PS
Instruction EXPORT

Description Export from a vertex shader (VS) or a pixel shader (PS). Used for normal pixel, position, and
parameter-cache exports. The instruction supports optional swizzles for the outputs. The
instruction can be used only by VS and PS programs; GS and DC programs must use one
of the CF memory-export instructions, MEM*.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and either CF_ALLOC_EXPORT_WORD1_BUF (page 9-19)
or CF_ALLOC_EXPORT_WORD1_SWIZ (page 9-21); the latter is shown above.

Instruction Field CF_INST == CF_INST_EXPORT, opcode 83 (0x53).

B
M
R
K

CF_INST R
V
P
M

BURST_
COUNT Reserved SEL_W SEL_Z SEL_Y SEL_X +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-17
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export Last Data
Instruction EXPORT_DONE

Description Export the last of a particular data type from a vertex shader (VS) or a pixel shader (PS).
Used for normal pixel, position, and parameter-cache exports. The instruction supports
optional swizzles for the outputs. The instruction can be used only by VS and PS programs;
GS and DC programs must use one of the CF memory-export instructions, MEM*.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and either CF_ALLOC_EXPORT_WORD1_BUF (page 9-19)
or CF_ALLOC_EXPORT_WORD1_SWIZ (page 9-21).

Instruction Field CF_INST == CF_INST_EXPORT_DONE, opcode 84 (0x54).

B
M
R
K

CF_INST R
V
P
M

BURST_
COUNT Reserved SEL_W SEL_Z SEL_Y SEL_X +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-18 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Data Share
Instruction GDS

Description Executes a global data share (GDS) clause containing 1-16 GDS instructions. This clause
type is used to write data to the Tesselation Factor (TF) buffer or to transfer data between
GPRs and the GDS.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_GDS, opcode 3 (0x3).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-19
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Wavefront Barrier
Instruction GWS_BARRIER

Description Stalls execution until the number of waves indicated by VALUE and VAL_INDEX_MODE are
waiting on the resource selected by RESOURCE and RES_INDEX_MODE.

Microcode

Format CF_GWS_WORD0 (page 9-4) and CF_WORD1 (page 9-5).

Instruction Field GWS_OPCODE == GWS_BARRIER, opcode 2 (0x2).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

GWS_
OP RIM VIM S Reserved RESOURCE Reserved VALUE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-20 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Wavefront Resource Initialization
Instruction GWS_INIT

Description Initializes the value of the resource selected by the RESOURCE and REX_INDEX_MODE fields to
the quantity described by the fields VALUE, SIGN, and VAL_INDEX_MODE.

Microcode

Format CF_GWS_WORD0 (page 9-4) and CF_WORD1 (page 9-5).

Instruction Field GWS_OPCODE == GWS_INIT, opcode 3 (0x3); CF_INST == CF_INST_GLOBAL_WAVE_SYNC,
opcode 30 (0x1E).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

GWS_
OP RIM VIM S Reserved RESOURCE Reserved VALUE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-21
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Wavefront Sync Semaphore P
Instruction GWS_SEMA_P

Description Performs an atomic semaphore “P” operation on the resource selected by the RESOURCE and
RES_INDEX_MODE fields. Execution of this instruction is stalled until the semaphore has a
positive value. The semaphore value is then decremented by one before execution can
continue.

Microcode

Format CF_GWS_WORD0 (page 9-4) and CF_WORD1 (page 9-5).

Instruction Field GWS_OPCODE == GWS_SEMA_P, opcode 1 (0x1).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

GWS_
OP RIM VIM S Reserved RESOURCE Reserved VALUE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-22 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Wavefront Sync Semaphore V
Instruction GWS_SEMA_V

Description Performs an atomic semaphore “V” operation on the resource selected by the RESOURCE and
RES_INDEX_MODE fields. The value of the resource is incremented by one on execution of this
instruction.

Microcode

Format CF_GWS_WORD0 (page 9-4) and CF_WORD1 (page 9-5).

Instruction Field GWS_OPCODE == GWS_SEMA_V, opcode 0 (0x0).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

GWS_
OP RIM VIM S Reserved RESOURCE Reserved VALUE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-23
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Halt Wavefront Execution
Instruction HALT

Description Halts the execution of the wavefront. The drive then can read the internal state of the
wavefront and then reenable the wavefront through a register write.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_HALT, opcode 31 (0x1F).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-24 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Jump to Address
Instruction JUMP

Description Jump to a specified address, subject to an optional condition test for pixels. It first pops
POP_COUNT entries (can be zero) from the stack to. Then it applies the condition test to all
pixels. If all pixels fail the test, then it jumps to the specified address. Otherwise, it continues
execution on the next instruction. The instruction cannot be used to leave an if/else,
subroutine, or loop operation.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_JUMP, opcode 10 (0x10).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-25
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Jump Table
Instruction JUMPTABLE

Description Executes a jump through a jump table. This instruction is followed by a series of up to 256
jump instructions forming the jump table. The index into the table comes from either a loop-
constant or a GPR through the index registers. The instruction after the last jump table entry
must be indicated by the ADDR field. If no pixels are enabled after the condition test,
execution continues at this address.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_JUMPTABLE, opcode 29 (0x1D).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-26 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Kill Pixels Conditional
Instruction KILL

Description Kill (prevent rendering of) pixels that pass a condition test. Jump if all pixels are killed. Only
a pixel shader (PS) can execute this instruction; the instruction is illegal in other program
types. Ensure that the KILL instruction is the last instruction in an ALU clause, because the
remaining instructions executed in the clause do not reflect the updated valid state after the
kill operation. Two KILL instructions cannot be co-issued.

Killed pixels remain active because the processor does not know if the pixels are currently
involved in computing a result that is used in a gradient calculation. If the recently invalidated
pixels are not involved in a gradient calculation they can be deactivated. The valid pixel
mode (VALID_PIXEL_MODE bit) is used to deactivate pixels invalidated by a KILL instruction.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_KILL, opcode 24 (0x18).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-27
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Break Out Of Innermost Loop
Instruction LOOP_BREAK

Description Break out of an innermost loop. The instructions disables all pixels for which a condition test
is true. The pixels remain disabled until the innermost loop exits. The instruction takes an
address to the corresponding LOOP_END instruction. In the event of a jump, the stack is
popped back to the original level at the beginning of the loop; the POP_COUNT field is ignored.

If all pixels have been disabled by this (or a prior) LOOP_BREAK or LOOP_CONTINUE instruction,
LOOP_BREAK jumps to the end of the loop and pops POP_COUNT entries (can be zero) from
the stack. If at least one pixel has not been disabled by LOOP_BREAK or LOOP_CONTINUE yet,
execution continues to the next instruction.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_BREAK, opcode 9 (0x9).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-28 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Continue Loop
Instruction LOOP_CONTINUE

Description Continue a loop, starting with the next iteration of the innermost loop. Disables all pixels for
which a condition test is true. The pixels remain disabled until the end of the current iteration
of the loop, and they are re-activated by the innermost LOOP_END.

Control jumps to the end of the loop if all pixels have been disabled by this (or a prior)
LOOP_BREAK or LOOP_CONTINUE instruction. In the event of a jump, the stack is popped back
to the original level at the beginning of the loop; the POP_COUNT field is ignored. The ADDR
field points to the address of the matching LOOP_END instruction. If at least one pixel hasn’t
been disabled by LOOP_BREAK or LOOP_CONTINUE instruction, the program continues to the
next instruction.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_CONTINUE, opcode 8 (0x8).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-29
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

End Loop
Instruction LOOP_END

Description Ends a loop if all pixels fail a condition test. Execution jumps to the specified address if the
loop counter is non-zero after it is decremented, and at least one pixel ha not been
deactivated by a LOOP_BREAK instruction. Software normally sets the ADDR field to the CF
instruction following the matching LOOP_START instruction. Execution continues to the next
CF instruction if the loop is exited.

LOOP_END pops loop state and one set of per-pixel state from the stack when it exits the loop.
It ignores POP_COUNT.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_END, opcode 5 (0x5).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-30 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Start Loop
Instruction LOOP_START

Description Begin a loop. The instruction pushes the internal loop state onto the stack. A condition test
is computed. All pixels fail the test if the loop count is zero. Pixels that fail the test become
inactive. If all pixels fail the test, the instruction does not enter the loop, and it pops
POP_COUNT entries (can be zero) from the stack.

The instruction reads one of 32 constants, specified by the CF_CONST field, to get the loop’s
trip count (maximum number of loop iterations), beginning value (loop index initializer), and
increment (step), which are maintained by hardware. The instruction jumps to the address
specified in the instruction’s ADDR field if the initial loop index value is zero. Software normally
sets the ADDR field to the instruction following the matching LOOP_END instruction. Control
jumps to the specified address if the initial loop count is zero. If LOOP_START does not jump,
it sets up the hardware-maintained loop state.

Loop register-relative addressing is well-defined only within the loop. If multiple loops are
nested, relative addressing refers to the state of the innermost loop. The state of the next-
outer loop is automatically restored when the innermost loop exits.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_START, opcode 4 (0x4).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-31
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Start Loop (DirectX 10)
Instruction LOOP_START_DX10

Description Enters a DirectX10 loop by pushing control-flow state onto the stack. Hardware maintains
the current break count and depth-of-loop nesting. Stack manipulations are the same as
those for LOOP_START.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_START_DX10, opcode 6 (0x6).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-32 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Enter Loop If Zero, No Push
Instruction LOOP_START_NO_AL

Description Same as LOOP_START but does not push the loop index (aL) onto the stack or update the
aL. Repeat loops are implemented with LOOP_START_NO_AL and LOOP_END.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_LOOP_START_NO_AL, opcode 7 (0x7).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-33
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Access Scatter Buffer
Instruction MEM_EXPORT

Description Performs a memory read or write on the scatter buffer. This instruction is legal with a TYPE
of: read, read-indexed, write, write-indexed. Indexed is the expected common use. Used only
for writes.

The 13-bit ARRAY_BASE field is valid and is added to the base address for each pixel (units
of dword).

The ARRAY_SIZE field is unused. Set it to zero.

The ES field is supported, allowing 1,2,3,4 dwords written per export. Burst read/write is
allowed and in this case, the address is incremented by “elemsize” dwords.

The address in the INDEX_GPR is a dword address, no matter how much data is exported.

Address
Calculation &
Clamping

SP supplies a 32-bit integer address offset per pixel (assume zero if no EA export).
Per pixel dword address =
{BASE_reg,6’h0} + clamp({ARRAY_SIZE,6’h0}, (BC increment counter *elemsize +
INDEX_GPR + ARRAY_BASE))

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and either CF_ALLOC_EXPORT_WORD1_BUF (page 9-19)
or CF_ALLOC_EXPORT_WORD1_SWIZ (page 9-21).

Instruction Field CF_INST == CF_INST_MEM_EXPORT, opcode 85 (0x55).

B
M
R
K

CF_INST R
V
P
M

BURST_
COUNT Reserved SEL_W SEL_Z SEL_Y SEL_X +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-34 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export Combined Address And Data
Instruction MEM_EXPORT_COMBINED

Description Write two consecutive dwords of data per thread to scatter memory. GPRs hold: X = data0,
Y = data1, Z = unused, W = address.

Data1 can be masked out by setting comp_mask.y = 0.

Burst_count must be zero. Indexed writes are not allowed.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_EXPORT_COMBINED, opcode 91 (0x5B).

B M CF_INST R
V
P
M

BURST_
COUNT COMP_MASK ARRAY_SIZE +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-35
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export To UAV
Instruction MEM_RAT

Description Write 1-4 consecutive dwords to a UAV. Apply the RAT_INST to combine data written from
the kernel with data existing in the UAV in memory.

Index GPR: X = addr0, Y = addr1, Z = addr2, W = unused.

RW GPR: Four dwords of data for RAT_INST_STORE_TYPED.

RW GPR: X = data, Y = returnAddr, Z = CmpData for other RAT_INSTs.

See the RAT_INST list on page 9-16.

Microcode

Format CF_ALLOC_EXPORT_WORD0_RAT (page 9-16) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_RAT, opcode 86 (0x56).

ES INDEX_GPR R
R RW_GPR TYPE RIM R RAT_INST RAT_ID +4

B M CF_INST
E
O
P

V
P
M

BURST_
COUNT COMP_MASK ARRAY_SIZE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-36 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export To UAV Without Caching
Instruction MEM_RAT_CACHELESS

Description Write data to a UAV surface, bypassing on-chip caches. Only RAT_STORE and RAT_READ
opcodes are allowed; no atomic operations.

Microcode

Format CF_ALLOC_EXPORT_WORD0_RAT (page 9-16) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_RAT_CACHELESS, opcode 87 (0x57).

ES INDEX_GPR R
R RW_GPR TYPE RIM R RAT_INST RAT_ID +4

B M CF_INST
E
O
P

V
P
M

BURST_
COUNT COMP_MASK ARRAY_SIZE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-37
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export To UAV Of Combined Address And Data Without Caching
Instruction MEM_RAT_COMBINED_CACHELESS

Description Export to a Random Access Target - reduced functionality (via DB). Combined Address and
Data in one export (data = x, data = y; address = w). Must be non-indexed-write, and no
burst-writes.

Microcode

Format CF_ALLOC_EXPORT_WORD0_RAT (page 9-16) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_RAT_COMBINED_CACHELESS, opcode 92 (0x5C).

B M CF_INST
E
O
P

V
P
M

BURST_
COUNT COMP_MASK ARRAY_SIZE +4

ES INDEX_GPR R
R RW_GPR TYPE RIM R RAT_INST RAT_ID +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-38 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Export To UAV Without Caching
Instruction MEM_RING

MEM_RING1
MEM_RING2
MEM_RING3

Description Write to the respective ring (either 1, 2, or 3). Currently applies only to GSVS ring.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_RING, opcode 82 (0x52).

CF_INST == CF_INST_MEM_RING1, opcode 88 (0x58).

CF_INST == CF_INST_MEM_RING2, opcode 89 (0x59).

CF_INST == CF_INST_MEM_RING3, opcode 90 (0x5A).

B
M
R
K

CF_INST R
V
P
M

BURST_
COUNT Reserved SEL_W SEL_Z SEL_Y SEL_X +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-39
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Memory Write On Stream #
Instructions MEM_STREAM0_BUF0

MEM_STREAM0_BUF1
MEM_STREAM0_BUF2
MEM_STREAM0_BUF3
MEM_STREAM1_BUF0
MEM_STREAM1_BUF1
MEM_STREAM1_BUF2
MEM_STREAM1_BUF3
MEM_STREAM2_BUF0
MEM_STREAM2_BUF1
MEM_STREAM2_BUF2
MEM_STREAM2_BUF3
MEM_STREAM3_BUF0
MEM_STREAM3_BUF1
MEM_STREAM3_BUF2
MEM_STREAM3_BUF3

Description Perform a memory write on the respective buffer 0 of the respective stream. Used for DirectX
stream-out operations. Write data to one of four buffers for one of the four input streams.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and CF_ALLOC_EXPORT_WORD1_BUF (page 9-19).

Instruction Field CF_INST == CF_INST_MEM_STREAM0_BUF0, opcode 64 (0x40).

CF_INST == CF_INST_MEM_STREAM0_BUF1, opcode 65 (0x41).

CF_INST == CF_INST_MEM_STREAM0_BUF2, opcode 66 (0x42).

CF_INST == CF_INST_MEM_STREAM0_BUF3, opcode 67 (0x43).

CF_INST == CF_INST_MEM_STREAM1_BUF0, opcode 68 (0x44).

CF_INST == CF_INST_MEM_STREAM1_BUF1, opcode 69 (0x45).

CF_INST == CF_INST_MEM_STREAM1_BUF2, opcode 70 (0x46).

CF_INST == CF_INST_MEM_STREAM1_BUF3, opcode 71 (0x47).

CF_INST == CF_INST_MEM_STREAM2_BUF0, opcode 72 (0x48).

CF_INST == CF_INST_MEM_STREAM2_BUF1, opcode 73 (0x49).

CF_INST == CF_INST_MEM_STREAM2_BUF2, opcode 74 (0x4A).

CF_INST == CF_INST_MEM_STREAM2_BUF3, opcode 75 (0x4B).

CF_INST == CF_INST_MEM_STREAM3_BUF0, opcode 76 (0x4C).

CF_INST == CF_INST_MEM_STREAM3_BUF1, opcode 77 (0x4D).

CF_INST == CF_INST_MEM_STREAM3_BUF2, opcode 78 (0x4E).

CF_INST == CF_INST_MEM_STREAM3_BUF3, opcode 79 (0x4F).

B M CF_INST R
V
P
M

BURST_
COUNT COMP_MASK ARRAY_SIZE +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-40 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Access Scratch Buffer
Instruction MEM_WR_SCRATCH

Description Perform a memory write on the scratch buffer.

Microcode

Format CF_ALLOC_EXPORT_WORD0 (page 9-14) and either CF_ALLOC_EXPORT_WORD1_BUF (page 9-19)
or CF_ALLOC_EXPORT_WORD1_SWIZ (page 9-21).

Instruction Field CF_INST == CF_INST_MEM_WR_SCRATCH, opcode 80 (0x50).

B
M
R
K

CF_INST
E
O
P

V
P
M

BC Reserved SEL_W SEL_Z SEL_Y SEL_X +4

ES INDEX_GPR R
R RW_GPR TYPE ARRAY_BASE +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-41
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

No Operation
Instruction NOP

Description No operation. It ignores all fields in the CF_WORD[0,1] microcode formats, except
CF_INST,_BARRIER. The instruction does not preserve the current PV value in the slot in
which it executes. Instruction slots that are omitted implicitly execute NOPs in the
corresponding ALU. As a consequence, slots that are unspecified do not preserve the PV
register value for the next instruction. To preserve the PV register value and perform no other
operation in an ALU clause, use a MOV instruction with a disabled write mask.

See the ALU version of NOP on page 8-166.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_NOP, opcode 0 (0x0).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-42 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Pop From Stack
Instruction POP

Description Pops POP_COUNT number of entries (can be zero) from the stack. POP can apply a condition
test to the result of the pop. This is useful for disabling pixels that are killed within a
conditional block. To disable such pixels, set the POP instruction’s VALID_PIXEL_MODE bit and
set the condition to CF_COND_ACTIVE. If POP_COUNT is zero, POP simply modifies the current
per-pixel state based on the result of the condition test.

POP instructions never jump.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_POP, opcode 14 (0xE).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-43
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Push State To Stack
Instruction PUSH

Description If all pixels fail a condition test, pop POP_COUNT entries from the stack and jump to the
specified address. Otherwise, push the current per-pixel state (active mask) onto the stack.
After the push, active pixels that failed the condition test transition to the inactive-branch
state in the new active mask.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_PUSH, opcode 11 (0xB).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-44 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Return From Subroutine
Instruction RETURN

Description Return from subroutine. Pops the return address from the stack to program counter. Paired
only with the CALL instruction. The ADDR field is ignored; the return address is read from the
stack.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_RETURN, opcode 20 (0x14).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-45
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Initiate Fetch Clause Through Texture Cache
Instruction TC

Description Initiates a fetch clause which will be serviced by the Texture Cache (TC) hardware. This
clause can contain texture, vertex or constant fetches.

ADDR specifies the double-quadword-aligned offset to the first instruction in the clause that
contains COUNT+1 instructions. The instructions within a fetch through a texture cache clause
are described in Section Chapter 5, “Texture Cache Clauses,” page 5-1 and Section 8.3,
“Instructions for Fetches Through a Texture Cache Clause,” page 8-245.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_TC, opcode 1 (0x1).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-46 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Fetch Clause Through Texture Cache With ACK
Instruction TC_ACK

Description Execute a TC clause and provides an ACK when the clause has completed. This can be
used with CF_INST_WAIT_ACK to cause the shader to sleep until the TC_ACK clause has
returned all of the fetch data to GPRs. All previous TC/VC/GDS requests must have
completed if this instruction is issued without BARRIER_BEFORE being set.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_TC_ACK, opcode 27 (0x1B).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 8-47
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Wait for Write or Fetch-Read ACKs
Instruction WAIT_ACK

Description Wait for write-acks or fetch-read-acks to return before proceeding. Wait if the number of
outstanding acks is greater than the value in the ADDR field.

Microcode

Format CF_WORD0 (page 9-3) and CF_WORD1 (page 9-5).

Instruction Field CF_INST == CF_INST_WAIT_ACK, opcode 26 (0x1A).

B R CF_INST R
V
P
M

Reserved COUNT COND CF_CONST PC +4

Reserved JTS ADDR +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-48 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.2 ALU Instructions
All of the instructions in this section have a mnemonic that begins with OP2_INST_ or
OP3_INST_ in the ALU_INST field of their microcode formats.

Floating-Point Add
Instruction ADD

Description Floating-point add.

dst = src0 + src1;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ADD, opcode 0 (0x0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-49
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Add Floating-Point, 64-Bit
Instruction ADD_64

Description Floating-point 64-bit add. Adds two double-precision numbers in the YX or WZ elements of the
source operands, src0 and src1, and outputs a double-precision value to the same elements of
the destination operand. No carry or borrow beyond the 64-bit values is performed. The
operation occupies two slots in an instruction group.

dst = src0 + src1;

These properties hold true for this instruction:
(A + B) == (B + A)
(A – B) == (A + -B)
A + -A = +zero

Table 8.1 Result of ADD_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value.

-denorm -0 +0 +denorm +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf -inf -inf -inf -inf -inf -inf -inf NaN64 src1
(NaN64)

-F1 -inf -F src0 src0 src0 src0 +-F or +0 +inf src1
(NaN64)

-denorm -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

-0 -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

+0 -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+denorm -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+F1 -inf +-F or +0 src0 src0 src0 src0 +F +inf src1
(NaN64)

+inf NaN64 +inf +inf +inf +inf +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-50 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Coissue ADD_64 is a two-slot instruction. The following coissues are possible.
• A single ADD_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and 4.
• A single ADD_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and 4.
• Two ADD_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ADD_64, opcode 203 (0xCB).

Add Floating-Point, 64-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-51
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Example The following example coissues two ADD_64 instructions in slots 0 and 1, and 2 and 3.
Input data:

Input data 3.0 (0x4008000000000000)
Input data 6.0 (0x4018000000000000)
Input data 12.0 (0x4028000000000000)

mov ra.h, l(0x40080000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40180000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

mov rg.h, l(0x40180000) //high dword (Input 3)
mov rh.l, l(0x00000000) //low dword

mov ri.h, l(0x40280000) //high dword (Input 4)
mov rj.l, l(0x00000000) //low dword

Issue instructions:

ADD_64 re.x ra.h rc.h; //can be any vector element
ADD_64 rf.y rb.l rd.l; //can be any vector element
ADD_64 rk.z rg.h ri.h; //can be any vector element
ADD_64 rl.w rh.l rj.l; //can be any vector element

Result:

Input 1 + Input 2 = 3.0 + 6.0 = 9.0 (0x4022000000000000)
Input 3 + Input 4 = 6.0 + 12.0 = 18.0 (0x4032000000000000)

re.x = 0x00000000 (LSB of Input1 and Input2 add result)
rf.y = 0x40220000 (MSB of Input1 and Input2 add result)
rk.z = 0x00000000 (LSB of Input3 and Input4 add result)
rl.w = 0x40320000 (MSB of Input3 and Input4 add result)

Input Modifiers Input modifiers (Section 4.7.2, “Input Modifiers,” page 4-9) can be applied to the source
operands during the destination X channel (slot 0) or Z channel (slot 2). These slots contain the
sign bits of the sources.

Output Modifiers Output modifiers (Section 4.9.1, “Output Modifiers,” page 4-20) can be applied to the destination
during the destination X channel (slot 0) or Z channel (slot 2).

Add Floating-Point, 64-Bit (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-52 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Add Integer
Instruction ADD_INT

Description Integer add, based on signed or unsigned integer operands.
dst = src0 + src1;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ADD_INT, opcode 52 (0x34).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-53
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dependent Add
Instruction ADD_PREV

Description Add src0 to the previous channel’s result. The previous channel opcode must result in a 32-
bit, single-precision floating-point.

The output modifier and clamping on the w/z slot is not allowed (results are undefined).

Do not use in w or z channels.

The previous channel y is the w channel’s FP32 result.
The previous channel x is the z channel’s FP32 result.
dst = src0 + prev_channel_result

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ADD_PREV, opcode 211 (0xD3).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-54 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Output Carry Bit of Unsigned Integer ADD
Instruction ADDC_UINT

Description Output carry bit of unsigned integer ADD.
If (src0 + src1 > 0xFFFFFFFF) {

dst = 0x00000001;
}
Else {

dest = 0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ADDC_UINT, opcode 82 (0x52).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-55
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

AND Bitwise
Instruction AND_INT

Description Logical bit-wise AND.
dst = src0 & src1;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_AND_INT, opcode 48 (0x30).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-56 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Arithmetic Shift Right
Instruction ASHR_INT

Description Scalar arithmetic shift right. The sign bit is shifted into the vacated locations. The five lsb of
src1 are interpreted as an unsigned integer. If src1 is > 31, the result is either 0x0 or -0x1
(0xFFFFFFFF), depending on the sign of src0.
dst = src0 >> (src1 & 0x1F)

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_ASHR_INT, opcode 21 (0x15).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-57
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Count Bits Set 32 Accumulate
Instruction BCNT_ACCUM_PREV_INT

Description Count number of bits set in src0 and add to previous channel’s BCNT_INT result. This works
only if BCNT_INT is in the previous channel. Not legal if used in channel w. The previous
channel z is channel w’s BCNT_INT result. The previous channel y is channel z’s BCNT_INT
result. The previous channel x is channel y’s BCNT_INT result.

count = 0;
for (i = 0 to 31) {
count = count + src0[i];

}
dst = count + prev_channel_bcnt_int_dst;

See MBCNT_32LO_ACCUM_PREV_INT, page 8-137, for intended usage.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_BCNT_ACCUM_PREV_INT, opcode 182 (0xB6).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-58 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Count Bits Set
Instruction BCNT_INT

Description DX11 count bits set. Counts the number of bits set in src0.
count = 0;

for (i = 0 to 31) {
count = count + src0[i];

}
dst = count;

See MBCNT_32LO_ACCUM_PREV_INT, page 8-137, for intended usage.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_BCNT_INT, opcode 170 (0xAA).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-59
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Integer Bitfield Extract
Instruction BFE_INT

Description DX11 signed bitfield extract. src0 = input data, src1 = offset, and src2 = width. The bit
position offset is extracted through offset + width from the input data. All bits remaining after
dst are stuffed with replications of the sign bit.
If (src2[4:0] == 0) {

dst = 0;
}
Else if (src2[4:0] + src1[4:0] < 32) {

dst = (src0 << (32-src1[4:0] - src2{4:0])) >>> (32 - src2[4:0])
}
Else {

dst = src0 >>> src1[4:0]

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_BFE_INT, opcode 5 (0x5).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-60 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Bitfield Extract
Instruction BFE_UINT

Description DX11 unsigned bitfield extract. src0 = input data, scr1 = offset, and src2 = width. Bit position
offset is extracted through offset + width from input data.
If (src2[4:0] == 0) {

dst = 0;
}
Else if (src2[4:0] + src1[4:0] < 32) {

dst = (src0 << (32-src1[4:0] - src2{4:0])) >> (32 - src2[4:0])
}
Else {

dst = src0 >> src1[4:0]

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_BFE_UINT, opcode 4 (0x4).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-61
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Bitfield Insert
Instruction BFI_INT

Description Bitfield insert used after BFM to implement DX11 bitfield insert.

src0 = bitfield mask (from BFM)

src 1 & src2 = input data

This replaces bits in src2 with bits in src1 according to the bitfield mask.
dst = (src1 & src0) | (src2 & -src0)

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_BFI_INT, opcode 6 (0x6).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-62 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Bitfield Mask
Instruction BFM_INT

Description Bitfield mask used before BFI to implement DX11 bitfield insert. This creates a bitfield mask
suitable for src0 input to BFI.

src0[4:0] = bitfield width

src1[4:0] = bitfield offset
dst = (((1 << src0[4:0]) -1) << src1[4:0])

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_BFM_INT, opcode 160 (0xA0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-63
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dword Reversal
Instruction BFREV_INT

Description Reverses the DX11 bits. src0 = input data.
res = 0

for (i=0 to 31){
res[i]= src0[31- i];

}
dst = res;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_BFREV_INT, opcode 81 (0x51).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-64 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Bit Align
Instruction BIT_ALIGN_INT

Description Right-shifts 64 bits into a 32-bit GPR.
dst = ({src0, src1} >> src2[4:0]) & 0xFFFFFFFF;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_BIT_ALIGN_INT, opcode 12 (0xC).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-65
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Byte Align
Instruction BYTE_ALIGN_INT

Description Right-shifts eight bytes into a four-byte GPR.

dst = ({src0, src1} >> (8 * src2[1:0])) & 0xFFFFFFFF;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_BYTE_ALIGN_INT, opcode 13 (0xD).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-66 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Ceiling
Instruction CEIL

Description Floating-point ceiling.
dst = TRUNC(src0);
If ((src0 > 0.0f) && (src0 != dst)) {

dst += 1.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_CEIL, opcode 18 (0x12).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-67
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Conditional Move If Equal
Instruction CNDE

Description Floating-point conditional move if equal.

Compares the first source operand with floating-point zero, and copies either the second or
third source operand to the destination operand based on the result. Execution can be
conditioned on a predicate set by the previous ALU instruction group. If the condition is not
satisfied, the instruction has no effect, and control is passed to the next instruction.

The instruction specifies which one of four data elements in a four-element vector is operated
on, and the result can be stored in any of the four elements of the destination GPR.
Operands can be accessed using absolute addresses, or an index in a GPR or the address
register (AR).

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDE, opcode 25 (0x19).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-68 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Conditional Move If Equal
Instruction CNDE_INT

Description Integer conditional move if equal, based on signed or unsigned integer operand. Compare
“CNDE,” on page 67.
If (src0 == 0x0) {

dst = src1;
}
Else {

dst = src2;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDE_INT, opcode 28 (0x1C).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-69
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Conditional Move If Greater Than Or Equal
Instruction CNDGE

Description Floating-point conditional move if greater than or equal. Compare “CNDE,” on page 67.
If (src0 >= 0.0f) {

dst = src1;
}
Else {

dst = src2;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDGE, opcode 27 (0x1B).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-70 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Conditional Move If Greater Than Or Equal
Instruction CNDGE_INT

Description Integer conditional move if greater than or equal, based on signed integer operand. Compare
“CNDE,” on page 67.
If (src0 >= 0x0) {

dst = src1;
}
Else {

dst = src2;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDGE_INT, opcode 30 (0x1E).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-71
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Conditional Move If Greater Than
Instruction CNDGT

Description Floating-point conditional move if greater than. Compare “CNDE,” on page 67.
If (src0 > 0.0f) {

dst = src1;
}
Else {

dst = src2;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDGT, opcode 26 (0x1A).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-72 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Conditional Move If Greater Than
Instruction CNDGT_INT

Description Integer conditional move if greater than, based on signed integer operand. Compare
“CNDE,” on page 67.
If (src0 > 0x0) {

dst = src1;
}
Else {

dst = src2;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CMNDGT_INT, opcode 29 (0x1D).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-73
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Conditional Move If Not Equal
Instruction CNDNE_64

Description Compares the src0 with floating-point zero, and copies either src1 or src2 to the destination
operand based on the result.
If (src0 != 0.0f) {

dst = src1;
}

Else {
dst = src2;
}

The instruction specifies which one of two data elements in a four-element vector is operated
on (the two dwords of a double-precision floating-point number), and the result can be stored
in the wz or yx elements of the destination GPR.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_CNDNE_64, opcode 9 (0x9).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-74 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Cosine
Instruction COS

Description Input must be normalized from radians by dividing by 2*PI. The valid input domain is [-256,
+256], which corresponds to an un-normalized input domain [-512*PI, +512*PI]. Out-of-range
input results in float 1.
dst = ApproximateCos(src0);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_COS, opcode 142 (0x8E).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-75
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Cube Map
Instruction CUBE

Description Cubemap, using two operands (src0 = Rn.zzxy, src1 = Rn.yxzz). This reduction instruction
must be executed on all four elements of a single vector. Reduction operations compute only
one output, so the values in the output modifier (OMOD) and output clamp (CLAMP) fields must
be the same for all four instructions. OMOD and CLAMP do not affect the Direct3D FaceID in
the resulting W vector element.

dst.W = FaceID;
dst.Z = 2.0f * MajorAxis;
dst.Y = S cube coordinate;
dst.X = T cube coordinate;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_CUBE, opcode 192 (0xC0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-76 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Variable-Length Dot Product
Instruction DOT

Description Variable-length dot product. Cannot be used in w channel. All other channels require MUL or
DOT opcode in the previous channel. Channels z, y, and x add the result from the previous
channel to this channel’s MUL result. Previous channel results are not normalized. Each
channel’s result is written to a GPR (the x channel is not broadcast).

Do not use in the w channel.

Previous channel z is w channel’s MUL or DOT result.
Previous channel y is z channel’s MUL or DOT result.
Previous channel x is y channel’s MUL or DOT result.
dst.n = src0 * src1 + dst.(n+1)

Example: Two dot 2’s, results in z and x

w z y x
mul dot mul dot

Example: One dot2, result in y

w z y x
* mul dot *

Example: Dot3, result in y

w z y x
mul dot dot *

Example: Dot3, result in x

w z y x
* mul dot dot

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_DOT, opcode 208 (0xD0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-77
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Variable-Length Dot Product With IEEE Rules
Instruction DOT_IEEE

Description Variable-length dot product with IEEE rules for 0*anything.

Cannot be used in w channel. All other channels require MUL or DOT opcode in previous
channel. Channels z, y, and x add the result from the previous channel to this channel’s MUL
result. Previous channel results are not normalized. Each channel’s result is written to a GPR
(the x channel is not broadcast).

Do not use in the w element.

Previous z channel is w channel’s MUL or DOT result.
Previous y channel is z channel’s MUL or DOT result.
Previous x channel is y channel’s MUL or DOT result.
dst.n = src0 * src1 + dst.(n+1)

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_DOT_IEEE, opcode 175 (0xAF).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-78 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Four-Channel Dot Product
Instruction DOT4

Description Four-channel dot product. This reduction instruction must be executed on all four channels
of a single vector. Reduction operations compute only one output, so the values in the output
modifier (OMOD) and output clamp (CLAMP) fields must be the same for all four instructions.

Only the PV.X register channel holds the result of this operation, and the processor selects
this swizzle code in the bypass operation.

dst = srcA.W * srcB.W +
srcA.Z * srcB.Z +
srcA.Y * srcB.Y +
srcA.X * srcB.X;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_DOT4, opcode 190 (0xBE).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-79
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Four-Channel Dot Product, IEEE
Instruction DOT4_IEEE

Description Four-channel dot product that uses IEEE rules for zero times anything. This reduction
instruction must be executed on all four channels of a single vector. Reduction operations
compute only one output, so the values in the output modifier (OMOD) and output clamp
(CLAMP) fields must be the same for all four instructions.

Only the PV.X register channel holds the result of this operation, and the processor selects
this swizzle code in the bypass operation.

dst = srcA.W * srcB.W +
srcA.Z * srcB.Z +
srcA.Y * srcB.Y +
srcA.X * srcB.X;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_DOT4_IEEE, opcode 191 (0xBF).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-80 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Base-2 Exponent, IEEE
Instruction EXP_IEEE

Description Scalar base-2 exponent.
If (src0 == 0.0F) {

dst = 1.0F;
}
Else {

dst = Approximate2ToX(src0);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_EXP_IEEE, opcode 129 (0x81).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-81
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Find First Bit Signed High
Instruction FFBH_INT

Description Find the first bit set in a positive integer from the MSB, or find the first bit clear in a negative
integer from the MSB.
If (src0 == 0 or src0 == 0xFFFFFFFF) {

dst = 0xFFFFFFFF;
}
Else {

count = 0;
sign = src0[31];
while (src0[31];

count = count + 1;
src0 = src0 << 1;

}
dst = count;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FFBH_INT, opcode 173 (0xAD).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-82 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Find First Bit Unsigned High
Instruction FFBH_UINT

Description Find the first bit set in an unsigned integer from the MSB.
If (src0 == 0) {

dst = 0xFFFFFFFF;
}
Else {

count = 0;
while (src0[31] == 0) {

count = count + 1;
src0 = src0 << 1;

}
dst = count;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FFBH_UINT, opcode 171 (0xAB).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-83
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Find First Bit Signed Low
Instruction FFBL_INT

Description Find the first bit set in an integer from the LSB.
If (src0 == 0) {

dst = 0xFFFFFFFF;
}
Else {

count = 0;
while (src0[0] == 0) {

count = count + 1;
src0 = src0 >> 1;

}
dst = count;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FFBL_INT, opcode 172 (0xAC).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-84 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Floor
Instruction FLOOR

Description Floating-point floor.
dst = TRUNC(src0);
If ((src0 < 0.0f) && (src0 != dst)) {

dst += -1.0f;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLOOR, opcode 20 (0x14).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-85
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point To Signed Integer
Instruction FLT_TO_INT

Description Floating-point input is converted to a signed integer value using truncation. Channels 0-3 use
the 32-bit round mode state; channel 4 uses truncation. If the value does fit in 32 bits, the
low-order bits are used. Special case number handling:

+inf → max_int

-inf → max_int

NaN & -Nan & 0 & -0 → 0
dst = (int)src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT_TO_INT, opcode 80 (0x50).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-86 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Float to Signed Integer Using FLOOR
Instruction FLT_TO_INT_FLOOR

Description Float input is converted to a signed integer value using FLOOR. Float magnitudes too great
to be represented by an integer float (unbiased exponent > 30) saturate to max_int or -
max_int. This does not match the opcode FLT_TO_INT with round toward zero, which
handles NaNs differently.

Special case number handling:

inf & NaN → max_int

-inf & -NaN → -max_int

0 & -0 → 0
dst = (int)(FLOOR)src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT_TO_INT_FLOOR, opcode 177 (0xB1).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-87
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Convert Float Input to Signed Integer Value
Instruction FLT_TO_INT_RPI

Description Float input is converted to a signed integer value using round to positive infinity tiebreaker
for 0.5. Float magnitudes too great to be represented by an integer float (unbiased exponent
> 30) saturate to max_int or -max_int. This does not match the opcode FLT_TO_INT, which
rounds and handles NaNs differently.

Special case number handling:

inf & NaN → max_int

-inf & -NaN → max_int

0 & -0 → 0
dst = (int)(FLOOR)(src0 + 0.5)

Equivalently,

If (frac(arg) == 0.5)
dst = (int)Ceil(arg);

Else
dst = (int)Round_ne(arg);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT_TO_INT_RPI, opcode 176 (0xB0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-88 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point To Unsigned Integer
Instruction FLT_TO_UINT

Description Converts input to an unsigned integer value using truncation. Positive float magnitudes too
great to be represented by an unsigned integer float (unbiased exponent > 31) saturate to
max_uint.

Special number handling:

-inf & NaN & 0 & -0 → 0

Inf → max_uint
dst = (int)src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT_TO_UINT, opcode 154 (0x9A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-89
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Float to Unsigned Conversion of Four Floating Point Inputs
Instruction FLT_TO_UINT4

Description Float to unsigned conversion of four floating point inputs to packed eight-bit unsigned integer
values. Uses all four vector channels. The 32-bit result is replicated to all four vector output
channels.
Result = (flt_to_uint(src0.w) & 0xFF) << 24)) +
(flt_to_uint(src0.z) & 0xFF) << 16)) +
(flt_to_uint(src0.y) & 0xFF) << 8)) +
(flt_to_uint(src0.x) & 0xFF))) ;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT_TO_UINT4, opcode 174 (0xAE).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-90 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

16-Bit Floating-Point to 32-Bit Floating-Point
Instruction FLT16_TO_FLT32

Description Conversion of 16-bit floating-point to 32-bit floating-point. src0 = input float16. Supports input
and output modifiers. Denorms cannot be created because F16 does not have a large
enough range. Float 16 denorms are accepted.
dst = FLT16_32(src0[15:0])

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT16_TO_FLT32, opcode 163 (0xA3).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-91
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point 32-Bit To Floating-Point 16-Bit
Instruction FLT32_TO_FLT16

Description Floating-point 32-bit conversion to 16-bit floating-point.

This supports input modifiers. It creates FLt16 denorms when appropriate. This is not
compatible with output modifiers because of the creation of denorms.
dst[15:0] = FLT32_16(src0)

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT32_TO_FLT16, opcode 162 (0xA2).

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) or Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-92 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point 32-Bit To Floating-Point 64-Bit
Instruction FLT32_TO_FLT64

Description Floating-point 32-bit convert to 64-bit floating-point. The instruction converts src0.X or
src0.Z to a 64-bit double-precision floating-point value and places the result in dst.YX or
dst.ZW, respectively. If the source value does fit in 32 bits, the low-order bits are used.
Using values outside the specified range produces undefined results.

A 32-bit NaN source is handled specially. The sign is copied, the mantissa is copied into bits
[52:30], and the exponent is forced to 0x7FF. The result for a NaN source is a NaN with the
same sign, and the single-precision mantissa is the MSB of the double-precision mantissa.
dst = src0;

mant = mantissa(src0)
exp = exponent(src0)
sign = sign(src0)

e = exp + (1023-127);

if (exp==0xFF) //src0 is inf or a NaN
{

If (mant!=0x0) //src0 is a NaN
{

dst = {sign, 0x7FF, {mant,29’b0}}; //29 low-order bits are zero
}
else //src0 is inf
{

dst = (sign) ? 0xFFF0000000000000 : 0x7FF0000000000000;
}

}
else if (exp==0x0) //src0 is zero or a denorm
{

dst = (sign) ? 0x8000000000000000 : 0x0;
}
else //src0 is a valid floating-point value
{

m = mant<<29;
m |= (e << 52);
m |= (sign << 63);

dst = m;

}

Coissue FLT32_TO_FLT64 is a two-slot instruction. The following coissue scenarios are possible:.
• A single FLT32_TO_FLT64 instruction in slots 0 and 1, and any valid instructions in slots

2, 3, and 4.
• A single FLT32_TO_FLT64 instruction in slots 2 and 3, and any valid instructions in slots

0, 1, and 4.
• Two FLT32_TO_FLT64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 8.2 Result of FLT32_TO_FLT64 Instruction

src0

-inf -F1

1. F is a finite floating-point value.

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN

-inf -F -1.0 -0.0 -0.0 +0.0 +0.0 +1.0 +F +inf NaN2

2. The hardware propagates a 32-bit input NaN to the output. So if the input is a 32-bit -/+ signaling
NaN, the output is a 64-bit -/+ signaling NaN. A 32-bit -/+ quiet NaN returns a 64 bit -/+ quiet NaN.
A 32-bit 0xFFC00000 NaN returns a 64 bit NaN64 (0xFFF8000000000000).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-93
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT32_TO_FLT64, opcode 206 (0xCE).

Example The following example coissues two FLT32_TO_FLT64 instructions in slots 0 and 1, and 2 and
3:
Input data:

Input data 0.5f (0x3F000000)
Input data 1.0f (0x3F800000)

mov ra.h, l (0x3F000000) //Input 1
mov rb.l //Don’t care

mov rc.h, l(0x3F800000) //Input 2
mov rd.l //Don’t care

Issue instructions:

FLT32_TO_FLT64 re.x ra.h //can be any vector element
FLT32_TO_FLT64 rf.y rb.l //Don’t care
FLT32_TO_FLT64 rg.z rc.h //can be any vector element
FLT32_TO_FLT64 rh.w rd.l //Don’t care

Result:

flt32_to_flt64(0.5f) = 0.5 (0x3FE0000000000000)
flt32_to_flt64(1.0f) = 1.0 (0x3FF0000000000000)

re.x = 0x00000000 (LSB of output)
rf.y = 0x3FE00000 (MSB of output)
rg.z = 0x00000000 (LSB of output)
rh.w = 0x3ff00000 (MSB of output)

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) or Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

Floating-Point 32-Bit To Floating-Point 64-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-94 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point 64-Bit To Floating-Point 32-Bit
Instruction FLT64_TO_FLT32

Description Floating-point 64-bit convert to 32-bit floating-point. The instruction converts src0.YX or
src0.WZ to a 32-bit single-precision floating-point value in dst.X or dst.Z, respectively. If
the result does fit in 32 bits, the low-order bits are used.
dst = src0;

mant = mantissa(src0)
exp = exponent(src0)
sign = sign(src0)

if (exp==0x7FF) //src0 is inf or a NaN
{

if (mant==0x0) //src0 is a NaN
{

dst = (sign) ? 0xFFC00000 : 0x7FC00000;
}
else //src0 is inf
{

dst = (sign) ? 0xFF800000 : 0x7F800000;
}

}
else if (exp==0x0) //src0 is zero or a denorm
{

dst = (sign) ? 0x80000000 : 0x0;
}
else //src0 is a valid floating-point value
{

dst = src0;

}

Coissue FLT64_TO_FLT32 is a two-slot instruction. The following coissues are possible.
• A single FLT64_TO_FLT32 instruction in slots 0 and 1, and any valid instructions in slots

2, 3, and 4.
• A single FLT64_TO_FLT32 instruction in slots 2 and 3, and any valid instructions in slots

0, 1, and 4.
• Two FLT64_TO_FLT32 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 8.3 Result of FLT64_TO_FLT32 Instruction

src0

-NaN -inf -F1

1. F is a finite floating-point value.

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf +NaN

0xFFC00000 -inf -F -1.0 -0.0 -0.0 +0.0 +0.0 +1.0 +F +inf 0x7FC00000

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-95
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FLT64_TO_FLT32, opcode 28 (0x1C).

Example The following example coissues two FLT64_TO_FLT32 instructions in slots 0 and 1, and 2 and
3:.
Input data:

Input data 1.0 (0x3FF0000000000000)
Input data 2.0 (0x4000000000000000)

mov ra.h, l(0x3FF00000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40000000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue instructions:

FLT64_TO_FLT32 re.x ra.h //can be any vector element
FLT64_TO_FLT32 rf.y rb.l //can be any vector element
FLT64_TO_FLT32 rg.z rc.h //can be any vector element
FLT64_TO_FLT32 rh.w rd.l //can be any vector element

Result:

flt64_to_flt32(1.0) = 1.0f (0x3F800000)
flt64_to_flt32(2.0) = 2.0f (0x40000000)

re.x = 0x3F800000 (1.0f)
rf.y = 0 //Always 0
rg.z = 0x40000000 (2.0f)
rh.w = 0 //Always 0

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) or Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

Floating-Point 64-Bit To Floating-Point 32-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-96 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Fused Single-Precision Multiply-Add
Instruction FMA

Description Fused single-precision multiply-add. Only for double-precision parts.
dst = src0 * src1 + src2

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_FMA, opcode 7 (0x7).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-97
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

 Double-Precision Floating-Point Fused Multiply-Add
Instruction FMA_64

Description Adds the src2 to the product of the src0 and src1. A single round is performed on the sum
- the product of src0 and src1 is not truncated or rounded.
dst = (src0 * src1) + src2

The instruction specifies which one of two data elements in a four-element vector is operated
on (the two dwords of a double precision floating point number), and the result can be stored
in the wz or yx elements of the destination GPR.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_FMA_64, opcode 10 (0xA).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-98 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Fractional
Instruction FRACT

Description Floating-point fractional part of source operand.
dst = src0 - FLOOR(src0);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FRACT, opcode 16 (0x10).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-99
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Fractional, 64-Bit
Instruction FRACT_64

Description Gets the positive fractional part of a 64-bit floating-point value located in src0.YX or
src0.WZ, and places the result in dst.YX or dst.WZ, respectively.
dst = src0;

mant = mantissa(src0)
exp = exponent(src0)
sign = sign(src0)

if (exp==0x7FF) //src0 is an inf or a NaN
{

If (mant==0x0) //src0 is NaN
{

dst = src0;
}
else //src0 is inf
{

dst = NaN64;
}

}
else if (exp==0x0) //src0 is zero or a denorm
{

dst = 0x0;
}
else //src0 is a float
{

dst = src0 – floor(src0);
}

Coissue FRACT_64 is a two-slot instruction. The following coissues are possible:.
• A single FRACT_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and

4.
• A single FRACT_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and

4.
• Two FRACT_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Table 8.4 Result of FRACT_64 Instruction

src0

-inf -F1

1. F is a finite floating-point value.

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN

NaN64 [+0.0,+1.0) +0 +0 +0 +0 +0 +0 [+0.0,+1.0)* NaN64 NaN64

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-100 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Instruction Field ALU_INST == OP2_INST_FRACT_64, opcode 198 (0xC6).

Example The following example coissues two FRACT_64 instructions in slots 0 and 1, and 2 and 3.
Input data:

Input data 8.814369 (0x4021A0F4F077BCA7)
Input data 13.113172 (0x402A39F1A0AC1721)

mov ra.h, l(0x4021A0F4) //high dword (Input 1)
mov rb.l, l(0xF077BCA7) //low dword

mov rc.h, l(0x402A39F1) //high dword (Input 2)
mov rd.l, l(0xA0AC1721) // low dword

Issue instructions:

FRACT_64 re.x ra.h //can be any vector element
FRACT_64 rf.y rb.l //can be any vector element
FRACT_64 rg.z rc.h //can be any vector element
FRACT_64 rh.w rd.l //can be any vector element

Result:

fract64(0x4021A0F4F077BCA7) = fract64(8.814369) = 0x3FEA0F4F077BCA70
(0.814369)
fract64(0x402A39F1A0AC1721) = fract64(13.113172) = 0x3FBCF8D0560B9080
(0.113172)

re.x = 0x077BCA70 (LSB of output)
rf.y = 0x3FEA0F4F (MSB of output)
rg.z = 0x560B9080 (LSB of output)
rh.w = 0x3FBCF8D0 (MSB of output)

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) or Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

Floating-Point Fractional, 64-Bit (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-101
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Split Double-Precision Floating_Point Into Fraction and Exponent
Instruction FREXP_64

Description Splits the double-precision floating-point value in src0.YX into separate fraction (mantissa)
and exponent values. The exponent is output as a signed integer to dst.YX. The fraction, in
the range (-1.0f, -0.5f] or [0.5f, 1.0f), is output as a sign-extended double-precision value to
dst.WZ.
dst = src0;

frac_src0 = fraction(src0)
exp_src0 = exponent(src0)
sign_src0 = sign(src0)
frac_dst = fraction(dst)
exp_dst = exponent(dst)

if (exp_src0==0x7FF) //src0 is inf or NaN
{

exp_dst = 0xFFFFFFFF;
if (frac_src0==0x0) //src0 is inf
{

frac_dst = 0xFFF8000000000000;
}
else //src0 is a NaN
{

frac_dst = src0;
}

}
else if (exp_dst==0x0) //src0 is zero or denorm
{

exp_dst = 0x0;
frac_dst = {sign_src0,0x0};

}
else //src0 is a float
{

frac_dst = {sign_src0, 0x3fe, frac_src0}; // double from (-1, -0.5] to
[0.5, 1)

exp_dst = exp_src0 – 1023 + 1; // convert to 2’s complement

}

Coissue The instruction uses four slots in an instruction group. A single FREXP_64 instruction must be
issued in slots 0, 1, 2, or 3. Slot 4 can contain any other valid instruction.

Table 8.5 Result of FREXP_64 Instruction

dst

src0

-inf or +inf -0 or +0 -denorm or +denorm NaN

frac_dst NaN641 {sign_src0,0} {sign_src0,0} src0

exp_dst 0xFFFFFFFF 0 0 0xFFFFFFFF

1. NaN64 = 0xFFF8000000000000.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-102 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_FREXP_64, opcode 196 (0xC4).

Example The following example issues one FREXP_64 instruction in each of slots 0, 1, 2, and 3.
For src0 = 3.0 (0x4008000000000000):

mov ra.h , l(0x40080000) //high dword (Input)
mov rb.l , l(0x00000000) //low dword

Issue instructions:

FREXP_64 rc.x ra.h; //Can be any vector element in any GPR
FREXP_64 rd.y rb.l; //Can be any vector element in any GPR
FREXP_64 re.z //Don’t care about source operand (not used)
FREXP_64 rf.w //Don’t care about source operand (not used)

Result:

rc.x = 0x0 (All bits are always zero)
rd.y = 2 (Exponent 0.75*2^2 = 3.0)
re.z = 0x0 (LSB of mantissa)
rf.w = 0x3FE80000 {s,0x3FE, MSB of mantissa}

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operand during the
destination X channel (slot 0). This slot contains the sign bit of the source.

Output Modifiers The instruction does not take output modifiers.

Split Double-Precision Floating_Point Into Fraction and Exponent (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-103
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Group Barrier
Instruction GROUP_BARRIER

Description Creates a synchronization point between all of the threads in a work-group. Every thread in
the work-group must execute this instruction before any thread is allowed to proceed past
this instruction. Once all threads have reached this instruction, they can proceed.

It is illegal to execute this instruction within dynamic flow control.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_GROUP_BARRIER, opcode 84 (0x54).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-104 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer To Floating-Point
Instruction INT_TO_FLT

Description Integer to floating-point. The input is interpreted as a signed integer value and converted to
a floating-point value.
dst = (float) src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INT_TO_FLT, opcode 155 (0x9B).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-105
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Read Parameter Data From LDS for P0
Instruction INTERP_LOAD_P0

Description Read parameter data from LDS and write it into GPRs for P0. Each primitive has parameters
at the three vertices: P0, P1, and P2. The SRC0 argument contains the parameter number
(0 – 32).

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_LOAD_P0, opcode 224 (0xE0).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-106 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Read Parameter Data from LDS for P1 - P0
Instruction INTERP_LOAD_P10

Description Read parameter data from LDS and write it into GPRs for (P1 – P0). Each primitive has
parameters at the three vertices: P0, P1, and P2. The SRC0 argument contains the
parameter number (0 – 32).

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_LOAD_P10, opcode 225 (0xE1).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-107
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Read Parameter Data from LDS for P2 - P0
Instruction INTERP_LOAD_P20

Description Read parameter data from LDS and write it into GPRs for (P2 – P0). Each primitive has
parameters at the three vertices: P0, P1, and P2. The SRC0 argument contains the
parameter number (0 – 32).

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_LOAD_P20, opcode 226 (0xE2).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-108 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Interpolation of the X Channel
Instruction INTERP_X

Description This opcode must be present in the x and y vector channels

Channel y – MULADD.

Channel x – DOT, using result of channel y MULADD.

Channel x is the result of interpolating the x parameters.
dst.x = P0.x + P1.x * i + P2.x * j

Note: The red + indicates this addition is done using the DOT path. The MULADD result is not
rounded or normalized before entering this ADD, so the result is not an IEEE compliant ADD.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_X, opcode 216 (0xD8).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-109
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Interpolation for X,Y Channels
Instruction INTERP_XY

Description This opcode must be present in all vector channels

Channel w – MULADD

Channel z – DOT, using result of channel w MULADD

Channel y – MULADD

Channel x – DOT, using result of channel y MULADD

Channel z result is interpolated y channel, and is muxed onto the channel y output.

Channel x result is interpolated x channel.
dst.x = P0.x + P1.x * i + P2.x *j

dst.y = P0.y + P1.y * i + P2.x *j

Note: The red + indicates this addition is done using the DOT path. The MULADD result is not
rounded or normalized before entering this ADD, so the result is not an IEEE compliant ADD.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_XY, opcode 214 (0xD6).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-110 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Interpolation of the Z Channel
Instruction INTERP_Z

Description This opcode must be present in the w and z vector channels.

Channel w – MULADD.

Channel z – DOT, using result of channel w MULADD.

Channel z is the result of interpolating the z parameters.
dst.z = P0.z + P1.z * i + P2.z * j

Note: The red + indicates this addition is done using the DOT path. The MULADD result is not
rounded or normalized before entering this ADD, so the result is not an IEEE compliant ADD.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_Z, opcode 217 (0xD9).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-111
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Interpolation of the Z, W Channels
Instruction INTERP_ZW

Description This opcode must be present in all vector channels.

Channel w – MULADD.

Channel z – DOT, using result of channel w MULADD.

Channel y – MULADD.

Channel x – DOT, using result of channel y MULADD.

Channel z is the result of interpolating the z parameters, and is muxed onto the channel y
output.

Channel x result is interpolated x channel, and is muxed onto the channel w output.
dst.x = P0.x + P1.x * i + P2.x * j

dst.w = P0.w + P1.w * i + P2.w * j

Note: The red + indicates this addition is done using the DOT path. The MULADD result is not
rounded or normalized before entering this ADD, so the result is not an IEEE compliant ADD.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_INTERP_ZW, opcode 215 (0xD7).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-112 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Pixel Kill If Equal
Instruction KILLE

Description Floating-point pixel kill if equal. Set kill bit. Ensure that the KILL* instruction is the last
instruction in an ALU clause, because the remaining instructions executed in the clause do
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can
execute this instruction; the instruction is ignored in other program types.
If (src0 == src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLE, opcode 44 (0x2C).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-113
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Kill If Equal
Instruction KILLE_INT

Description Integer kill if equal. Set kill bit. Ensure that the KILL* instruction is the last instruction in an
ALU clause, because the remaining instructions executed in the clause do not reflect the
updated valid state after the kill operation. Only a pixel shader (PS) can execute this
instruction; the instruction is ignored in other program types.
If (src0 == src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLE_INT, opcode 70 (0x46).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-114 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Pixel Kill If Greater Than Or Equal
Instruction KILLGE

Description Floating-point pixel kill if greater than or equal. Set kill bit. Ensure that the KILL* instruction
is the last instruction in an ALU clause, because the remaining instructions executed in the
clause do not reflect the updated valid state after the kill operation. Only a pixel shader (PS)
can execute this instruction; the instruction is ignored in other program types.
If (src0 >= src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGE, opcode 46 (0x2E).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-115
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Kill If Greater Than Or Equal
Instruction KILLGE_INT

Description Unsigned integer kill if greater than or equal. Set kill bit. Ensure that the KILL* instruction is
the last instruction in an ALU clause, because the remaining instructions executed in the
clause do not reflect the updated valid state after the kill operation. Only a pixel shader (PS)
can execute this instruction; the instruction is ignored in other program types.
If (src0 >= src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGE_INT, opcode 72 (0x48).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-116 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Kill If Greater Than Or Equal
Instruction KILLGE_UINT

Description Unsigned integer kill if greater than or equal. Set kill bit. Ensure that the KILL* instruction is
the last instruction in an ALU clause, because the remaining instructions executed in the
clause do not reflect the updated valid state after the kill operation. Only a pixel shader (PS)
can execute this instruction; the instruction is ignored in other program types.
If (src0 >= src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGE_UINT, opcode 65 (0x41).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-117
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Pixel Kill If Greater Than
Instruction KILLGT

Description Floating-point pixel kill if greater than. Set kill bit. Ensure that the KILL* instruction is the last
instruction in an ALU clause, because the remaining instructions executed in the clause do
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can
execute this instruction; the instruction is ignored in other program types.
If (src0 > src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGT, opcode 45 (0x2D).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-118 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Kill If Greater Than
Instruction KILLGT_INT

Description Integer kill if greater than. Set kill bit. Ensure that the KILL* instruction is the last instruction
in an ALU clause, because the remaining instructions executed in the clause do not reflect
the updated valid state after the kill operation. Only a pixel shader (PS) can execute this
instruction; the instruction is ignored in other program types.
If (src0 > src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGT_INT, opcode 71 (0x47).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-119
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Kill If Greater Than
Instruction KILLGT_UINT

Description Unsigned integer kill if greater than. Set kill bit. Ensure that the KILL* instruction is the last
instruction in an ALU clause, because the remaining instructions executed in the clause do
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can
execute this instruction; the instruction is ignored in other program types.
If (src0 > src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLGT_UINT, opcode 64 (0x40).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-120 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Pixel Kill If Not Equal
Instruction KILLNE

Description Floating-point pixel kill if not equal. Set kill bit. Ensure that the KILL* instruction is the last
instruction in an ALU clause, because the remaining instructions executed in the clause do
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can
execute this instruction; the instruction is ignored in other program types.
If (src0 != src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLNE, opcode 47 (0x2F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-121
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Kill If Not Equal
Instruction KILLNE_INT

Description Integer kill if not equal. Set kill bit. Ensure that the KILL* instruction is the last instruction in
an ALU clause, because the remaining instructions executed in the clause do not reflect the
updated valid state after the kill operation. Only a pixel shader (PS) can execute this
instruction; the instruction is ignored in other program types.
If (src0 != src1) {

dst = 1.0f;
Killed = TRUE;

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_KILLNE_INT, opcode 73 (0x49).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-122 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Combine Separate Fraction and Exponent into Double-precision
Instruction LDEXP_64

Description The LDEXP_64 instruction gets a 52-bit mantissa from the double-precision floating-point
value in src1.YX and a 32-bit integer exponent in src0.X, and multiplies the mantissa by
2exponent. The double-precision floating-point result is stored in dst.YX.
dst = src1 * 2^src0

mant = mantissa(src1)
exp = exponent(src1)
sign = sign(src1)

if (exp==0x7FF) //src1 is inf or a NaN
{

dst = src1;
}

else if (exp==0x0) //src1 is zero or a denorm
{

dst = (sign) ? 0x8000000000000000 : 0x0;
}
else //src1 is a float
{

exp+= src0;
 if (exp>=0x7FF) //overflow

{
dst = {sign,inf};

}
if (src0<=0) //underflow
{

dst = {sign,0};
}

mant |= (exp<<52);
mant |= (sign<<63);

dst = mant;
}

Coissue LDEXP_64 is a two-slot instruction. The following coissues are possible:

A single LDEXP_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and 4.

A single LDEXP_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and 4.

Two LDEXP_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 8.6 Result of LDEXP_64 Instruction

src1

src0

-/+inf -/+denorm -/+0 -/+F1

1. F is a finite floating-point value.

NaN

-/+I2 -/+inf -/+0 -/+0 src1 * (2^src0) src0

Not -/+I -/+inf -/+0 -/+0 invalid result src0

2. I is a valid 32-bit integer value.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-123
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_LDEXP_64, opcode 197 (0xC5).

Example The following example coissues two LDEXP_64 instructions in slots 0 and 1, and 2 and 3.
Input data:

Input data (x1) 0x47F000006FC6A731
Input data (e1) 0x2C6
Input data (x2) 0xC7EFFFFEE072B19F
Input data (e2) 0x15E

mov ra.h, l(0x47F00000) //high dword x1(Input 1)
mov rb.l, l(0x6FC6A731) //low dword

mov rc.h, l(0xC7EFFFFE) //high dword x2(Input 2)
mov rd.l, l(0xE072B19F) //low dword

mov rj.h, l(0x2C6) //e1
mov rk.l, l(0x15E) //e2

Issue instructions:

LDEXP_64 re.x ra.h rj.h //can be any vector element
LDEXP_64 rf.y rb.l rj.h //can be any vector element
LDEXP_64 rg.z rc.h rk.l //can be any vector element
LDEXP_64 rh.w rd.l rk.l //can be any vector element

Result:

re.x = 0x6FC6A731 (output LSB)
rf.y = 0x74500000 (output MSB)
rg.z = 0xE072B19F (output LSB)
rh.w = 0xDDCFFFFE (output MSB)

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the src0 operand during the
destination X channel (slot 0) or Z channel (slot 2). These slots contain the sign bits of the
sources. The src1 operand is an integer and does not accept modifiers.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

Combine Separate Fraction and Exponent into Double-precision (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-124 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Linear Interpolation
Instruction LERP_UINT

Description Unsigned eight-bit pixel average. Src c is similar to a round mode. If set, .5 rounds up; if
cleared, .5 truncates.
dst = ((src0[31:24] + src1[31:24] + src2[24]) >> 1) << 24 +
((src0[23:16] + src1[23:16] + src2[16]) >>1) << 16 +
((src0[15:8] + src1[15:8] + src2[8]) >> 1) << 8 +
((src0[7:0] + src1[7:0] + src2[0]) >> 1);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_LERP_UINT, opcode 11 (0xB).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-125
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Load and Store Flags
Instruction LOAD_STORE_FLAGS

Description Load src0 into a working copy of the exception flags. This clears flags or restores flags from
a previous clause.

Writes a working copy of the exception flags into a GPR if gprwr is enabled. Flags are
inclusive of current VLIW.

Available only in the w channel.
dst = exception flags

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP2_INST_LOAD_STORE_FLAGS, opcode 219 (0xDB).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-126 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Base-2 Log
Instruction LOG_CLAMPED

Description Scalar base-2 log.
If (src0 == 1.0f) {

dst = 0.0f;
}
Else {

dst = LOG_IEEE(src0)
// clamp dst
if (dst == -INFINITY) {

dst = -MAX_FLOAT;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_LOG_CLAMPED, opcode 130 (0x82).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-127
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Base-2 IEEE Log
Instruction LOG_IEEE

Description Scalar base-2 IEEE log.
If (src0 == 1.0f) {

dst = 0.0f;
}
Else {

dst = ApproximateLog2(src0);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_LOG_IEEE, opcode 131 (0x83).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-128 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Logical Shift Left
Instruction LSHL_INT

Description Scalar logical shift left. Zero is shifted into the vacated locations. src1 is interpreted as an
unsigned integer. If src1 is > 31, the result is 0.
dst = src0 << src1

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_LSHL_INT, opcode 23 (0x17).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-129
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Logical Shift Right
Instruction LSHR_INT

Description Scalar logical shift right. Zero is shifted into the vacated locations. The five lsb of src1 are
interpreted as an unsigned integer.
dst = src0 >> (src1 & 0x1F)

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_LSHR_INT, opcode 22 (0x16).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-130 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Maximum
Instruction MAX

Description Floating-point maximum.
If (src0 >= src1) {

dst = src0;
}
Else {

dst = src1;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX, opcode 3 (0x3).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-131
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Maximum
Instruction MAX_64

Description The instruction specifies which one of two data elements in a four-element vector is operated
on (the two dwords of a double precision floating point number), and the result can be stored
in the wz or yx elements of the destination GPR.
if (src0 > src1)
 dst = src0;
else
 dst = src1;

max(-0,+0)=max(+0,-0)=+0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX_64, opcode 189 (0xBD).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-132 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Maximum, DirectX 10
Instruction MAX_DX10

Description Floating-point maximum. This instruction uses the DirectX 10 method of handling of NaNs.
If (src0 >= src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX_DX10, opcode 5 (0x5).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-133
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Maximum
Instruction MAX_INT

Description Integer maximum, based on signed integer operands.
If (src0 >= src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX_INT, opcode 54 (0x36).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-134 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Maximum
Instruction MAX_UINT

Description Integer maximum, based on unsigned integer operands.
If (src0 >= src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX_UINT, opcode 56 (0x38).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-135
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Four-Channel Maximum
Instruction MAX4

Description Four-channel maximum. The result is replicated in all four vector channels. This reduction
instruction must be executed on all four channels of a single vector. Reduction operations
compute only one output, so the values in the output modifier (OMOD) and output clamp
(CLAMP) fields must be the same for all four instructions.

Only the PV.X register channel holds the result of this operation, and the processor selects
this swizzle code in the bypass operation.

dst = max(srcA.W, srcA.Z, srcA,Y, srcA.X);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MAX4, opcode 193 (0xC1).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-136 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Masked Count Bits Set 32 High
Instruction MBCNT_32HI_INT

Description ANDs the high 32 bits of the mask based on the thread position (0-63) in wavefront before
performing BCNT.
Masked_src0 = ((1 < thread_position) -1) >> 32 & src0
count = 0;

for (i = 0 to 31) {
count = count + Masked_src0[i];

}
dst = count;

See MBCNT_32LO_ACCUM_PREV_INT for intended usage.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MBCNT_32HI_INT, opcode 179 (0xB3).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-137
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Masked Count Bits Set 32 Low
Instruction MBCNT_32LO_ACCUM_PREV_INT

Description ANDs the low 32 bits of the mask based on thread position (0-63) in a wavefront before
executing BCNT. Adds this to the previous channel’s MBCNT_32HI_INT result. This only works
with MBCNT_32HI_INT in the previous channel.

Not legal if used in channel w. The previous channel z is channel w’s BCNT_INT result. The
previous channel y is channel z’s BCNT_INT result. The previous channel x is channel y’s
BCNT_INT result.
Masked _src0 = (1 << thread_position) - 1 & src0;
count = 0;

for (i = 0 to 31) {
count = count + Masked_src0[i];

}
dst = count + prev_slot_mbcnt_32hi_int_dst;

Intended usage for compaction:

SQ constant {w,z,y,x} = {active_mask_high, active_mask_low, active_mask_high,
active_mask_low}

w channel - bcnt_int
z channel - bcnt_accum_prev_int
y channel - mbcnt_32_hi_int
x channel - mbcnt_32lo_accum_prev_int

The z channel dst is the number of threads in a wave.

The x channel dst is the position of this thread in the wave.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MBCNT_32LO_ACCUM_PREV_INT, opcode 183 (0xB7).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-138 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Minimum
Instruction MIN

Description Floating-point minimum.
If (src0 < src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MIN, opcode 4 (0x4).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-139
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Minimum
Instruction MIN_64

Description The instruction specifies which one of two data elements in a four-element vector is operated
on (the two dwords of a double precision floating point number), and the result can be stored
in the wz or yx elements of the destination GPR.
if (src0 < src1)
 dst = src0;
else
 dst = src1;

min(-0,+0)=min(+0,-0)=-0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MIN_64, opcode 188 (0xBC).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-140 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Minimum, DirectX 10
Instruction MIN_DX10

Description Floating-point minimum. This instruction uses the DirectX 10 method of handling of NaNs.
If (src0 < src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MIN_DX10, opcode 6 (0x6).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-141
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Integer Minimum
Instruction MIN_INT

Description Integer minimum, based on signed integer operands.
If (src0 < src1) {

dst = src0;
}
Else {

dst = src1;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MIN_INT, opcode 55 (0x37).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-142 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Minimum
Instruction MIN_UINT

Description Integer minimum, based on unsigned integer operands.
If (src0 < src1) {

dst = src0;
}
Else {

dst = src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MIN_UINT, opcode 57 (0x39).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-143
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Copy To GPR
Instruction MOV

Description Copy a single operand from a GPR, constant, or previous result to a GPR.

MOV can be used as an alternative to the NOP instruction. Unlike NOP, which does not preserve
the current PV register value in the slot in which it executes, a MOV can be made to preserve
the PV register values if the it is performed with a disabled write mask.
dst = src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MOV, opcode 25 (0x19).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-144 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Copy Signed Integer To Integer in AR and GPR
Instruction MOVA_INT

Description Clamp the signed integer to the range [-256, +255], and copy the result to the address
register (AR) and to a GPR.
dst = Undefined;
dstI = src0;
If (dstI < -256) {

dstI = 0x100; //-256
}
If (dstI > 0xFF) {

dstI = 0x100 //-256
}
Export(dstI); // signed 9-bit integer

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MOVA_INT, opcode 204 (0xCC).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-145
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply
Instruction MUL

Description Floating-point multiply. Zero times anything equals zero.
dst = src0 * src1;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL, opcode 1 (0x1).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-146 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply, 64-Bit
Instruction MUL_64

Description Floating-point 64-bit multiply. Multiplies a double-precision value in src0.YX by a double-
precision value in src1.YX, and places the lower 64 bits of the result in dst.YX.
dst = src0 * src1;

(A * B) == (B * A)

Coissue The MUL_64 instruction is a four-slot instruction. Therefore, a single MUL_64 instruction can
be issued in slots 0, 1, 2, and 3. Slot 4 can contain any other valid instruction.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL_64, opcode 27 (0x1B).

Table 8.7 Result of MUL_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value.

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf +inf +inf +inf NaN64 NaN64 NaN64 NaN64 -inf -inf -inf src1
(NaN64)

-F +inf +F -src0 +0 +0 -0 -0 src0 -F -inf src1
(NaN64)

-1.0 +inf -src1 +1.0 +0 +0 -0 -0 -1.0 -src1 -inf src1
(NaN64)

-denorm NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

-0 NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

+0 NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+denorm NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+1.0 -inf src1 -1.0 -0 -0 +0 +0 +1.0 src1 +inf src1
(NaN64)

+F -inf -F -src0 -0 -0 +0 +0 src0 +F +inf src1
(NaN64)

+inf -inf -inf -inf NaN64 NaN64 NaN64 NaN64 +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-147
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Example The following example coissues one MUL_64 instruction in slots 0, 1, 2, and 3:
Input data:

Input data 3.0 (0x4008000000000000)
Input data 6.0 (0x4018000000000000)

mov ra.h, l(0x40080000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40180000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue instruction:

MUL_64 re.x ra.h rc.h; //can be any vector element
MUL_64 rf.y ra.h rc.h; //can be any vector element
MUL_64 rg.z ra.h rc.h; //can be any vector element
MUL_64 rh.w rb.l rd.l; //can be any vector element

Result:

3.0 * 6.0 = 18.0 (0x4032000000000000)

re.x = 0x00000000 (LSB of Input 1 and Input 2 mul64 result)
rf.y = 0x40320000 (MSB of Input 1 and Input 2 mul64 result)
rg.z = 0x00000000 (LSB of Input 1 and Input 2 mul64 result)
rh.w = 0x40320000 (MSB of Input 1 and Input 2 mul64 result)

The hardware puts the result in two different slot pairs, as shown above.

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0), Y channel (slot 1), or Z channel (slot 2). These slots contain
the sign bits of the sources.

Output Modifiers Output modifiers (Section 4.9.1 on page 20) can be applied to the destination during the
destination X channel (slot 0) or Z channel (slot 2).

Floating-Point Multiply, 64-Bit (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-148 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply, IEEE
Instruction MUL_IEEE

Description Floating-point multiply. Uses IEEE rules for zero times anything.
dst = src0 * src1;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL_IEEE, opcode 2 (0x2).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-149
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dependent Multiply with IEEE Rules
Instruction MUL_IEEE_PREV

Description Multiply src1 by previous channel’s MUL result. The previous channel opcode must be MUL.

This instruction uses DX10 rules for 0*anything.

The output modifier and clamping on the w/z channel is not applied in the MUL_PREV path to
the dependent channel (y/x).

Use in w or z channels is not legal.

The previous channel y is the w channel’s MUL result.
The previous channel x is the z channel’s MUL result.
Result = Arg2 * prev_slot_result

Example: Dependent mul, result in y
 w z y x
mul * mul_prev *

Example: 2 separate dependent muls, results in y and x
 w z y x
mul mul mul_prev mul_prev

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL_IEEE_PREV, opcode 210 (0xD2).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-150 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Multiply Emulating LIT Operation
Instruction MUL_LIT

Description Scalar multiply with result replicated in all four vector channels. It is used primarily when
emulating a LIT operation. Zero times anything is zero.

A LIT operation takes an input vector containing information about shininess and normals to
the light, and it computes the diffuse and specular light components using Blinn's lighting
equation, which is implemented as follows.
t1.y = max (src.x, 0)
t1.x_w -= 1
t1.z = log_clamp(src.y)
t1.w = mul_lit(src.z, t1.z, src.x)
t1.z = exp(t1.z)
dst = t1

The pseudocode for the MUL_LIT instruction is:
If ((src1 == -MAX_FLOAT) ||

(src1 == -INFINITY) ||
(src1 is NaN) ||
(src2 <= 0.0f) ||
(src2 is NaN)) {
dst = -MAX_FLOAT;

}
Else {

dst = src0 * src1;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MUL_LIT, opcode 31 (0x1F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-151
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dependent Multiply
Instruction MUL_PREV

Description Multiply src1 by previous channel’s MUL result. The previous channel opcode must be MUL.

The output modifier and clamping on the w/z channel is not applied in the MUL_PREV path to
the dependent channel (y/x).

Use in w or z channels is not legal.

The previous channel y is the w channel’s MUL result.
The previous channel x is the z channel’s MUL result.
Result = Arg2 * prev_slot_result

Example: Dependent mul, result in y
w z y x
mul * mul_prev *

Example: 2 separate dependent muls, results in y and x
 w z y x
mul mul mul_prev mul_prev

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL_PREV, opcode 209 (0xD1).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-152 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

24-Bit Unsigned Integer Multiply (Low-Order)
Instruction MUL_UINT24

Description Src 0 and 1 treated as 24-bit unsigned integers. Bits [31:24] are ignored. The result
represents the low-order 32 bits of the 48-bit multiply result, mul_result[31:0].
dst = src0[23:0] * src1[23:0] // low order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MUL_UINT24, opcode 181 (0xB5).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-153
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply-Add
Instruction MULADD

Description Floating-point multiply-add (MAD). Gives same results as ADD after MUL.
dst = src0 * src1 + src2;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD, opcode 20 (0x14).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-154 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply-Add, Divide by 2
Instruction MULADD_D2

Description Floating-point multiply-add (MAD), followed by divide by 2.

dst = (src0 * src1 + src2) *.5;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD_D2, opcode 23 (0x17).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-155
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

IEEE Floating-Point Multiply-Add
Instruction MULADD_IEEE

Description Floating-point multiply-add (MAD). Uses IEEE rules for zero times anything. Gives same
results as ADD after MUL_IEEE. Uses IEEE rules for zero times anything.
dst = src0 * src1 + src2;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD_IEEE, opcode 24 (0x18).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-156 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dependent Multiply Add With IEEE Rules
Instruction MULADD_IEEE_PREV

Description Multiply src1 by src2, then add the result to the previous slot’s result. Previous slot must
produce must a single-precision floating-point result.

This version uses DX10 (IEEE) rules for 0*anything.

Output modifier and clamping on w/z channel is NOT applied.

Do not use in w or z channels.

Channel y previous is w channel’s result.

Channel x previous is z channel’s result.

Result = (Arg1 * Arg2) + prev_slot_result

Example 1: Dependent mul, result in y:
 w z y x
 mul * muladd_prev *

Example 2: Two separate dependent operations, results in y and x:
w z y x
mul sub muladd_prev muladd_prev

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULADD_IEEE_PREV, opcode 213 (0xD5).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-157
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply-Add, Multiply by 2
Instruction MULADD_M2

Description Floating-point multiply-add (MAD), followed by multiply by 2.

dst = (src0 * src1 + src2) * 2;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD_M2, opcode 21 (0x15).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-158 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Multiply-Add, Multiply by 4
Instruction MULADD_M4

Description Floating-point multiply-add (MAD), followed by multiply by 4.

dst = (src0 * src1 + src2) * 4;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD_M4, opcode 22 (0x16).

C DE D
R DST_GPR BS

ALU_INST
(11000)

S
2
N

S2E
S
2
R

SRC2_SEL +4

L PS IM
S
1
N

S1E
S
1
R

SRC1_SEL
S
0
N

S0E
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-159
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Dependent Multiply-Add
Instruction MULADD_PREV

Description The IEEE version uses DX10 rules for 0*anything.

Multiply src0 and src1, then add the result to previous channel’s result. The previous channel
opcode must result in a 32-bit, single-precision floating-point.

The output modifier and clamping on the w/z channel is not allowed (results are undefined).

Use in w or z channels is not legal.

Previous channel y is the w channel’s FP32 result.
Previous channel x is the z channel’s FP32 result.
dst = (src0 * src1) + prev_slot_result

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULADD_PREV, opcode 212 (0xD4).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-160 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

24-Bit Unsigned Integer Multiply-Add
Instruction MULADD_UINT24

Description Src0 and src1 treated as 24-bit unsigned integers. Src2 is treated as a 32-bit signed or
unsigned integer. Bits [31:24] are ignored. The result represents the low-order 32 bits of the
multiply-add result.
dst = src0[23:0] * src1[23:0] + src[31:0] // low order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_MULADD_UINT24, opcode 16 (0x10).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-161
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Scalar Multiply, High-Order 32 Bits
Instruction MULHI_INT

Description Scalar multiplication. The arguments are interpreted as signed integers. The result
represents the high-order 32 bits of the multiply result.
dst = src0 * src1 // high-order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULHI_INT, opcode 144 (0x90).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-162 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Scalar Multiply, High-Order 32 Bits
Instruction MULHI_UINT

Description Scalar multiplication. The arguments are interpreted as unsigned integers. The result
represents the high-order 32 bits of the multiply result.
dst = src0 * src1 // high-order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULHI_UINT, opcode 146 (0x92).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-163
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

24-Bit Unsigned Integer Multiply (High-Order)
Instruction MULHI_UINT24

Description Src0 and src1 are treated as 24-bit unsigned integers. Bits [31:24] are ignored. The result
represents the high-order 16 bits of the 48-bit multiply result, {16’b0, mul_result[47:32]}.
dst = src0[23:0] * src1 [23:0] // high order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULHI_UINT24, opcode 178 (0xB2).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-164 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Scalar Multiply, Low-Order 32-Bits
Instruction MULLO_INT

Description Scalar multiplication. The arguments are interpreted as signed integers. The result
represents the low-order 32 bits of the multiply result.
dst = src0 * src1 // low-order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULLO_INT, opcode 143 (0x8F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-165
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Scalar Multiply, Low-Order 32-Bits
Instruction MULLO_UINT

Description Scalar multiplication. The arguments are interpreted as unsigned integers. The result
represents the low-order 32 bits of the multiply result.
dst = src0 * src1 // low-order bits

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_MULLO_UINT, opcode 145 (0x91).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-166 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

No Operation
Instruction NOP

Description No operation. The instruction slot is not used. NOP instructions perform no writes to GPRs,
and they invalidate the PV register value.

After all instructions in an instruction group are processed, any ALU.[X,Y,Z,W] operation
that is unspecified implicitly executes a NOP instruction, thus invalidating the values in the
corresponding channels of the PV register.

dst is undefined.

See the CF version of NOP on page 8-41.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_NOP, opcode 26 (0x1A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-167
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Bit-Wise NOT
Instruction NOT_INT

Description Logical bit-wise NOT.
dst = ~src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_NOT_INT, opcode 51 (0x33).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-168 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Four-Bit Signed Integer to 32-Bit Float
Instruction OFFSET_TO_FLT

Description Four-bit signed integer to 32-bit float conversion for interpolation in the kernel.
src0 dst
1000 -0.5f
1001 -0.4375f
1010 -0.375f
1011 -0.3125f
1100 -0.25f
1101 -0.1875f
1110 -0.125f
1111 -0.0625f
0000 0.0f
0001 0.0625f
0010 0.125f
0011 0.1875f
0100 0.25f
0101 0.3125f
0110 0.375f
0111 0.4375f

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_OFFSET_TO_FLT, opcode 180 (0xB4).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-169
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Logical Bit-Wise OR
Instruction OR_INT

Description Logical bit-wise OR.
dst = src0 | src1

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_OR_INT, opcode 49 (0x31).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-170 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Clear
Instruction PRED_SET_CLR

Description Predicate counter clear. Updates predicate register.
dst = +MAX_FLOAT;
predicate_result = skip;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SET_CLR, opcode 38 (0x26).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-171
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Invert
Instruction PRED_SET_INV

Description Predicate counter invert. Updates predicate register.
If (src0 == 1.0f) {

dst = 0.0f;
predicate_result = execute;

}
Else {

If (src0 == 0.0f) {
dst = 1.0f;

}
Else {

dst = src0;
}
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SET_INV, opcode 36 (0x24).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-172 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Pop
Instruction PRED_SET_POP

Description Pop predicate counter. This updates the predicate register.
If (src0 <= src1) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 - src1;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SET_POP, opcode 37 (0x25).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-173
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Restore
Instruction PRED_SET_RESTORE

Description Predicate counter restore. Updates predicate register.
If (src0 == 0.0f) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SET_RESTORE, opcode 39 (0x27).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-174 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Equal
Instruction PRED_SETE

Description Floating-point predicate set if equal. Updates predicate register.
If (src0 == src1) {

dst = 0.0f;
predicate_result = execute;

} Else {
dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETE, opcode 32 (0x20).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-175
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Equal, 64-Bit
Instruction PRED_SETE_64

Description Floating-point 64-bit predicate set if equal. Updates the predicate register. Compares two
double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ and src1.WZ,
and returns 0x0 if src0==src1 or 0xFFFFFFFF; otherwise, it returns the unsigned integer
result in dst.YX or dst.WZ.

The instruction can also establish a predicate result (execute or skip) for subsequent
predicated instruction execution. This additional control allows a compiler to support one-
instruction issue for if-elseif operations, or an integer result for nested flow-control, by using
single-precision operations to manipulate a predicate counter.

if (src0 == src1)
{

dst = 0x0;
predicate_result = execute;

}
else
{

dst = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETE_64 is a two-slot instruction. The following coissues are possible:
• A single PRED_SETE_64 instruction in slots 0 and 1, and any valid instructions in slots 2,

3, and 4, except other predicate-set instructions.
• A single PRED_SETE_64 instruction in slots 2 and 3, and any valid instructions in slots 0,

1, and 4, except other predicate-set instructions.
• Two PRED_SETE_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4,

except other predicate-set instructions.

Table 8.8 Result of PRED_SETE_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value.

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 FALSE TRUE or
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

-0 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+0 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+denorm2 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+F1 FALSE FALSE FALSE FALSE FALSE FALSE TRUE or
FALSE

FALSE FALSE

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-176 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_64, opcode 200 (0xC8).

Example The following examples issue a single PRED_SETE_64 instruction in two slots.
Input data:

Input data 6.0 (0x4018000000000000)
Input data 3.0 (0x4008000000000000)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue a single PRED_SETE_64 instruction in slots 3 and 2:

PRED_SETE_64 re.x ra.h ra.h //can be any vector element
PRED_SETE_64 rf.y rb.l rb.l //can be any vector element

Result:

PRED_SETE_64 (0x4018000000000000,0x4018000000000000) =
PRED_SETE_64 (6.0,6.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETE_64 instruction in slots 1 and 0:

PRED_SETE_64 re.z rc.h ra.h //can be any vector element
PRED_SETE_64 rf.w rd.l rb.l //can be any vector element

Result:

PRED_SETE_64 (0x4008000000000000,0x4018000000000000) =
PRED_SETE_64 (3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) and Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers The instruction does not take output modifiers.

Floating-Point Predicate Set If Equal, 64-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-177
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Set If Equal
Instruction PRED_SETE_INT

Description Integer predicate set if equal. Updates predicate register.
If (src0 == src1) {

dst = 0.0f;
SetPredicateKillReg(Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_INT, opcode 66 (0x42).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-178 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Counter Increment If Equal
Instruction PRED_SETE_PUSH

Description Floating-point predicate counter increment if equal. Updates predicate register.
If ((src1 == 0.0f) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_PUSH, opcode 40 (0x28).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-179
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Counter Increment If Equal
Instruction PRED_SETE_PUSH_INT

Description Integer predicate counter increment if equal. Updates predicate register.
If ((src1 == 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_PUSH_INT, opcode 74 (0x4A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-180 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Greater Than Or Equal
Instruction PRED_SETGE

Description Floating-point predicate set if greater than or equal. Updates predicate register.
If (src0 >= src1) {

dst = 0.0f;
predicate_result = execute;

} Else {
dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE, opcode 34 (0x22).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-181
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit
Instruction PRED_SETGE_64

Description Floating-point 64-bit predicate set if greater than or equal. Updates the predicate register.
Compares two double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ
and src1.WZ, and returns 0x0 if src0>=src1 or 0xFFFFFFFF; otherwise, it returns the
unsigned integer result in dst.YX or dst.WZ.

The instruction can also establish a predicate result (execute or skip) for subsequent
predicated instruction execution. This additional control allows a compiler to support one-
instruction issue for if/elseif operations or an integer result for nested flow-control by using
single-precision operations to manipulate a predicate counter.
if (src0>=src1)
{

result = 0x0;
predicate_result = execute;

}
else
{

result = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETGE_64 is a two-slot instruction. The following coissues are possible:
• A single PRED_SETGE_64 instruction in slots 0 and 1, and any valid instructions in slots 2,

3, and 4, except other predicate-set instructions.
• A single PRED_SETGE_64 instruction in slots 2 and 3, and any valid instructions in slots 0,

1, and 4, except other predicate-set instructions.
• Two PRED_SETGE_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4,

except other predicate-set instructions.

Table 8.9 Result of PRED_SETGE_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value.

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 TRUE TRUE or
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

-0 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+0 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+denorm2 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+F1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE or
FALSE

FALSE FALSE

+inf TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-182 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_64, opcode 201 (0xC9).

Example The following examples issue a single PRED_SETGE_64 instruction in two slots:
Input data:

Input data => 0x4018000000000000 (6.0)
Input data => 0x4008000000000000 (3.0)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue a single PRED_SETGE_64 instruction in slots 3 and 2:

PRED_SETGE_64 re.x ra.h ra.h //can be any vector element
PRED_SETGE_64 rf.y rb.l rb.l //can be any vector element

Result:

pred_setge64(0x4018000000000000,0x4018000000000000) =
pred_setge64(6.0,6.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-183
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Or, issue a single PRED_SETGE_64 instruction in slots 3 and 2.
PRED_SETGE_64 re.x ra.h rc.h //can be any vector element
PRED_SETGE_64 rf.y rb.l rd.l //can be any vector element

Result:
pred_setge64(0x4018000000000000,0x4008000000000000) =
pred_setge64(6.0,3.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETGE_64 instruction in slots 1 and 0:
PRED_SETGE_64 re.z rc.h ra.h //can be any vector element
PRED_SETGE_64 rf.w rd.l rb.l //can be any vector element

Result:
pred_setge64(0x4008000000000000,0x4018000000000000) =
pred_setge64(3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) and Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers The instruction does not take output modifiers.

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-184 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Set If Greater Than Or Equal
Instruction PRED_SETGE_INT

Description Integer predicate set if greater than or equal. Updates predicate register.
If (src0 >= src1) {

dst = 0.0f;
SetPredicateKillReg (Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_INT, opcode 68 (0x44).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-185
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Greater Than Or Equal
Instruction PRED_SETGE_PUSH

Description Predicate counter increment if greater than or equal. Updates predicate register.
If ((src1 >= 0.0f) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_PUSH, opcode 42 (0x2A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-186 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Counter Increment If Greater Than Or Equal
Instruction PRED_SETGE_PUSH_INT

Description Integer predicate counter increment if greater than or equal. Updates predicate register.
If ((src1 >= 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_PUSH_INT, opcode 76 (0x4C).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-187
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Predicate Set If Greater Than Or Equal
Instruction PRED_SETGE_UINT

Description Unsigned integer predicate set if greater than or equal. Updates predicate register.
If (src0 >= src1) {

dst = 0.0f;
SetPredicateKillReg (Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_UINT, opcode 31 (0x1F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-188 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Greater Than
Instruction PRED_SETGT

Description Floating-point predicate set if greater than. Updates predicate register.
If (src0 > src1) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT, opcode 33 (0x21).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-189
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Greater Than, 64-Bit
Instruction PRED_SETGT_64

Description Floating-point 64-bit predicate set if greater than. Updates the predicate register. Compares
two double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ and
src1.WZ, and returns 0x0 if src0>src1 or 0xFFFFFFFF; otherwise, it returns the unsigned
integer result in dst.YX or dst.WZ.

The instruction can also optionally establish a predicate result (execute or skip) for
subsequent predicated instruction execution. This additional control allows a compiler to
support one-instruction issue for if/elseif operations, or an integer result for nested flow-
control, by using single-precision operations to manipulate a predicate counter.
if (src0>src1)
{

result = 0x0;
predicate_result = execute;

}
else
{

result = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETGT_64 is a two-slot instruction. The following coissues are possible:
• A single PRED_SETGT_64 instruction in slots 0 and 1, and any valid instructions in slots 2,

3, and 4, except other predicate-set instructions.
• A single PRED_SETGT_64 instruction in slots 2 and 3, and any valid instructions in slots 0,

1, and 4, except other predicate-set instructions.
• Two PRED_SETGT_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4,

except other predicate-set instructions.

Table 8.10 Result of PRED_SETGT_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value.

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 TRUE TRUE or
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-0 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+0 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+denorm2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+F1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE or
FALSE

FALSE FALSE

+inf TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-190 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_64, opcode 199 (0xC7).

Example The following examples issue a single PRED_SETGT_64 instruction in two slots:

Input data:
Input data 6.0 (0x4018000000000000)
Input data 3.0 (0x4008000000000000)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) // low dword

Issue a single PRED_SETGT_64 instruction in slots 3 and 2:
PRED_SETGT_64 re.x ra.h rc.h //can be any vector element
PRED_SETGT_64 rf.y rb.l rd.l //can be any vector element

Result:
pred_setgt64(0x4018000000000000,0x4008000000000000) =
pred_setgt64(6.0,3.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETGT_64 instruction in slots 1 and 0:
PRED_SETGT_64 re.z rc.h ra.h //can be any vector element
PRED_SETGT_64 rf.w rd.l rb.l //can be any vector element

Result:
pred_setgt64(0x4008000000000000,0x4018000000000000) =
pred_setgt64(3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2 on page 9) can be applied to the source operands during the
destination X channel (slot 0) and Z channel (slot 2). These slots contain the sign bits of the
sources.

Output Modifiers The instruction does not take output modifiers.

Floating-Point Predicate Set If Greater Than, 64-Bit (Cont.)

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-191
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Set If Greater Than
Instruction PRED_SETGT_INT

Description Integer predicate set if greater than. Updates predicate register.
If (src0 > src1) {

dst = 0.0f;
SetPredicateKillReg (Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_INT, opcode 67 (0x43).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-192 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Greater Than
Instruction PRED_SETGT_PUSH

Description Predicate counter increment if greater than. Updates predicate register.
If ((src1 > 0.0f) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0.W + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_PUSH, opcode 41 (0x29).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-193
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Predicate Counter Increment If Greater Than
Instruction PRED_SETGT_PUSH_INT

Description Integer predicate counter increment if greater than. Updates predicate register.
If ((src1 > 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_PUSH_INT, opcode 75 (0x4B).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-194 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Predicate Set If Greater Than
Instruction PRED_SETGT_UINT

Description Unsigned integer predicate set if greater than. Updates predicate register.
If (src0 > src1) {

dst = 0.0f;
SetPredicateKillReg (Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_UINT, opcode 30 (0x1E).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-195
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Less Than Or Equal
Instruction PRED_SETLE_PUSH_INT

Description Predicate counter increment if less than or equal. Updates predicate register.
If ((src1 <= 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETLE_PUSH_INT, opcode 79 (0x4F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-196 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Less Than
Instruction PRED_SETLT_PUSH_INT

Description Predicate counter increment if less than. Updates predicate register.
If ((src1 < 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETLT_PUSH_INT, opcode 78 (0x4E).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-197
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Predicate Set If Not Equal
Instruction PRED_SETNE

Description Floating-point predicate set if not equal. Updates predicate register.
If (src0 != src1) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE, opcode 35 (0x23).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-198 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Predicate Set If Not Equal
Instruction PRED_SETNE_INT

Description Scalar predicate set if not equal. Updates predicate register.
If (src0 != src1) {

dst = 0.0f;
SetPredicateKillReg (Execute);

}
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_INT, opcode 69 (0x45).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-199
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Not Equal
Instruction PRED_SETNE_PUSH

Description Predicate counter increment if not equal. Updates predicate register.
If ((src1 != 0.0f) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_PUSH, opcode 43 (0x2B).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-200 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate Counter Increment If Not Equal
Instruction PRED_SETNE_PUSH_INT

Description Predicate counter increment if not equal. Updates predicate register.
If ((src1 != 0x0) && (src0 == 0.0f)) {

dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 + 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_PUSH_INT, opcode 77 (0x4D).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-201
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double Reciprocal
Instruction RECIP_64

Description src0_d is composed of high-order double bits on src0, and low-order double bits on src1.

The result is a high-order dword of recip64; the low-order bits are assumed to be 0.
If (src0_d == 1.0f) {
 Result = 1.0F;
}
Else {
 Result = ApproximateRecip(src0_d);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIP_64, opcode 149 (0x95).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-202 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal, Clamp to Maximum
Instruction RECIP_CLAMPED

Description Scalar reciprocal.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = RECIP_IEEE(src0);
}
// clamp dst
If (dst == -INFINITY) {

dst = -MAX_FLOAT;
}
If (dst == +INFINITY) {

dst = +MAX_FLOAT;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIP_CLAMPED, opcode 132 (0x84).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-203
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double Reciprocal Clamped
Instruction RECIP_CLAMPED_64

Description Src0_d is composed of high-order double bits on src0, and low-order double bits on src1.

The result is a high-order dword of recip64_clamped; low-order bits are assumed to be 0.
If (src0_d == 1.0F) {
 Result = 1.0F;
}
Else {
 Result = RECIP_IEEE(src0_d);
}
// clamp result
if (Result == -INFINITY) {
 Result = -MAX_FLOAT;
}
if (Result == +INFINITY) {
 Result = +MAX_FLOAT;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIP_CLAMPED_64, opcode 150 (0x96).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-204 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal, Clamp to Zero
Instruction RECIP_FF

Description Scalar reciprocal.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = RECIP_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -ZERO;
}
if (dst == +INFINITY) {

dst = +ZERO;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIP_FF, opcode 133 (0x85).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-205
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal, IEEE Approximation
Instruction RECIP_IEEE

Description Scalar reciprocal.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = ApproximateRecip(src0);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIP_IEEE, opcode 134 (0x86).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-206 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double Reciprocal Square Root
Instruction RECIPSQRT_64

Description Src0_d is composed of high-order double bits on src0, and low-order double bits on src1.

Result is high order dword of recipsqrt64, low order bits assumed to be 0.
If (src0_d == 1.0f) {
 Result = 1.0F;
}
Else {
 Result = ApproximateRecip(src0_d);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_64, opcode 151 (0x97).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-207
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal Square Root, Clamp to Maximum
Instruction RECIPSQRT_CLAMPED

Description Scalar reciprocal square root.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = RECIPSQRT_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -MAX_FLOAT;
}
if (dst == +INFINITY) {

dst = +MAX_FLOAT;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_CLAMPED, opcode 135 (0x87).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-208 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double Reciprocal Square Root Clamped
Instruction RECIPSQRT_CLAMPED_64

Description Src0_d is composed of high-order double bits on src0, and low-order double bits on src1.

The result is a high-order dword of recipsqrt64_clamped; the low-order bits are assumed
to be 0.
If (src0_d == 1.0F) {
 Result = 1.0F;
}
Else {
 Result = RECIPSQRT_IEEE(src0_d);
}
// clamp result
if (Result == -INFINITY) {
 Result = -MAX_FLOAT;
}
if (Result == +INFINITY) {
 Result = +MAX_FLOAT;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_CLAMPED_64, opcode 152 (0x98).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-209
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal Square Root, Clamp to Zero
Instruction RECIPSQRT_FF

Description Scalar reciprocal square root.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = RECIPSQRT_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -ZERO;
}
if (dst == +INFINITY) {

dst = +ZERO;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_FF, opcode 136 (0x88).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-210 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Reciprocal Square Root, IEEE Approximation
Instruction RECIPSQRT_IEEE

Description Scalar reciprocal square root.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = ApproximateRecipSqrt(src0);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_IEEE, opcode 137 (0x89).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-211
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Round To Nearest Even Integer
Instruction RNDNE

Description Floating-point round to nearest even integer.
dst = FLOOR(src0 + 0.5f);
If ((FLOOR(src0)) == Even) && (FRACT(src0 == 0.5f)){

dst -= 1.0f

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_RNDNE, opcode 19 (0x13).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-212 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sum of Absolute Differences With Accumulation Into MSB
Instruction SAD_ACCUM_HI_UINT

Description Executes 4x4 SAD with src0 and src1; then, accumulates the results into the msbs of src2.
The overflow is lost.
dst = (|src0[31:24] - src1[31:24]| +
|src0[23:16] - src1[23:16]| +
|src0[15:8] - src1[15:8]| +
|src0[7:0] - src1[7:0]|) << 16
+src2

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_SAD_ACCUM_HI_UINT, opcode 15 (0xF).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-213
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sum of Absolute Differences With Accumulation From Previous Channel
Instruction SAD_ACCUM_PREV_UINT

Description Executes a 4x4 SAD with src0 and src1; then, accumulates the result int the lsbs of the SAD
result from the previous channel. Valid instructions for the previous channel are
sad_accum_uint, sad_accum_hi_uint, and sad_accum_prev_uint. Overflow into previous
SAD bit 16 is allowed.

Using this in channel w is not legal.

Previous channel z is w channel’s sad_accum_*_uint result.
Previous channel y is z channel’s sad_accum_*_uint result.
Previous channel x is y channel’s sad_accum_*_uint result.
dst = |src0[31:24] - src1[31:24]| +
|src0[23:16] - src1[23:16]| +
|src0[15:8] - src1[15:8]| +
|src0[7:0] - src1[7:0]|
+prev_slot_sad_accum_*_uint_result

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SAD_ACCUM_PREV_UINT, opcode 207 (0xCF).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-214 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sum of Absolute Differences With Accumulation Into LSB
Instruction SAD_ACCUM_UINT

Description Executes a 4x4 SAD with src0 and src1; then, accumulate the results into the lsbs of src2.
Overflow into src2[16] is allowed.
dst = |src0[31:24] - src1[31:24]| +
|src0[23:16] - src1[23:16]| +
|src0[15:8] - src1[15:8]| +
|src0[7:0] - src1[7:0]|
+src2

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP3 (page 9-32).

Instruction Field ALU_INST == OP3_INST_SAD_ACCUM_UINT, opcode 14 (0xE).

C DC D
R DST_GPR BS ALU_INST SN S2C SR SRC2_SEL +4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-215
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Set Local/Global Mode and LDS Size
Instruction SET_LDS_SIZE

Description Sets both the local/global mode, and the LDS size:

SRC0 = size, SRC1 = global mode

Default mode is local. The (LDS size – 1) is the highest offset that can be accessed. Writes
outside this range are discarded; reads return 0.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SET_LDS_SIZE, opcode 90 (0x5A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-216 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Override Rounding and Denorm Modes
Instruction SET_MODE

Description Overrides the rounding and denorm modes until the end of clause.

SRC0_SEL, bits 3:0 for single-precision. Bits 1:0 are for round mode; bits 3:2 are
for denormal mode: bit 3 = output denorm control; bit 2 = input denorm control.
SRC1_SEL, bits 3:0 for double-precision. Bits 1:0 are for round mode; bits 3:2 are
for denormal mode: bit 3 = output denorm control; bit 2 = input denorm control.

Round modes are:
• 0 = Round to nearest even
• 3 = Round toward 0 (truncate)
• 1 = Round toward +infinity
• 2 = Round toward -infinity

Denormal handling

0 = flush denorms to 0.
1 = allow denorms.

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SET_MODE, opcode 87 (0x57).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-217
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Equal
Instruction SETE

Description Floating-point set if equal.
If (src0 = src1) {

dst = 1.0f;
}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETE, opcode 8 (0x8).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-218 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point If Greater Than Or Equal
Instruction SETE_64

Description Double precision floating-point set if greater than or equal.

Similar to existing PRED_SETGE_64, but does not set the predicate register, and results are
swapped.

Operation:
if (src0>=src1)
 result = 0xFFFFFFFFFFFFFFFF;
else
 result = 0x0;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETE_64, opcode 184 (0xB8).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-219
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Equal DirectX 10
Instruction SETE_DX10

Description Floating-point set if equal, based on floating-point source operands. The result, however, is
an integer.
If (src0 == src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETE_DX10, opcode 12 (0xC).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-220 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Set If Equal
Instruction SETE_INT

Description Integer set if equal, based on signed or unsigned integer source operands.
If (src0 = src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETE_INT, opcode 58 (0x3A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-221
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Greater Than Or Equal
Instruction SETGE

Description Floating-point set if greater than or equal.
If (src0 >= src1) {

dst = 1.0f;
}
Else {

dst = 0.0f;

}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGE, opcode 10 (0xA).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-222 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Set If Greater Than Or Equal
Instruction SETGE_64

Description Similar to existing PRED_SETGE_64, but does not set the predicate register, and results are
swapped.
if (src0>=src1)
 result = 0xFFFFFFFFFFFFFFFF;
else
 result = 0x0;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGE_64, opcode 187 (0xBB).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-223
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Greater Than Or Equal, DirectX 10
Instruction SETGE_DX10

Description Floating-point set if greater than or equal, based on floating-point source operands. The
result, however, is an integer.
If (src0 >= src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGE_DX10, opcode 14 (0xE).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-224 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Integer Set If Greater Than Or Equal
Instruction SETGE_INT

Description Integer set if greater than or equal, based on signed integer source operands.
If (src0 >= src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGE_INT, opcode 60 (0x3C).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-225
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Set If Greater Than Or Equal
Instruction SETGE_UINT

Description Integer set if greater than or equal, based on unsigned integer source operands.
If (src0 >= src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGE_UINT, opcode 63 (0x3F).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-226 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Greater Than
Instruction SETGT

Description Floating-point set if greater than.
If (src0 > src1) {

dst = 1.0f;
}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGT, opcode 9 (0x9).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-227
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Set If Greater Than
Instruction SETGT_64

Description Similar to existing PRED_SETGT_64, but does not set the predicate register, and results are
swapped.
if (src0>src1)
 result = 0xFFFFFFFFFFFFFFFF;
else
 result = 0x0;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGT_64, opcode 186 (0xBA).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-228 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Greater Than, DirectX 10
Instruction SETGT_DX10

Description Floating-point set if greater than, based on floating-point source operands. The result,
however, is an integer.
If (src0 > src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGT_DX10, opcode 13 (0xD).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-229
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Signed Integer Set If Greater Than
Instruction SETGT_INT

Description Integer set if greater than, based on signed integer source operands.
If (src0 > src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGT_INT, opcode 59 (0x3B).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-230 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer Set If Greater Than
Instruction SETGT_UINT

Description Integer set if greater than, based on unsigned integer source operands.
If (src0 > src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETGT_UINT, opcode 62 (0x3E).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-231
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Not Equal
Instruction SETNE

Description Floating-point set if not equal.
If (src0 != src1) {

dst = 1.0f;
}
Else {

dst = 0.0f;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETNE, opcode 11 (0xB).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-232 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double-Precision Floating-Point Set If Not Equal
Instruction SETNE_64

Description Similar to existing PRED_SETE_64, but does not set the predicate register; results are
swapped, and condition is != rather than ==.
if (src0!=src1)
 result = 0xFFFFFFFFFFFFFFFF;
else
 result = 0x0;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETNE_64, opcode 185 (0xB9).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-233
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Set If Not Equal, DirectX 10
Instruction SETNE_DX10

Description Floating-point set if not equal, based on floating-point source operands. The result, however,
is an integer.
If (src0 != src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETNE_DX10, opcode 15 (0xF).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-234 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Set If Not Equal
Instruction SETNE_INT

Description Integer set if not equal, based on signed or unsigned integer source operands.
If (src0 != src1) {

dst = 0xFFFFFFFF;
}
Else {

dst = 0x0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SETNE_INT, opcode 61 (0x3D).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-235
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Sine
Instruction SIN

Description Scalar sine. Input must be normalized from radians by dividing by 2*PI. The valid input
domain is [-256, +256], which corresponds to an un-normalized input domain [-512*PI,
+512*PI]. Out-of-range input results in float 0.
dst = ApproximateSin(src0);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SIN, opcode 141 (0xD8).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-236 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Double Square Root
Instruction SQRT_64

Description Src0_d is composed of high-order double bits on src0, and low-order double bits on src1.
The result is a high-order dword of sqrt64; low-order bits assumed to be 0.
If (src0_d == 1.0f) {
 Result = 1.0f;
}
Else {
 Result = ApproximateSqrt(src0_d);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SQRT_64, opcode 153 (0x99).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-237
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Scalar Square Root, IEEE Approximation
Instruction SQRT_IEEE

Description Scalar square root. Useful for normal compression.
If (src0 == 1.0f) {

dst = 1.0f;
}
Else {

dst = ApproximateSqrt(src0);
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SQRT_IEEE, opcode 138 (0x8A).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-238 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Store Flags
Instruction STORE_FLAGS

Description Writes a working copy of the exception flags into a GPR if gprwr is enabled. Flags are
inclusive of the current VLIW.

Available only in the w channel.
dst = exception flags

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_STORE_FLAGS, opcode 218 (0xDA).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-239
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Integer Subtract
Instruction SUB_INT

Description Integer subtract, based on signed or unsigned integer source operands.
dst = src1 – src0;

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SUB_INT, opcode 53 (0x35).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-240 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Output Borrow Bit of Unsigned Integer Subtract
Instruction SUBB_UINT

Description Output borrow bit of an unsigned integer subtract. Used with SUB_INT to achieve DX11
USUBB opcode.
If (src1 > src0) {

dst = 00000001;
}
Else {

dst = 0;
}

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_SUBB_UINT, opcode 83 (0x53).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-241
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Floating-Point Truncate
Instruction TRUNC

Description Floating-point integer part of source operand.
dst = trunc(src0);

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_TRUNC, opcode 17 (0x11).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-242 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Byte # Float
Instructions UBYTE0_FLT

UBYTE1_FLT
UBYTE2_FLT
UBYTE3_FLT

Description Byte # float, where # is 0, 1, 2, or 3. Perform an unsigned integer-to-float conversion on the
specified byte of src0.

For byte 0: dst = uint2flt (src0 & 0xFF)

For byte 1: dst = uint2flt ((src0 >> 8) & 0xFF)

For byte 2: dst = uint2flt ((src0 >> 16) & 0xFF)

For byte 3: dst = uint2flt ((src0 >> 24) & 0xFF

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_UBYTE0_FLT, opcode 164 (0xA4).

ALU_INST == OP2_INST_UBYTE1_FLT, opcode 165 (0xA5).

ALU_INST == OP2_INST_UBYTE2_FLT, opcode 166 (0xA6).

ALU_INST == OP2_INST_UBYTE3_FLT, opcode 167 (0xA7).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 8-243
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Unsigned Integer To Floating-point
Instruction UINT_TO_FLT

Description Unsigned integer to floating-point. The source is interpreted as an unsigned integer value,
and it is converted to a floating-point result.
dst = (float) src0

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_UINT_TO_FLT, opcode 156 (0x9C).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-244 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Logical Bit-Wise XOR
Instruction XOR_INT

Description Logical bit-wise XOR.
dst = src0 ^ src1

Microcode

Format ALU_WORD0 (page 9-23) and ALU_WORD1_OP2 (page 9-26).

Instruction Field ALU_INST == OP2_INST_XOR_INT, opcode 50 (0x32).

C DC D
R DST_GPR BS ALU_INST OMOD W

M
U
P

U
E
M

S
1
A

S
0
A

+4

L PS IM
S
1
N

S1C
S
1
R

SRC1_SEL
S
0
N

S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-245
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.3 Instructions for Fetches Through a Texture Cache Clause

Vertex Fetch
Instruction FETCH

Description These fetches specify the destination GPR directly.

Microcode

Format VTX_WORD0 (page 9-50), VTX_WORD1_GPR (page 9-52), and VTX_WORD2 (page 9-57).

Instruction Field VC_INST == VC_INST_FETCH, opcode 0 (0x0).

0 +12

Reserved BIM A
C R

C
B
N
S

ES OFFSET +8

S
M
A

F
C
A

NFA DATA_FORMAT
U
C
F

DSW DSZ DSY DSX R D
R DST_GPR +4

C
R

L
R SR SSY SSX S

R SRC_GPR BUFFER_ID
F
W
Q

FT VC_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-246 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Return Number of Elements in a Buffer
Instruction GET_BUFFER_RESINFO

Description Returns the number of elements in a buffer. This is a vertex fetch instruction and uses a
vertex constant.

Microcode

Format VTX_WORD0 (page 9-50), VTX_WORD1_GPR (page 9-52), and VTX_WORD2 (page 9-57).

Instruction Field VC_INST == VC_INST_GET_BUFFER_RESINFO, opcode 14 (0xE).

0 +12

Reserved BIM A
C R

C
B
N
S

ES OFFSET +8

S
M
A

F
C
A

NFA DATA_FORMAT
U
C
F

DSW DSZ DSY DSX R D
R DST_GPR +4

C
R

L
R SR SSY SSX S

R SRC_GPR BUFFER_ID
F
W
Q

FT VC_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-247
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Semantic Vertex Fetch
Instruction SEMANTIC

Description These fetches specify the 8-bit semantic ID that is looked up in a table to determine the GPR
to which the data is written.

Microcode

Format VTX_WORD0 (page 9-50), VTX_WORD1_SEM (page 9-55), and VTX_WORD2 (page 9-57).

Instruction Field VC_INST == VC_INST_SEMANTIC, opcode 1 (0x1).

0 +12

Reserved BIM A
C R

C
B
N
S

ES OFFSET +8

S
M
A

F
C
A

NFA DATA_FORMAT
U
C
F

DSW DSZ DSY DSX R SEMANTIC_ID +4

C
R LR SR SSY SSX S

R SRC_GPR BUFFER_ID
F
W
Q

FT VC_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-248 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Fetch Four Texels (In A 2x23 Pattern)
Instruction GATHER4

Description Fetches unfiltered texels from a bilinear sample and packs them into xyzw.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GATHER4, opcode 21 (0x15).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-249
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Gather4 With Depth Comparison
Instruction GATHER4_C

Description Fetches unfiltered texels from a bilinear sample, and performs a depth comparison similar
to SAMPLE_C on each texel; then packs them into x, y, z, and w. Performs a depth comparison
similar to SAMPLE_C.

This instruction compares the reference value in src0.W with the sampled value from
memory. The reference value is converted to the source format before the compare. NANs
are honored in the comparisons for formats supporting them, otherwise, they are converted
to 0 or +/-MAX. A passing compare puts a 1.0 in the src0.X element. A failing compare puts
a 0.0 in the src0.X element.

The reference Z value is specified in the w channel.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GATHER4_C, opcode 29 (0x1D).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-250 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Gather4 With Depth Comparison and GPR Coordinate Offsets
Instruction GATHER4_C_O

Description Fetches unfiltered texels from a bilinear sample using texel offsets from a previous
SET_TEXTURE_OFFSETS instruction; then performs a depth comparison similar to SAMPLE_C on
each texel, packing the results into x, y, z, and w. OFFSET_X, OFFSET_Y, and OFFSET_Z in the
microcode are ignored.

This instruction compares the reference value in src0.W with the sampled value from
memory. The reference value is converted to the source format before the compare. NANs
are honored in the comparisons for formats supporting them, otherwise, they are converted
to 0 or +/-MAX. A passing compare puts a 1.0 in the src0.X element. A failing compare puts
a 0.0 in the src0.X element.

Uses previously set texture offsets, and reference Z value in the W channel.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GATHER4_C_O, opcode 31 (0x1F).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-251
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Gather4 with GPR Coordinate Offsets
Instruction GATHER4_O

Description Fetches unfiltered texels from a bilinear sample and packs them into xyzw, using texel offsets
from a previous SET_TEXTURE_OFFSETS instruction. OFFSET_X, OFFSET_Y, and OFFSET_Z in
the microcode are ignored.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GATHER4_O, opcode 23 (0x61).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-252 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Get Slopes Relative To Horizontal
Instruction GET_GRADIENTS_H

Description Retrieve lopes relative to horizontal: X = dx/dh, Y = dy/dh, Z = dz/dh, W = dw/dh.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GET_GRADIENTS_H, opcode 7 (0x7).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-253
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Get Slopes Relative To Vertical
Instruction GET_GRADIENTS_V

Description Retrieve slopes relative to vertical: X = dx/dv, Y = dy/dv, Z = dz/dv, W = dw/dv.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GET_GRADIENTS_V, opcode 8 (0x8).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-254 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Get Computed Level of Detail For Pixels
Instruction GET_LOD

Description Computed level of detail (LOD) for all pixels in quad. This instruction returns the clamped
LOD into the X component of the dst GPR; the non-clamped is placed into the Y component
of the dst GPR.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GET_COMP_TEX_LOD, opcode 6 (0x6).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-255
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Get Number of Samples
Instruction GET_NUMBER_OF_SAMPLES

Description Gets and returns the number of samples.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GET_NUMBER_OF_SAMPLES, opcode 5 (0x5).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-256 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Get Texture Resolution
Instruction GET_TEXTURE_RESINFO

Description Retrieve width, height, depth, and number of mipmap levels.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_GET_TEXTURE_RESINFO, opcode 4 (0x4).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-257
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Keep Gradients
Instruction KEEP_GRADIENTS

Description Compute the gradients from coordinates and store them. Using the provided address, the
calculates the derivatives as they would be calculated in the sample instruction. It stores the
derivatives for use by subsequent instructions that receive derivatives as extra parameters
(for example: SAMPLE_D). Keep_Gradients is not meant to return data; however, unless
masked or set to output constant 1 or 0 by the DS* fields, it returns the border color as
determined by the sampler and resource. This instruction is equivalent to:

GetGradientsH

GetGradientsV

SetGradientsH

SetGradientsV

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_KEEP_GRADIENTS, opcode 10 (0xA).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-258 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Load Texture Elements
Instruction LD

Description Using an address of unsigned integers X, Y, Z, and W (where W is interpreted by the texture
unit as LOD or LOD_BIAS), this instruction fetches data from a buffer or texel without filtering.
The source data can come from any resource type other than a cubemap.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_LD, opcode 3 (0x3).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-259
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture
Instruction SAMPLE

Description Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture
sample. The SAMPLER_ID field specifies the arithmetic. The horizontal and vertical gradients
for the source address are calculated by the hardware.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE, opcode 16 (0x10).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-260 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with Comparison
Instruction SAMPLE_C

Description Fetch a texture sample and process it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic. The horizontal and vertical gradients for the
source address are calculated by the hardware.

This instruction compares the reference value in src0.W with the sampled value from
memory. The reference value is converted to the source format before the compare. NANs
are honored in the comparisons for formats supporting them, otherwise, they are converted
to 0 or +/-MAX. A passing compare puts a 1.0 in the src0.X element. A failing compare puts
a 0.0 in the src0.X element.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C, opcode 24 (0x18).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-261
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with Comparison and Gradient
Instruction SAMPLE_C_G

Description This instruction behaves exactly like the SAMPLE_C instruction, except that instead of using
the hardware-calculated horizontal and vertical gradients for the source address, the
gradients are provided by software in the most recently executed set gradients H and set
gradients V.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G, opcode 28 (0x1C).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-262 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with Comparison, Gradient, and LOD Bias
Instruction SAMPLE_C_G_LB

Description This instruction behaves exactly like the SAMPLE_C_G instruction, except that a constant bias
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed
LOD for the source address.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G_LB, opcode 30 (0x1E).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-263
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD
Instruction SAMPLE_C_L

Description This instruction behaves exactly like the SAMPLE_C instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture
coordinate in src0.W.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_L, opcode 25 (0x19).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-264 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD Bias
Instruction SAMPLE_C_LB

Description This instruction behaves exactly like the SAMPLE_C instruction, except that a constant bias
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed
LOD for the source address.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_LB, opcode 26 (0x1A).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-265
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD Zero
Instruction SAMPLE_C_LZ

Description This instruction behaves exactly like the SAMPLE_C instruction, except that the mipmap level
of detail (LOD) and fraction are forced to zero before level-clamping.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_LZ, opcode 27 (0x1B).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-266 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with Gradient
Instruction SAMPLE_G

Description This instruction behaves exactly like the SAMPLE instruction, except that instead of using the
hardware-calculated horizontal and vertical gradients for the source address, the gradients
are provided by software in the last-executed SET_GRADIENTS_H and SET_GRADIENTS_V
instructions.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G, opcode 20 (0x14).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-267
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with Gradient and LOD Bias
Instruction SAMPLE_G_LB

Description This instruction behaves exactly like the SAMPLE_G instruction, except that a constant bias
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed
LOD for the source address.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G_LB, opcode 22 (0x16).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-268 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD
Instruction SAMPLE_L

Description This instruction behaves exactly like the SAMPLE instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture
coordinate in src0.W.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_L, opcode 17 (0x11).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-269
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD Bias
Instruction SAMPLE_LB

Description This instruction behaves exactly like the SAMPLE instruction, except that a constant bias
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed
LOD for the source address.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_LB, opcode 18 (0x12).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-270 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Sample Texture with LOD Zero
Instruction SAMPLE_LZ

Description This instruction behaves exactly like the SAMPLE instruction, except that the mipmap level of
detail (LOD) and fraction are forced to zero before level-clamping.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SAMPLE_LZ, opcode 19 (0x13).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-271
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Set Horizontal Gradients
Instruction SET_GRADIENTS_H

Description Set horizontal gradients specified by X, Y, Z coordinates.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SET_GRADIENTS_H, opcode 11 (0xB).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-272 Instructions for Fetches Through a Texture Cache Clause
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Set Vertical Gradients
Instruction SET_GRADIENTS_V

Description Set vertical gradients specified by X, Y, Z coordinates.

Microcode

Format TEX_WORD0 (page 9-59), TEX_WORD1 (page 9-62), and TEX_WORD2 (page 9-63).

Instruction Field TEX_INST == TEX_INST_SET_GRADIENTS_V, opcode 12 (0xC).

0 +12

SSW SSZ SSY SSX SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Instructions for Fetches Through a Texture Cache Clause 8-273
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Set Texture Offsets
Instruction SET_TEXTURE_OFFSETS

Description Sets texture offsets from a GPR for use with gather4_o and gather4_c_o.

Microcode

Format TEX_WORD0 (page 9-59) and TEX_WORD1 (page 9-62).

Instruction Field TEX_INST == TEX_INST_SET_TEXTURE_OFFSETS, opcode 9 (0x9).

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd SIM RIM AC SR SRC_GPR RESOURCE_ID
F
W
Q

INST_
MOD TEX_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-274 Memory Read Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.4 Memory Read Instructions
All of the instructions in this section have a mnemonic that begins with
MEM_OP_RD in the MEM_OP field of their microcode formats.

Read Scatter Buffer
Instruction MEM_RD_SCATTER

Description Read the scatter buffer.

Microcode

Format MEM_RD_WORD0 (page 9-64), MEM_RD_WORD1 (page 9-66), and MEM_RD_WORD2 (page 9-68).

Instruction Field MEM_OP == MEM_RD_SCATTER, opcode 2 (0x2).

0 +12

ARRAY_SIZE M
F R ES Rsvd ARRAY_BASE +8

S
M
A

F
C
A

NFA DATA_FORMAT R DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd BURST_CNT SSX S
R SRC_GPR R MRS I U MEM_OP

F
W
Q

ES VC_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Memory Read Instructions 8-275
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Read Scratch Buffer
Instruction MEM_RD_SCRATCH

Description Read the scratch (temporary) buffer.

Microcode

Format MEM_RD_WORD0 (page 9-64), MEM_RD_WORD1 (page 9-66), and MEM_RD_WORD2 (page 9-68).

Instruction Field MEM_OP == MEM_RD_SCRATCH, opcode 0 (0x0).

0 +12

ARRAY_SIZE M
F R ES Rsvd ARRAY_BASE +8

S
M
A

F
C
A

NFA DATA_FORMAT R DSW DSZ DSY DSX R D
R DST_GPR +4

Rsvd BURST_CNT SSX S
R SRC_GPR R MRS I U MEM_OP

F
W
Q

ES VC_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-276 Data Share Read/Write Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.5 Data Share Read/Write Instructions
All of the instructions in this section have a mnemonic that begins with MEM_OP_
in the MEM_OP field of their microcode formats.

Global Data Share Write
Instruction MEM_GDS

Description Global data sharing read or write. Use only in a CF_INST_GDS clause.

Microcode

Format MEM_GDS_WORD0 (page 9-69), MEM_GDS_WORD1 (page 9-71), and MEM_GDS_WORD2 (page 9-74).

Instruction Field MEM_OP == MEM_GDS, opcode 4 (0x4).

0 +12

Reserved DS_W DS_Z DS_Y DS_X +8

B
F
R

AC UAV_ID UIM R SRC_GPR R GDS_OP DRM DST_GPR +4

Rsvd SSZ SSY SSX SRM SRC_GPR MEM_OP Rsvd MEM_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Data Share Read/Write Instructions 8-277
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Tesselation Buffer Write
Instruction MEM_TF_WRITE

Description Writes to a tesselation buffer. Use only in a CF_INST_GDS clause.

Microcode

Format MEM_GDS_WORD0 (page 9-69), MEM_GDS_WORD1 (page 9-71), and MEM_GDS_WORD2 (page 9-74).

Instruction Field MEM_OP == MEM_TF_WRITE, opcode 5 (0x5).

0 +12

Reserved DS_W DS_Z DS_Y DS_X +8

B
F
R

AC UAV_ID UIM R SRC_GPR R GDS_OP DRM DST_GPR +4

Rsvd SSZ SSY SSX SRM SRC_GPR MEM_OP Rsvd MEM_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-278 Data Share Read/Write Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Data Share Write
Instruction GLOBAL_DS_WRITE

Description Data sharing between compute units.

Microcode

Format MEM_GDS_WORD0 (page 9-69), MEM_GDS_WORD1 (page 9-71), and MEM_GDS_WORD2 (page 9-74).

Instruction Field MEM_OP == MEM_GDS, opcode 4 (0x4)

0 +12

Reserved DS_W DS_Z DS_Y DS_X +8

B
F
R

AC UAV_ID UIM R SRC_GPR R GDS_OP DRM DST_GPR +4

Rsvd SSZ SSY SSX SRM SRC_GPR MEM_OP Rsvd MEM_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Data Share Read/Write Instructions 8-279
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Global Data Share Read
Instruction GLOBAL_DS_READ

Description Data sharing between compute units.

Microcode

Format MEM_GDS_WORD0 (page 9-69), MEM_GDS_WORD1 (page 9-71), and MEM_GDS_WORD2 (page 9-74).

Instruction Field MEM_OP == MEM_GDS, opcode 4 (0x4)

0 +12

Reserved DS_W DS_Z DS_Y DS_X +8

B
F
R

AC UAV_ID UIM R SRC_GPR R GDS_OP DRM DST_GPR +4

Rsvd SSZ SSY SSX SRM SRC_GPR MEM_OP Rsvd MEM_INST +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-280 Local Data Share (LDS) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

8.6 Local Data Share (LDS) Instructions

where:

BS = BANK_SWIZZLE
DC = DST_CHAN
IM = INDEX_MODE
L = LAST
O# = IDX_OFFSET_#
PS = PRED_SEL
S0C = SRC0_CHAN
S0R = SRC0_REL
S1C = SRC1_CHAN
S1R = SRC1_REL
S2C = SRC2_CHAN
S2R = SRC2_REL

If the LDS_IDX_OP instruction is placed in the ALU_INST field, the LDS_OP field can
take any of the following LDS instructions (Table 8.11).

LDS Indexed Operation
Instruction LDS_IDX_OP

Description Issues an LDS indexed read/write/atomic operation. Supported only in the x element.
Indexed operations are responsible for the address calculation of store, indexed read, and
atomic operations.

Microcode

Format ALU_WORD0_LDS_IDX_OP (page 9-41) and ALU_WORD1_LDS_IDX_OP (page 9-44).

Instruction Field ALU_INST == OP3_INST_LDS_IDX_OP, opcode 17 (0x11).

O3 DC
O
2

O
0

LDS_OP BS ALU_INST O1 S2C
S
2
R

SRC2_SEL +4

LA
ST

PRED
_SEL

INDEX_
MODE O5 S1C

S
1
R

SRC1_SEL O4 S0C
S
0
R

SRC0_SEL +0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Local Data Share (LDS) Instructions 8-281
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Table 8.11 LDS Instructions for the LDS_OP Field

LDS Instruction Description (C-Function Equivalent) OP

LDS_ADD LDS(dst) += src 1A1D

LDS_ADD_RET LDS(dst) += src 1A1D

LDS_AND LDS(dst) &= src 1A1D

LDS_AND_RET LDS(dst) &= src 1A1D

LDS_ATOMIC_ORDERED_
ALLOC_RET

This instructions is for global data share (GDS) only. 1A

LDS_BYTE_READ_RET OQA = SignExtend(LDS(dst)[7:0]) 1A

LDS_BYTE_WRITE LDS(dst) = src[7:0] 1A1D

LDS_CMP_STORE LDS(dst) = (LDS(dst) == cmp) ? src : LDS(dst) 1A2D

LDS_CMP_STORE_SPF LDS(dst) = (LDS(dst) == cmp) ? src : LDS(dst) 1A2D

LDS_CMP_XCHG_RET (LDS(dst) == cmp) ? LDS(dst) = src : LDS(dst) = LDS(dst) 1A2D

LDS_CMP_XCHG_SPF_RET1 (LDS(dst) == cmp) ? LDS(dst) = src : LDS(dst) = LDS(dst) 1A2D

LDS_DEC LDS(dst) = ((LDS(dst) == 0) || (LDS(dst) > src)) ? src : LDS(dst)
- 1

1A1D

LDS_DEC_RET LDS(dst) (LDS(dst) == 0) || (LDS(dst) > src) ? src : LDS(dst) - 1 1A1D

LDS_INC (LDS(dst) >= src ? LDS(dst) = 0) : LDS(dst) ++ 1A1D

LDS_INC_RET (LDS(dst) >= src) ? LDS(dst) = 0 : LDS(dst) ++ 1A1D

LDS_MAX_INT LDS(dst) = max (LDS(dst), src) 1A1D

LDS_MAX_INT_RET LDS(dst) = max (LDS(dst), src) 1A1D

LDS_MAX_UINT LDS(dst) =max (LDS(dst), src) 1A1D

LDS_MAX_UINT_RET LDS(dst) = max (LDS(dst), src) 1A1D

LDS_MIN_INT LDS(dst) = min (LDS(dst), src) 1A1D

LDS_MIN_INT_RET LDS(dst) = min (LDS(dst), src) 1A1D

LDS_MIN_UINT LDS(dst) = min (LDS(dst), src) 1A1D

LDS_MIN_UINT_RET LDS(dst) = min (LDS(dst), src) 1A1D

LDS_MSKOR LDS(dst) = ((LDS(dst) &~msk) | src) 1A1D

LDS_MSKOR_RET LDS(dst) = (LDS(dst) & ~msk) | src 1A2D

LDS_OR LDS(dst) |= src 1A1D

LDS_OR_RET LDS(dst) |= src 1A1D

LDS_READ_REL_RET tmp = dst + LDS_IDX_OFFSET; OQA = LDS(dst), OQB =
LDS(tmp)

1A

LDS_READ_RET OQA =LDS(dst) 1A

LDS_READ2_RET OQA = LDS(dst0), OQB = LDS(dst1) 2A

LDS_READWRITE_RET OQA = LDS(dst0), LDS(dst1 = data) 2A1D

LDS_RSUB LDS(dst) = src - LDS(dst) 1A1D

LDS_RSUB_RET LDS(dst) = src - LDS(dst) 1A1D

LDS_SHORT_READ_RET OQA = SignExtend(LDS(dst) [15:0]} 1A

LDS_SHORT_WRITE LDS(dst) = src[15:0] 1A1D

LDS_SUB LDS(dst) = LDS(dst) - src 1A1D

LDS_SUB_RET LDS(dst) = LDS(dst) - src 1A1D

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

8-282 Local Data Share (LDS) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

LDS_UBYTE_READ_RET OQA = {24’h0, LDS(dst)[7:0]} 1A

LDS_USHORT_READ_RET OQA = {16’h0, LDS(dst) [15:0]} 1A

LDS_WRITE LDS(dst) = src 1A1D

LDS_WRITE_REL LDS(dst) = src0, LDS(tmp) = src1 1A2D

LDS_WRITE2 LDS(dst) = src0, LDS(tmp) = src1 1A2D

LDS_XCHG_REL_RET LDS(dst) = src0, LDS(dst + idx_offset) = src1) 1A2D

LDS_XCHG_RET LDS(dst) = src 1A1D

LDS_XCHG2_RET LDS(dst) = src0, LDS(dst + idx_offset*64) = src1 1A2D

LDS_XOR LDS(dst) ^= src 1A1D

LDS_XOR_RET LDS(dst) ^= src 1A1D

1. SPF = Single Precision Float (follows IEEE float rules).

Table 8.11 LDS Instructions for the LDS_OP Field

LDS Instruction Description (C-Function Equivalent) OP

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD HD 6900 Series Instruction Set Architecture 9-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Chapter 9
Microcode Formats

This section specifies the microcode formats. The definitions can be used to
simplify compilation by providing standard templates and enumeration names for
the various instruction formats. Table 9.1 summarizes the microcode formats and
their widths. The sections that follow provide details.

Table 9.1 Summary of Microcode Formats

Microcode Formats Reference
Width
(bits) Function

Control Flow (CF) Instructions

CF_WORD0
CF_GWS_WORD0
CF_WORD1

page 9-3
page 9-4
page 9-5

64 Implements general
control-flow instructions.

CF_ALU_WORD0
CF_ALU_WORD1

page 9-8
page 9-9

64 Initiates ALU clauses.

CF_ALU_WORD0_EXT
CF_ALU_WORD1_EXT

page 9-11
page 9-13

Extends the 64-bit dword
to two 64-bit dwords.

CF_ALLOC_EXPORT_WORD0
CF_ALLOC_EXPORT_WORD0_RAT
CF_ALLOC_EXPORT_WORD1_BUF
CF_ALLOC_EXPORT_WORD1_SWIZ

page 9-14
page 9-16
page 9-19
page 9-21

64 Initiates and implements
allocation and export
instructions.

ALU Clause Instructions

ALU_WORD0
ALU_WORD1_OP2
ALU_WORD1_OP3
ALU_WORD1_OP2_MOVA
ALU_WORD1_OP2_EXECUTE_MASK

page 9-23
page 9-26
page 9-32
page 9-36
page 9-38

64 Implements ALU
instructions.

LDS Clause Instructions

ALU_WORD0_LDS_IDX_OP
ALU_WORD1_LDS_IDX_OP
ALU_WORD1_LDS_DIRECT_LITERAL_LO
ALU_WORD1_LDS_DIRECT_LITERAL_HI

page 9-41
page 9-44
page 9-48
page 9-49

64 Transfers data between
LDS buffers and GPRs.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-2
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

The field-definition tables that accompany the descriptions in the sections below
use the following notation.

• int(2) — A two-bit field that specifies an integer value.

• enum(7) — A seven-bit field that specifies an enumerated set of values (in
this case, a set of up to 27 values). The number of valid values can be less
than the maximum.

• VALID_PIXEL_MODE (VPM) — Refers to the VALID_PIXEL_MODE field that
is indicated in the accompanying format diagram by the abbreviated symbol
VPM.

Unless otherwise stated, all fields are readable and writable (the CF_INST fields
of the CF_ALLOC_EXPORT_WORD1_BUF or the CF_ALLOC_EXPORT_WORD1_SWIZ
formats are the only exceptions). The default value of all fields is zero. Any
bitfield not identified is assumed to be reserved.

Fetch Clause Instructions

VTX_WORD0
VTX_WORD1_GPR
VTX_WORD1_SEM
VTX_WORD2
TEX_WORD0
TEX_WORD1
TEX_WORD2
MEM_RD_WORD0
MEM_RD_WORD1
MEM_RD_WORD2

page 9-50
page 9-52
page 9-55
page 9-57
page 9-59
page 9-62
page 9-63
page 9-64
page 9-66
page 9-68

96,
padded to

128

Implements vertex fetch
instructions.

Global Data-Share Read/Write Instructions

MEM_GDS_WORD0
MEM_GDS_WORD1
MEM_GDS_WORD2

page 9-69
page 9-71
page 9-74

96,
padded to

128

Implements global data
share read and write
instructions.

Table 9.1 Summary of Microcode Formats (Cont.)

Microcode Formats Reference
Width
(bits) Function

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.1 Control Flow (CF) Instructions
Control flow (CF) instructions include:

• General control flow instructions (conditional jumps, loops, subroutines).

• Export instructions.

• Clause-initiation instructions for ALU, fetch through a texture cache clause,
global data share, local data share, and memory read clauses.

All CF microcode formats are 64 bits wide.

Control Flow Doubleword 0
Instructions CF_WORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_WORD[0,1]. This format pair is the default format for CF instructions.

Opcode Field Name Bits Format
ADDR [23:0] int(24)

• For clause instructions, bits [26:3] (the offset times 8, producing a quad-word-
aligned value) of the beginning of the clause in memory to execute.

• For control flow instructions: bits [34:3] (the offset times 8 producing a
quadword-aligned value) of the control flow address to jump to (instructions
that can jump).

Offsets are relative to the byte address specified in the host-written PGM_START_*
register. Texture and Vertex clauses must start on 16-byte aligned addresses.

JUMPTABLE_SE
L

[26:24] enum(3)

(JTS) Selects the source of the offset used for CF_INST_JUMPTABLE instructions. This
has no effect on other instructions.
0 CF_JUMPTABLE_SEL_CONST_A: use element A of jumptable constant selected

by CF_CONST.
1 CF_JUMPTABLE_SEL_CONST_B: use element B of jumptable constant selected

by CF_CONST.
2 CF_JUMPTABLE_SEL_CONST_C: use element C of jumptable constant selected

by CF_CONST.
3 CF_JUMPTABLE_SEL_CONST_D: use element D of jumptable constant selected

by CF_CONST.
4 CF_JUMPTABLE_SEL_INDEX_0: use index0.
5 CF_JUMPTABLE_SEL_INDEX_1: use index1.

RESERVED [31:27] Reserved

Related CF_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-4 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Global Wave Sync Doubleword 0
Instructions CF_GWS_WORD0

Description This is the control flow instruction word 0 used by global wave sync instructions.

Opcode Field Name Bits Format
VALUE [9:0] int(10)

Counter load value for Barrier and Init opcodes.

RESERVED [15:10] Reserved.

RESOURCE [20:16] int(5)

Index of resource. 0-15 in on- shader-engine (SE) chips, 0-31 in two-SE chips.

RESERVED [24:21] Reserved.

SIGN 25 int(1)

(S) When set, resource is treated as signed -512..511 (as opposed to unsigned 0 ..
1023).

VAL_INDEX_MO
DE

[27:26] enum(2)

(VIM) Override counter load value from instruction using index0/index1 registers.
0 GWS_INDEX_NONE: use source from instruction.
1 GWS_INDEX_0: use index0 as the value.
2 GWS_INDEX_1: use index1 as the value.
3 GWS_INDEX_MIX: use a combination of index0 and index1 as the value.

RSRC_INDEX_M
ODE

[29:28] enum(2)

(RIM) Overrides the resource index from the instruction using index0/index1 registers.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

GWS_OPCODE [31:30] enum(2)

Specifies the atomic operation to execute on a resource.
0 GWS_SEMA_V: semaphore V().
1 GWS_SEMA_P: semaphore P().
2 GWS_BARRIER: wavefront barrier.
3 GWS_INIT: resource initialization.

Related CF_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Doubleword 1
Instructions CF_WORD1

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
CF_WORD[0,1]. This format pair is the default format for CF instructions.

Opcode Field Name Bits Format
POP_COUNT (PC) [2:0] int(3)

Specifies the number of entries to pop from the stack, in the range [0, 7].
Only used by certain CF instructions that pop the branch-loop stack. Can
be zero to indicate non-pop operation.

CF_CONST [7:3] int(5)

Specifies the CF constant to use for flow control statements.
For LOOP/ENDLOOP, this specifies the integer constant to use for the loop
counter, loop index initializer, and increment.
For instructions using the COND field, this specifies the index of the boolean
constant.
See Section 3.7.3 on page 3-18 and Section 3.7.4 on page 3-19.

COND [9:8] enum(2)

Specifies how to evaluate the condition test for each pixel. Not used by all
instructions. Can reference CF_CONST.
0 CF_COND_ACTIVE: condition test passes for active pixels. (Non-branch-

loop instructions can use only this setting CF_INST[29:23] below, values
4 through 20 and 24.)

1 CF_COND_FALSE: condition test fails for all pixels.
2 CF_COND_BOOL: condition test passes iff pixel is active and boolean ref-

erenced by CF_CONST is true.
3 CF_COND_NOT_BOOL: condition test passes iff pixel is active and boolean

referenced by CF_CONST is false.

COUNT [15:10] int(6)

Number of instructions to execute in the clause, minus one (clause
instructions only). This is interpreted as the number of instruction slots in
the range [1,16]. For a CALL instruction, this specifies the amount to
increment the call nesting counter when executing; the CALL is skipped if
the current nesting depth + CALL_COUNT > 32. This field is interpreted in the
range [0,31]. For EMIT, CUT, EMIT-CUT, bits [10] are the stream ID.

RESERVED [19:16] Reserved.

VALIX_PIXEL_MODE 20 int(1)

(VPM) 0 Execute the instructions in this clause as if invalid pixels are active.
1 Execute the instructions in this clause as if invalid pixels were inactive.

This is the antonym of WHOLE_QUAD_MODE.
Caution: VALID_PIXEL_MODE is not the default mode; this bit is cleared by
default. Make the default for this bit to 0. Set this bit only in the PS stage.

RESERVED 21 Reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-6 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

CF_INST [29:22] enum(8)

Type of instruction to evaluate in CF. CF_INST must be set to one of the
following values.
0 CF_INST_NOP: perform no operation.
1 CF_INST_TC: execute fetch clause through the texture cache.

CF_COND=ACTIVE is required.
2 reserved
3 CF_INST_GDS: execute a global data share clause. (GDS, tesselation

factor [TF].) CF_COND=ACTIVE is required.
4 CF_INST_LOOP_START: execute DirectX9 loop start instruction (push

onto stack if loop body executes).
5 CF_INST_LOOP_END: execute DirectX9 loop end instruction (pop stack if

loop is finished).
6 CF_INST_LOOP_START_DX10: execute DirectX10 loop start instruction

(push onto stack if loop body executes).
7 CF_INST_LOOP_START_NO_AL: same as LOOP_START but does not push

the loop index (aL) onto the stack or update aL.
8 CF_INST_LOOP_CONTINUE: execute continue statement (jump to end of

loop if all pixels ready to continue).
9 CF_INST_LOOP_BREAK: execute a break statement (pop stack if all pixels

ready to break).
10 CF_INST_JUMP: execute jump statement (can be conditional).
11 CF_INST_PUSH: push current per-pixel active state onto the stack OR

jump and pop if no items are active.
12 reserved
13 CF_INST_ELSE: execute else statement (can be conditional) OR jump if

no items are active.
14 CF_INST_POP: pop current per-pixel state from the stack. Jump if no pix-

els are enabled prior to pop.
17:15 reserved
18 CF_INST_CALL: execute subroutine call instruction (push onto stack).
19 CF_INST_CALL_FS: call fetch kernel. The address to call is stored in a

state register in SQ.
20 CF_INST_RETURN: execute subroutine return instruction (pop address

stack). Pair only with CF_INST_CALL.
21 CF_INST_EMIT_VERTEX: signal that GS has finished exporting a vertex

to memory. CF_COND=ACTIVE is required.
22 CF_INST_EMIT_CUT_VERTEX: emit a vertex and an end of primitive strip

marker. The next emitted vertex starts a new primitive strip.
CF_COND=ACTIVE is required.

23 CF_INST_CUT_VERTEX: emit an end of primitive strip marker. The next
emitted vertex starts a new primitive strip. CF_COND=ACTIVE is
required.

24 CF_INST_KILL: kill pixels that pass the condition test (can be condi-
tional). Jump if all pixels are killed. CF_COND=ACTIVE is required.

25 reserved
26 CF_INST_WAIT_ACK: wait for write ACKs or fetch-read-ACKs to return

before proceeding. Wait if the number of outstanding ACKs is greater
than the value in the ADDR field. When using a non-zero value, note that
TC_ACK requests can return out-of-order with respect to VC_ACK
requests. For optimal performance, never set BARRIER_BEFORE for this
instruction.

Control Flow Doubleword 1 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

27 CF_INST_TC_ACK: execute a fetch through a texture cache clause or
execute a constant fetch clause, with ACK. CF_COND=ACTIVE is
required. All previous TC/VC/GDS requests must have completed if this
instruction is issued without BARRIER_BEFORE being set.

28 reserved
29 CF_INST_JUMPTABLE: execute a jump through a jump table. This

instruction is followed by a series of up to 256 jump instructions forming
the jump table. The index into the table comes from either a loop-con-
stant or a GPR through the index registers. The instruction after the last
jump table entry must be indicated by the ADDR field. If no pixels are
enabled after the condition test, execution continues at this address.

30 CF_INST_GLOBAL_WAVE_SYNC: synchronize waves across the chip,
including multiple compute units and multiple shader engines

31 CF_INST_HALT: halt this thread’s execution. The only way to restart exe-
cution is to write this instruction using WAVE0_CF-INST[01] once the
hardware is idle.

32 CF_INST_END: end the program.
33 CF_INST_LDS_DEALLOC: deallocate the LDS resources.
34 CF_INST_PUSH_WQM: push the current per-pixel active state onto the

stack and apply WQM or JUMP if no items are active.
35 CF_INST_POP_WQM: add the POP per-pixel state to the stack using

PUSH_WQM. POP_COUNT must be 1. JUMP if no pixels are enabled after POP.
36 CF_INST_ELSE_WQM: execute an ELSE statement (can be conditional) or

JUMP if not items are then active.
37 CF_INST_JUMP_ANY: execute a JUMP statement (can be conditional).
38 CF_INST_REACTIVATE: reactivate all valid threads on the top of the cur-

rent branch stack. Do NOT do this inside a loop or WQM frame.
39 CF_INST_REACTIVATE_WQM: reactivate all valid pixel quads on the top of

the current branch stack. Do NOT do this inside a loop or WQM frame.
40 CF_INST_INTERRUPT: trigger an interrupt. The interrupt data includes

CF_IDX0, CF_IDX1, the VMID, the CP RINGID, and the shader engine
ID.

41 CF_INST_INTERRUPT_AND_SLEEP: trigger an interrupt and sleep. The
interrupt data includes CF_IDX0, CF_IDX1, the VMID, the CP RINGID,
and the shader engine ID.

42 CF_INST_SET_PRIORITY: set the priority to the count value.

RESERVED 30 Reserved.

BARRIER (B) 31 int(1)

Synchronization barrier:
0 This instruction can run in parallel with prior CF instructions.
1 All prior CF instructions must complete before this instruction executes.

Related CF_WORD0

Control Flow Doubleword 1 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-8 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow ALU Doubleword 0
Instructions CF_ALU_WORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALU_WORD[0,1]. The instructions specified with this format are used to initiate ALU clauses.
The ALU instructions that execute within an ALU clause are described in Section 9.2 on page
9-23.

Opcode Field Name Bits Format
ADDR [21:0] int(22)

Bits [24:3] of the byte offset (producing a quadword-aligned value) of the
clause to execute. The offset is relative to the byte address specified by
PGM_START_* register.

KCACHE_BANK0
(KB0)

[25:22] int(4)

Bank (constant buffer number) for first set of locked cache lines.

KCACHE_BANK1
(KB1)

[29:26] int(4)

Bank (constant buffer number) for second set of locked cache lines.

KCACHE_MODE0
(KM0)

[31:30] enum(2)

Mode for first set of locked cache lines.
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache line KCACHE_BANK, ADDR.
2 CF_KCACHE_LOCK_2: lock cache lines KCACHE_BANK, ADDR and

KCACHE_BANK, ADDR+1.
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines KCACHE_BANK,

LOOP/16+ADDR and KCACHE_BANK, LOOP/16+ADDR+1, where LOOP is the cur-
rent loop index (aL).

Related CF_ALU_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow ALU Doubleword 1
Instructions CF_ALU_WORD1

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALU_WORD[0,1]. The instructions specified with this format are used to initiate ALU clauses. The
instructions that execute within an ALU clause are described in Section 9.2 on page 9-23.

Opcode Field Name Bits Format
KCACHE_MODE1
(KM1)

[1:0] enum(2)

Mode for second set of locked cache lines:
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache line KCACHE_BANK, ADDR.
2 CF_KCACHE_LOCK_2: lock cache lines KCACHE_BANK, ADDR+1.
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines KCACHE_BANK, LOOP/16+ADDR

and KCACHE_BANK[0.1], LOOP/16+ADDR+1, where LOOP is current loop index
(aL).

KCACHE_ADDR0 [9:2] int(8)

Constant buffer address for first set of locked cache lines. In units of cache lines,
where a line holds sixteen 128-bit constants (byte addr[15:8]).

KCACHE_ADDR1 [17:10] int(8)

Constant buffer address for second set of locked cache lines.

COUNT [24:18] int(7)

Number of 64-bit instruction slots in the range [1,128] to execute in the clause,
minus one.

ALT_CONST

(AC)

25 int(1)

0 This ALU clause does not use constants from an alternate thread type.
1 This ALU clause uses constants from an alternate thread type: PS→VS,

VS→GS, GS→VS, ES→GS. Note that ES and VS share constants. Has no
effect on HS, LS, and CS.

CF_INST [29:26] enum(4)

Type of ALU instruction to evaluate in CF. For this encoding, CF_INST must be
one of the following values.
8 CF_INST_ALU: each PRED_SET* instruction updates the active state but does

not update the stack.
9 CF_INST_ALU_PUSH_BEFORE: execute CF_PUSH, then CF_INST_ALU.
10 CF_INST_ALU_POP_AFTER: execute CF_INST_ALU, then CF_INST_POP.
11 CF_INST_ALU_POP2_AFTER: execute CF_INST_ALU_POP2, then CF_INST_POP

twice.
12 CF_INST_ALU_EXTENDED: ALU clause instruction extension for indexed con-

stant buffers and four constant buffers per clause. This is the first half of the
ALU instruction pair. Defines constant buffer 2 and 3, and index-select for all
four constant buffers.

13 CF_INST_ALU_REACTIVATE_BEFORE: activate all threads, or all quads when in
whole quad mode, on top of the current branch stack before executing an ALU
clause. Do NOT do this inside a loop. Can be done inside a WQM frame.

14 CF_INST_ALU_VALID_PIXEL_MODE: execute the CF_INST_ALU instruction only
on valid pixels. Only valid for PS shaders.

15 CF_INST_ALU_ELSE_AFTER: execute CF_INST_ALU, then CF_INST_ELSE.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-10 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

WHOLE_QUAD_MODE
(WQM)

30 int(1)

0 Do not execute this clause as if all pixels are active and valid.
1 Execute this clause as if all pixels are active and valid.
This is the antonym of the VALID_PIXEL_MODE field. Set only one of these bits
(WHOLE_QUAD_MODE or VALID_PIXEL_MODE) at a time; they are mutually exclusive.
Set this only in the PS stage.

BARRIER (B) 31 int(1)

Synchronization barrier.
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes.

Related CF_ALU_WORD0

Control Flow ALU Doubleword 1 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-11
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow ALU Doubleword 0 Extended
Instructions CF_ALU_WORD0_EXT

Description This extends the low-order (least-significant) doubleword in the 64-bit microcode-format pair
formed by CF_ALU_WORD0, so the clause consists of four dwords: EXT1, EXT0,
CF_ALU_WORD1, and CF_ALU_WORD0. The ALU instructions that execute within an ALU
clause are described in Section 9.2 on page 9-23.

Opcode Field Name Bits Format
RESERVED [3:0] Reserved.

KCACHE_BANK_IN
DEX_MODE0

[5:4] enum(2)

(KBIM0) Bank relative offset select. Add the indicated offset to the constant buffer bank
number in KCACHE_BANK0. Indexed locks of banks 14 and 15 are ignored.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

KCACHE_BANK_IN
DEX_MODE1

(KBIM1)

[7:6] enum(2)

Bank relative offset select. Add the indicated offset to the constant buffer bank
number in KCACHE_BANK1. Indexed locks of banks 14 and 15 are ignored.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

KCACHE_BANK_IN
DEX_MODE2

(KBIM2)

[9:8] enum(2)

Bank relative offset select. Add the indicated offset to the constant buffer bank
number in KCACHE_BANK2. Indexed locks of banks 14 and 15 are ignored.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

KCACHE_BANK_IN
DEX_MODE3

(KBIM3)

[11:10] enum(2)

Bank relative offset select. Add the indicated offset to the constant buffer bank
number in KCACHE_BANK3. Indexed locks of banks 14 and 15 are ignored.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

RESERVED [21:12] Reserved.

KCACHE_BANK2
(KB2)

[25:22] int(4)

Bank (constant buffer number) for third set of locked cache lines.

KCACHE_BANK3
(KB3)

[29:26] int(4)

Bank (constant buffer number) for fourth set of locked cache lines.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-12 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

KCACHE_MODE2

(KM2)

[31:30] enum(2)

Mode for third set of locked cache lines.
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache lines [bank][addr].
2 CF_KCACHE_LOCK_2: lock cache lines [bank][addr] and [bank][addr+1].
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines [bank][loop/16+addr] and

[bank][loop/16+addr+1], where loop is current loop index.

Related CF_ALU_WORD1_EXT

Control Flow ALU Doubleword 0 Extended (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-13
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow ALU Doubleword 1 Extended
Instructions CF_ALU_WORD1_EXT

Description This extends the high-order (most-significant) doubleword in the 64-bit microcode-format pair
formed by CF_ALU_WORD1, so the clause consists of four dwords: EXT1, EXT0,
CF_ALU_WORD1, and CF_ALU_WORD0. The ALU instructions that execute within an ALU
clause are described in Section 9.2 on page 9-23.

Opcode Field Name Bits Format
KCACHE_MODE3 [1:0] enum(2)

(KM3) Mode for fourth set of locked cache lines.
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache lines [bank][addr].
2 CF_KCACHE_LOCK_2: lock cache lines [bank][addr] and [bank][addr+1].
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines [bank][loop/16+addr] and

[bank][loop/16+addr+1], where loop is current loop index.

KCACHE_ADDR2 [9:2] int(8)

Bank (constant buffer number) for third set of locked cache lines.

KCACHE_ADDR3 [17:10] int(8)

Bank (constant buffer number) for fourth set of locked cache lines.

RESERVED [25:18] Reserved.

CF_INST [29:26] enum(4)

Type of ALU instruction to evaluate in CF. Must be CF_INST_ALU_EXTENDED.
8 CF_INST_ALU: each PRED_SET updates the active state but does not update

the stack.
9 CF_INST_ALU_PUSH_BEFORE: execute CF_PUSH, then CF_INST_ALU.
10 CF_INST_ALU_POP_AFTER: execute CF_INST_ALU, then CF_INST_POP.
11 CF_INST_ALU_POP2_AFTER: execute CF_INST_ALU, then CF_INST_POP

twice.
12 CF_INST_ALU_EXTENDED: ALU clause instruction extension for indexed

constant buffers and four constant buffers per clause. This CF is the first
half of the ALU instruction pair. Defines constant buffers 2 and 3, and
index-select for all four constant buffers.

13 CF_INST_ALU_CONTINUE: each PRED_SET causes a continue operation on
the masked pixels. Equivalent to CF_INST_PUSH, CF_INST_ALU,
CF_INST_ELSE, CF_INST_CONTINUE, CF_POP.

14 CF_INST_ALU_BREAK: each PRED_SET causes a break operation on the
masked pixels. Equivalent to CF_INST_PUSH, CF_INST_ALU,
CF_INST_ELSE, CF_INST_CONTINUE, CF_POP.

15 CF_INST_ALU_ELSE_AFTER: execute CF_INST_ALU, then CF_INST_ELSE.

RESERVED 30 Reserved.

BARRIER 31 int(1)

0 This instruction/clause can run in parallel with prior instructions.
1 All prior CF instructions/clauses must complete before this instruc-

tion/clause executes.

Related CF_ALU_WORD0_EXT

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-14 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Allocate, Import, or Export Doubleword 0
Instructions CF_ALLOC_EXPORT_WORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALLOC_EXPORT_WORD0 and CF_ALLOC_EXPORT_WORD1_{BUF, SWIZ}. It is used to reserve
storage space in an input or output buffer, write data from GPRs into an output buffer, or read
data from an input buffer into GPRs. Each instruction using this format pair can use either the
BUF or the SWIZ version of the second doubleword—all instructions have both BUF and SWIZ
versions. The instructions specified with this format pair are used to initiate allocation, import, or
export clauses.

Opcode Field Name Bits Format
ARRAY_BASE [12:0] int(13)

• For scratch or reduction input or output, this is the base address of the array
in multiples of four doublewords [0,32764].

• For stream or ring output, this is the base address of the array in multiples of
one doubleword [0,8191].

• For pixel or Z output, this is the index of the first export (framebuffer 0..7;
computed Z: 61).

• For parameter output, this is the parameter index of the first export [0,31].
• For position output, this is the position index of the first export [60,63].

TYPE [14:13] enum(2)

Type of allocation, import, or export. In the types below, the first value (PIXEL,
POS, PARAM) is used with the CF_INST_EXPORT* instruction; the second value
(WRITE, WRITE_IND, WRITE_ACK, and WRITE_IND_ACK) is used with the
CF_INST_MEM* instruction:
0 EXPORT_PIXEL: write pixel. Available only for Pixel Shader (PS).

EXPORT_WRITE: write to memory buffer.
1 EXPORT_POS: write position. Available only to Vertex Shader (VS).

EXPORT_WRITE_IND: write to memory buffer, use offset in INDEX_GPR.
2 EXPORT_PARAM: write parameter cache. Available only to Vertex Shader (VS).

EXPORT_WRITE_ACK: write to memory buffer, request and ACK when write is in
memory. For unordered access views (UAVs), ACK guarantees that the return
value has been written to memory.

3 Unused for SX exports.
EXPORT_WRITE_IND_ACK: write to memory buffer with offset in INDEX_GPR; get
an ACK when done. For unordered access views (UAVs), ACK guarantees
that the return value has been written to memory.

RW_GPR [21:15] int(7)

GPR register from which to read data.

RW_REL (RR) 22 enum(1)

Indicates whether GPR is an absolute address, or relative to the loop index (aL).
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

INDEX_GPR [29:23] int(7)

For any indexed import or export, this GPR contains an index that is used to
determine the address of the first export. The index is multiplied by (ELEM_SIZE +
1). Only the X element is used (other elements ignored, no swizzle allowed).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-15
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ELEM_SIZE
(ES)

[31:30] int(2)

Number of doublewords per array element, minus one. This field is interpreted as
a value in [1,2,4] (3 is not supported). The value from INDEX_GPR and the loop
index (aL) counter are multiplied by this factor, if applicable. Also, BURST_COUNT is
multiplied by this factor for CF_INST_MEM*. This field is ignored for
CF_INST_EXPORT*. Normally, ELEMSIZE = four doublewords for scratch buffers,
one doubleword for other buffer types.

Related CF_ALLOC_EXPORT_WORD1_BUF

CF_ALLOC_EXPORT_WORD1_SWIZ

Control Flow Allocate, Import, or Export Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-16 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Allocate, Import, or Export Doubleword 0 Unordered Access View (UAV)
Instructions CF_ALLOC_EXPORT_WORD0_RAT

Description This is the least-significant doubleword in the 64-bit microcode format pair formed by
CF_ALLOC_EXPORT_WORD0_RAT and CF_ALLOC_EXPORT_WORD1_BUF. It describes a write to a
unordered access view (UAV) buffer. These exports allow simple writes to the UAV buffer, or
atomic reduction operations that combine data exported from GPRs with data already in the
buffer.

Opcode Field Name Bits Format
RAT_ID [3:0] int(4)

Unordered access view (UAV) ID.

RAT_INST [9:4] enum(6)

UAV instruction.
0 EXPORT_RAT_INST_NOP: no operation.
1 EXPORT_RAT_INST_STORE_TYPED: destination = source. Replace with format

conversion (any resource format allowed). This is the only cached UAV
opcode that can write more than one dword (up to four).

2 reserved
3 reserved
4 EXPORT_RAT_INST_CMPXCHG_INT: dst = (cmp == dst) ? src:dst. Simple bitwise

compare.
5 reserved
6 reserved
7 EXPORT_RAT_INST_ADD: dest = src + dst. Non-saturating integer add.
8 EXPORT_RAT_INST_SUB: dst = dst - src. Non-saturating integer sub.
9 EXPORT_RAT_INST_RSUB: dst = src - dst. Non-saturating reverse subtract.
10 EXPORT_RAT_INST_MIN_INT: dst = (src < dst) ? src:dst. Signed.
11 EXPORT_RAT_INST_MIN_UINT: dst = (src < dst) ? src:dst. Unsigned.
12 EXPORT_RAT_INST_MAX_INT: dst = (src > dst) ? src : dst. Signed.
13 EXPORT_RAT_INST_MAX_UINT: dst = (src > dst) ? src : dst. Unsigned.
14 EXPORT_RAT_INST_AND: dst = dst & src. Bitwise.
15 EXPORT_RAT_INST_OR: dst = dst | src. Bitwise.
16 EXPORT_RAT_INST_XOR: dst = dst ^ src. Bitwise.
17 reserved
18 EXPORT_RAT_INST_INC_UINT: dst = (dst >= src) ? 0 : dst+1.
19 EXPORT_RAT_INST_DEC_UINT: dst = ((dst==0 | (dst > src)) ? src : dst-1.
20 EXPORT_RAT_INST_STORE_DWORD: Only allowed on uint32 surfaces.
21 EXPORT_RAT_INST_STORE_SHORT: Only allowed on uint32 surfaces.
22 EXPORT_RAT_INST_STORE_BYTE: Only allowed on uint32 surfaces.
31:23 reserved
32 EXPORT_RAT_INST_NOP_RTN: Internal use by SX only (flush+ack with no

opcode). Return dword.
33 reserved
34 EXPORT_RAT_INST_XCHG_RTN: dst = src (no flushing of denorms). Return

dword.
35 reserved
36 EXPORT_RAT_INST_CMPXCHG_INT_RTN: dst = (cmp == dst) ? src : dst. simple

bitwise compare. Return dword.
37 reserved
38 reserved

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-17
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

39 EXPORT_RAT_INST_ADD_RTN: dst = src + dst. Non-saturating integer add.
Return dword.

40 EXPORT_RAT_INST_SUB_RTN: dst = dst - src. Non-saturating integer sub.
Return dword.

41 EXPORT_RAT_INST_RSUB_RTN: dst = src - dst. Non-saturating reverse subtract.
Return dword.

42 EXPORT_RAT_INST_MIN_INT_RTN: dst = (src < dst) ? src : dst. signed. Return
dword.

43 XPORT_RAT_INST_MIN_UINT_RTN: dst = (src < dst) ? src : dst. Unsigned.
Return dword.

44 EXPORT_RAT_INST_MAX_INT_RTN: dst = (src > dst) ? src : dst. Signed. Return
dword.

45 EXPORT_RAT_INST_MAX_UINT_RTN: dst = (src > dst) ? src : dst. Unsigned return
dword.

46 EXPORT_RAT_INST_AND_RTN: dst = dst & src. Bitwise. Return dword.
47 EXPORT_RAT_INST_OR_RTN: dst = dst | src. Bitwise. Return dword.
48 EXPORT_RAT_INST_XOR_RTN: dst = dst ^ src. Bitwise. Return dword.
49 reserved
50 EXPORT_RAT_INST_INC_UINT_RTN: dst = (dst >= src) ? 0 : dst+1. Return uint.
51 EXPORT_RAT_INST_DEC_UINT_RTN: dst = ((dst==0 | (dst > src)) ? src : dst-1.

Return uint.

RESERVED 10 Reserved.

RAT_INDEX_MO
DE (RIM)

[12:11] enum(2)

UAV index select: non-indexed, add idx0 or idx1 to RAT_ID.
0 CF_INDEX_NONE: Do not index the constant buffer.
1 CF_INDEX_0: Add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: Add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: Invalid.

TYPE [14:13] enum(2)

Type of allocation/export.
0 EXPORT_PIXEL: Write the pixel.

EXPORT_WRITE: Write to the memory buffer.
1 EXPORT_POS: Write the position.

EXPORT_WRITE_IND: write to memory buffer, use offset in INDEX_GPR.
2 EXPORT_PARAM: write parameter cache.

EXPORT_WRITE_ACK: write to memory buffer, request an ACK when write is
committed to memory. For UAV, ACK guarantees return value has been writ-
ten to memory.

3 Unused for SX exports.EXPORT_WRITE_IND_ACK: write to memory buffer with
offset in INDEX_GPR, get an ACK when done. For UAV, ACK guarantees return
value has been written to memory.

RW_GPR [21:15] int(7)

GPR register from which to read data. Depending on the RAT_INST opcode, this
GPR contains either:
• up to four dwords of data to write, or
• a dword of source data in the X element, a dword return address in the Y

element, and a dword of compare data in the W element.

Control Flow Allocate, Import, or Export Doubleword 0 Unordered Access View (UAV) (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-18 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

RW_REL (RR) 22 enum(1)

Indicates whether GPR is an absolute address, or relative to the loop index (aL).
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

INDEX_GPR [29:23] int(7)

Select the GPR that holds the buffer address coordinates. The index is multiplied
by (ELEM_SIZE + 1). The X, Y, and Z components contain the address within the
1-d surface, 2-d surface, 3-d surface, or it is 2-d slice address, depending on the
format of the UAV surface.

ELEM_SIZE
(ES)

[31:30] int(2)

Number of doublewords per array element, minus one. This field is interpreted as
a value in [1,2,4] (3 is not supported). The value from INDEX_GPR and the loop
index (aL) counter are multiplied by this factor, if applicable. Also, BURST_COUNT is
multiplied by this factor for CF_INST_MEM*. This field is ignored for
CF_INST_EXPORT*. Normally, ELEMSIZE = four doublewords for scratch buffers,
one doubleword for other buffer types.

Related CF_ALLOC_EXPORT_WORD1_BUF

CF_ALLOC_EXPORT_WORD1_SWIZ

Control Flow Allocate, Import, or Export Doubleword 0 Unordered Access View (UAV) (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-19
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Allocate, Import, or Export Doubleword 1 Buffer
Instructions CF_ALLOC_EXPORT_WORD1_BUF

Description Word 1 of the control flow instruction. This subencoding is used by allocations/exports for all
input/outputs to scratch, ring, and stream buffers.

Opcode Field Name Bits Format
ARRAY_SIZE [11:0]

Array size (elem-size units).
MEM_WR_SCRATCH: Represents values [1,4096] when ELEMSIZE = 0, [4,16384]
when ELEMSIZE = 3.
MEM_WR_SCATTER: unused (no effect).
RAT_CACHELESS export, array_size[7:0] carries the dword stride for burst exports.
Stride is 1..256 dwords.

COMP_MASK [15:12] int(4)

XYZW component mask (X is the LSB). Write the component iff the corresponding
bit is 1. User must enable all components that contain address/data for the
operation. For UAV store-raw, set to 0x1; for other UAVs, set to 0xF.

BURST_COUNT [19:16] int(4)

Number of MRTs, positions, parameters, or logical export values to allocate and/or
export, minus one. This field is interpreted as a value in [1..16].

VALID_PIXEL_
MODE (VPM)

20 int(1)

If set, do not export data for invalid pixels. Caution: this is not the 'default' mode;
set this bit to 0 by default. Note that Pix/Pos/PC exports use the valid mask and
active mask, and mem-exports use the active mask only. Set this only in the PS
stage.

RESERVED 21 Reserved.

CF_INST [29:22] enum(8)

Type of instruction to execute in CF. The value must be one of the
allocation/export instructions listed below.
64 CF_INST_MEM_STREAM0_BUF0: perform a memory write on stream 0, buffer 0.
65 CF_INST_MEM_STREAM0_BUF1: perform a memory write on stream 0, buffer 1.
66 CF_INST_MEM_STREAM0_BUF2: perform a memory write on stream 0, buffer 2.
67 CF_INST_MEM_STREAM0_BUF3: perform a memory write on stream 0, buffer 3.
68 CF_INST_MEM_STREAM1_BUF0: perform a memory write on stream 1, buffer 0.
69 CF_INST_MEM_STREAM1_BUF1: perform a memory write on stream 1, buffer 1.
70 CF_INST_MEM_STREAM1_BUF2: perform a memory write on stream 1, buffer 2.
71 CF_INST_MEM_STREAM1_BUF3: perform a memory write on stream 1, buffer 3.
72 CF_INST_MEM_STREAM2_BUF0: perform a memory write on stream 2, buffer 0.
73 CF_INST_MEM_STREAM2_BUF1: perform a memory write on stream 2, buffer 1.
74 CF_INST_MEM_STREAM2_BUF2: perform a memory write on stream 2, buffer 2.
75 CF_INST_MEM_STREAM2_BUF3: perform a memory write on stream 2, buffer 3.
76 CF_INST_MEM_STREAM3_BUF0: perform a memory write on stream 3, buffer 0.
77 CF_INST_MEM_STREAM3_BUF1: perform a memory write on stream 3, buffer

1.
78 CF_INST_MEM_STREAM3_BUF2: perform a memory write on stream 3, buffer 2.
79 CF_INST_MEM_STREAM3_BUF3: perform a memory write on stream 3, buffer 3.
80 CF_INST_MEM_WR_SCRATCH: perform a memory write on the scratch buffer.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-20 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

82 CF_INST_MEM_RING: perform a memory write on the ring buffer.
83 reserved
84 reserved
85 CF_INST_MEM_EXPORT: perform a memory write on the shared buffer.
86 CF_INST_MEM_RAT: export to a Random Access Target - full functionality (via

CB).
87 CF_INST_MEM_RAT_CACHELESS: export to a Random Access Target without

caching - reduced functionality (via DB).
88 CF_INST_MEM_RING1: write to ring 1 (currently only applies to GSVS ring).
89 CF_INST_MEM_RING2: write to ring 2 (currently only applies to GSVS ring).
90 CF_INST_MEM_RING3: write to ring 3 (currently only applies to GSVS ring).
91 CF_INST_MEM_EXPORT_COMBINED: Memory export (scatter), for single dword

exports only. Combined Address and Data in one export (data = x, data = y,
address = w). Must be non-indexed-write, and no burst-writes.

92 CF_INST_MEM_RAT_COMBINED_CACHELESS: export to a Random Access Target
- reduced functionality (via DB). Combined Address and Data in one export
(data = x, data = y; address = w). Must be non-indexed-write, and no burst-
writes.

MARK (M) 30 int(1)

Mark memory write to be acknowledged with the next write-ack. Only applies to
memory writes (scratch, scatter, etc.), not pixel/position/parameter.

BARRIER (B) 31 int(1)

Synchronization barrier.
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes.

Related CF_ALLOC_EXPORT_WORD0, CF_ALLOC_EXPORT_WORD0_RAT

CF_ALLOC_EXPORT_WORD1_SWIZ

Control Flow Allocate, Import, or Export Doubleword 1 Buffer (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Control Flow (CF) Instructions 9-21
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Control Flow Allocate, Import, or Export Doubleword 1 Swizzle
Instructions CF_ALLOC_EXPORT_WORD1_SWIZ

Description Word 1 of the control flow instruction. This subencoding is used by allocations/exports for PIXEL,
POS, and PARAM.

Opcode Field Name Bits Format
SEL_X

SEL_Y

SEL_Z

SEL_W

[2:0]
[5:3]
[8:6]
[11:9]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies the source for each element of the import or export.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 SEL_MASK: mask this element. Use this only for non-memory, non-UAV

exports; otherwise, use COMP_MASK.

RESERVED [15:12] Reserved.

BURST_COUNT [19:16] int(4)

Number of MRTs, positions, parameters, or logical export values to allocate
and/or export, minus one. This field is interpreted as a value in [1..16].

VALID_PIXEL_MODE

(VPM)

20 int(1)

If set, do not export data for invalid pixels. Caution: this is not the 'default'
mode; set this bit to 0 by default. Note that Pix/Pos/PC exports use the valid
mask and active mask, and mem-exports use the active mask only. Set this
only in the PS stage.

RESERVED 21 Reserved.

CF_INST [29:22] enum(8)

Type of instruction to execute in CF. The value must be one of the
allocation/export instructions listed below. All other values are
reserved.

83 CF_INST_EXPORT: export only (not last). Used for PIXEL, POS, PARAM
exports.

84 CF_INST_EXPORT_DONE: export only (last export). Used for PIXEL, POS,
PARAM exports.

MARK

(MRK)

30 int(1)

Mark memory write to be acknowledged with the next write-ack. Only applies
to memory writes (scratch, scatter, etc.), not pixel/position/parameter.

BARRIER (B) 31 int(1)

Synchronization barrier.
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes.

Related CF_ALLOC_EXPORT_WORD0, CF_ALLOC_EXPORT_WORD0_RAT

CF_ALLOC_EXPORT_WORD1_BUF

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-22 Control Flow (CF) Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-23
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.2 ALU Instructions
ALU clauses are initiated using the CF_ALU_WORD[0,1] format pair, described in
Section 9.1 on page 9-3. After the clause is initiated, the instructions below can
be issued. ALU instructions are used to build ALU instruction groups, as
described in Section 4.3 on page 4-3. All ALU microcode formats are 64 bits
wide.

ALU Doubleword 0
Instructions ALU_WORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0 and ALU_WORD1_{OP2, OP3}. Each instruction using this format pair has either an OP2
or an OP3 version (not both). Source for operands src0, src1.

Opcode Field Name Bits Format
SRC0_SEL

SRC1_SEL

[8:0]
[21:13]

enum(9)
enum(9)

Location or value of this source operand.
[127:0] Value in GPR[127:0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1.
[255:192] inline constant values.
[287:256] Kcache constants in bank 2.
[319:288] Kcache constants in bank 3.

217 ALU_SRC_LDS_BASE_ADDR: Supplies the base address of the LDS
space allocated to this thread.

218 ALU_SRC_LDS_SIZE: Supplies the size of the LDS space allocated to
this thread.

219 ALU_SRC_LDS_OQ_A: Use contents of LDS Output Queue A and leave
it on the queue.

220 ALU_SRC_LDS_OQ_B: Use contents of LDS Output Queue B and leave
it on the queue.

221 ALU_SRC_LDS_OQ_A_POP: Use contents of LDS Output Queue A, and
pop both the A and B queues at the end of the instruction
group(xyzwt).

222 ALU_SRC_LDS_OQ_B_POP: Use contents of LDS Output Queue B, and
pop both the A and B queues at the end of the instruction
group(xyzwt).

223 ALU_SRC_LDS_DIRECT_A: Direct read of LDS on the A cycle. Address
is defined in literal constant-0 (xy).

224 ALU_SRC_LDS_DIRECT_B: Direct read of LDS on the B cycle. Address
is defined in literal constant-0 (xy).

225 ALU_SCR_CLAUSE_GLOBAL: 32-bit clause global value written by
MOVA_INIT.

227 ALU_SRC_TIME_HI: Upper 32 bits of 64-bit clock counter.
228 ALU_SRC_TIME_LO: Lower 32 bits of 64-bit clock counter.
229 ALU_SRC_MASK_HI: Upper 32bits of active mask.
230 ALU_SRC_MASK_LO: Lower 32bits of active mask.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-24 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

231 ALU_SRC_HW_WAVE_ID: Hardware wave ID (int).
232 ALU_SRC_SIMD_ID: Compute unit id (int).
233 ALU_SRC_SE_ID: Shader engine ID (int).
232 ALU_SRC_SIMD_ID: Compute unit id (int).
233 ALU_SRC_SE_ID: Shader engine ID (int).
234 ALU_SRC_HW_THREADGRP_ID: Hardware thread group ID (int) within a

compute unit. CS and HS only.
235 ALU_SRC_WAVE_ID_IN_GRP: Wave id within thread group (int). CS and

HS only.
236 ALU_SRC_NUM_THREADGRP_WAVES: Number of waves in thread group

(int). CS and HS only, must barrier before using.
237 ALU_SRC_HW_ALU_ODD: Is this clause executing on the even(0) or

odd(1) path (int)
238 ALU_SRC_LOOP_IDX: Current value of the loop index (int)
240 ALU_SRC_PARAM_BASE_ADDR: Parameter cache base

(LDS_ALLOC_PS), (int).
241 ALU_SRC_NEW_PRIM_MASK: Bit mask. One bit per quad; if set, it indi-

cates that this quad starts a new primitive. Mask omits bit for first
quad, since it always begins a new primitive. For example, in a vec-
torsize 64 system, this mask is {[15:1],1'b1}.242
ALU_SRC_PRIM_MASK_HI: Upper 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interp. See SQ-arch
spec for details.

243 ALU_SRC_PRIM_MASK_LO: Lower 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interp. See SQ-arch
spec for details.

244 ALU_SRC_1_DBL_L: special constant 1.0 double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: the constant 0.0.
249 ALU_SRC_1: the constant 1.0 float.
250 ALU_SRC_1_INT: the constant 1 integer.
251 ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant.
254 ALU_SRC_PV: the previous ALU.[X,Y,Z,W] (vector) result.

SRC0_REL (S0R)

SRC1_REL (S1R)

9
22

enum(1)
enum(1)

0 Absolute: no relative addressing.
1 Relative: add index from INDEX_MODE to this address.

SRC0_CHAN (S0C)

SRC1_CHAN (S1C)

[11:10]
[24:23]

enum(2)
enum(2)

Source element to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

ALU Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-25
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SRC0_NEG (S0N)

SRC1_NEG (S1N)

12
25

int(1)
int(1)

Negation.
0 Do not negate input for this operand.
1 Negate input for this operand. Use only for floating-point inputs.

INDEX_MODE (IM) [28:26] enum(3)

Relative addressing mode, using the address register (AR) or the loop
index (aL), for operands that have the SRC_REL or DST_REL bit set.
0 INDEX_AR_X - For constants/gpr: add AR.X.
4 INDEX_LOOP - Add loop index (aL).
5 INDEX_GLOBAL - Treat GPR address as absolute, not

thread-relative.
6 INDEX_GLOBAL_AR_X- Treat GPR address as absolute, and add

GPR-index (AR.X).

PRED_SEL (PS) [30:29] enum(2)

Predicate to apply to this instruction.
0 PRED_SEL_OFF: execute all pixels.
1 reserved
2 PRED_SEL_ZERO: execute if predicate = 0.
3 PRED_SEL_ONE: execute if predicate = 1.

LAST (L) 31 int(1)

Last instruction in an instruction group.
0 This is not the last instruction (64-bit word) in the current instruction

group.
1 This is the last instruction (64-bit word) in the current instruction

group.

Related ALU_WORD1_OP2

ALU_WORD1_OP3

ALU Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-26 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 1 Zero to Two Source Operands
Instructions ALU_WORD1_OP2

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0 and ALU_WORD1_{OP2, OP3}. Each instruction using this format pair has either an OP2
or an OP3 version (not both). The OP2 version specifies ALU instructions that take zero to two
source operands, plus a destination operand.

Opcode Field Name Bits Format
SRC0_ABS (S0A)

SRC1_ABS (S1A)

0
1

int(1)
int(1)

Absolute value.
0 Use the actual value of the input for this operand.
1 Use the absolute value of the input for this operand. Use only for floating-

point inputs. This function is performed before negation.

UPDATE_EXEC_MA
SK (UEM)

2 int(1)

Update active mask.
0 Do not update the active mask after executing this instruction.
1 Reserved. Update the execute mask with ALU_WORD1_OP2_EXECUTE_MASK.

UPDATE_PRED
(UP)

3 int(1)

Update predicate.
0 Do not update the stored predicate.
1 Update the stored predicate based on the predicate operation computed

here.

WRITE_MASK
(WM)

4 int(1)

Write result to destination vector element.
0 Do not write this scalar result to the destination GPR vector element.
1 Write this scalar result to the destination GPR vector element.

OMOD [6:5] enum(2)

Output modifier.
0 ALU_OMOD_OFF: identity. This value must be used for operations that pro-

duce an integer result.
1 ALU_OMOD_M2: multiply by 2.0.
2 ALU_OMOD_M4: multiply by 4.0.
3 ALU_OMOD_D2: divide by 2.0.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-27
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU_INST [17:7] enum(11)

Instruction. The top three bits of this field must be zero. See Chapter 8 for
descriptions of each instruction.
0 OP2_INST_ADD

1 OP2_INST_MUL

2 OP2_INST_MUL_IEEE

3 OP2_INST_MAX

4 OP2_INST_MIN

5 OP2_INST_MAX_DX10

6 OP2_INST_MIN_DX10

7 reserved
8 OP2_INST_SETE

9 OP2_INST_SETGT

10 OP2_INST_SETGE

11 OP2_INST_SETNE

12 OP2_INST_SETE_DX10

13 OP2_INST_SETGT_DX10

14 OP2_INST_SETGE_DX10

15 OP2_INST_SETNE_DX10

16 OP2_INST_FRACT

17 OP2_INST_TRUNC

18 OP2_INST_CEIL

19 OP2_INST_RNDNE

20 OP2_INST_FLOOR

21 OP2_INST_ASHR_INT

22 OP2_INST_LSHR_INT

23 OP2_INST_LSHL_INT

24 reserved
25 OP2_INST_MOV

26 OP2_INST_NOP

27 OP2_INST_MUL_64

28 OP2_INST_FLT64_TO_FLT32

29 OP2_INST_FLT32_TO_FLT64

30 OP2_INST_PRED_SETGT_UINT

31 OP2_INST_PRED_SETGE_UINT

32 OP2_INST_PRED_SETE

33 OP2_INST_PRED_SETGT

34 OP2_INST_PRED_SETGE

35 OP2_INST_PRED_SETNE

36 OP2_INST_PRED_SET_INV

37 OP2_INST_PRED_SET_POP

38 OP2_INST_PRED_SET_CLR

39 OP2_INST_PRED_SET_RESTORE

40 OP2_INST_PRED_SETE_PUSH

41 OP2_INST_PRED_SETGT_PUSH

42 OP2_INST_PRED_SETGE_PUSH

43 OP2_INST_PRED_SETNE_PUSH

44 OP2_INST_KILLE

45 OP2_INST_KILLGT

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-28 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU_INST [17:8] enum(10)

46 OP2_INST_KILLGE

47 OP2_INST_KILLNE

48 OP2_INST_AND_INT

49 OP2_INST_OR_INT

50 OP2_INST_XOR_INT

51 OP2_INST_NOT_INT

52 OP2_INST_ADD_INT

53 OP2_INST_SUB_INT

54 OP2_INST_MAX_INT

55 OP2_INST_MIN_INT

56 OP2_INST_MAX_UINT

57 OP2_INST_MIN_UINT

58 OP2_INST_SETE_INT

59 OP2_INST_SETGT_INT

60 OP2_INST_SETGE_INT

61 OP2_INST_SETNE_INT

62 OP2_INST_SETGT_UINT

63 OP2_INST_SETGE_UINT

64 OP2_INST_KILLGT_UINT

65 OP2_INST_KILLGE_UINT

66 OP2_INST_PRED_SETE_INT

67 OP2_INST_PRED_SETGT_INT

68 OP2_INST_PRED_SETGE_INT

69 OP2_INST_PRED_SETNE_INT

70 OP2_INST_KILLE_INT

71 OP2_INST_KILLGT_INT

72 OP2_INST_KILLGE_INT

73 OP2_INST_KILLNE_INT

74 OP2_INST_PRED_SETE_PUSH_INT

75 OP2_INST_PRED_SETGT_PUSH_INT

76 OP2_INST_PRED_SETGE_PUSH_INT

77 OP2_INST_PRED_SETNE_PUSH_INT

78 OP2_INST_PRED_SETLT_PUSH_INT

79 OP2_INST_PRED_SETLE_PUSH_INT

80 OP2_INST_FLT_TO_INT

81 OP2_INST_BFREV_INT

82 OP2_INST_ADDC_UINT

83 OP2_INST_SUBB_UINT

84 OP2_INST_GROUP_BARRIER

85 reserved
86 reserved
87 OP2_INST_SET_MODE

88 reserved
89 reserved
90 OP2_INST_SET_LDS_SIZE

91 OP2_INST_MUL_INT24

92 OP2_INST_MULHI_INT24

128:93 reserved

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-29
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

129 OP2_INST_EXP_IEEE

130 OP2_INST_LOG_CLAMPED

131 OP2_INST_LOG_IEEE

132 OP2_INST_RECIP_CLAMPED

133 OP2_INST_RECIP_FF

134 OP2_INST_RECIP_IEEE

135 OP2_INST_RECIPSQRT_CLAMPED

136 OP2_INST_RECIPSQRT_FF

137 OP2_INST_RECIPSQRT_IEEE

138 OP2_INST_SQRT_IEEE

141 OP2_INST_SIN

142 OP2_INST_COS

143 OP2_INST_MULLO_INT

144 OP2_INST_MULHI_INT

145 OP2_INST_MULLO_UINT

146 OP2_INST_MULHI_UINT

147 reserved
148 reserved
149 OP2_INST_RECIP_64

150 OP2_INST_RECIP_CLAMPED_64

151 OP2_INST_RECIPSQRT_64

152 OP2_INST_RECIPSQRT_CLAMPED_64

153 OP2_INST_SQRT_64

154 OP2_INST_FLT_TO_UINT

155 OP2_INST_INT_TO_FLT

156 OP2_INST_UINT_TO_FLT

160 OP2_INST_BFM_INT

161 OP2_INST_FLT32_TO_FLT16_RTZ

162 OP2_INST_FLT32_TO_FLT16

163 OP2_INST_FLT16_TO_FLT32

164 OP2_INST_UBYTE0_FLT

165 OP2_INST_UBYTE1_FLT

166 OP2_INST_UBYTE2_FLT

167 OP2_INST_UBYTE3_FLT

170 OP2_INST_BCNT_INT

171 OP2_INST_FFBH_UINT

172 OP2_INST_FFBL_INT

173 OP2_INST_FFBH_INT

174 OP2_INST_FLT_TO_UINT4

175 OP2_INST_DOT_IEEE

176 OP2_INST_FLT_TO_INT_RPI

177 OP2_INST_FLT_TO_INT_FLOOR

178 OP2_INST_MULHI_UINT24

179 OP2_INST_MBCNT_32HI_INT

180 OP2_INST_OFFSET_TO_FLT

181 OP2_INST_MUL_UINT24

182 OP2_INST_BCNT_ACCUM_PREV_INT

183 OP2_INST_MBCNT_32LO_ACCUM_PREV_INT

184 OP2_INST_SETE_64

185 OP2_INST_SETNE_64

186 OP2_INST_SETGT_64

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-30 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

187 OP2_INST_SETGE_64

188 OP2_INST_MIN_64

189 OP2_INST_MAX_64

190 OP2_INST_DOT4

191 OP2_INST_DOT4_IEEE

192 OP2_INST_CUBE

193 OP2_INST_MAX4

196 OP2_INST_FREXP_64

197 OP2_INST_LDEXP_64

198 OP2_INST_FRACT_64

199 OP2_INST_PRED_SETGT_64

200 OP2_INST_PRED_SETE_64

201 OP2_INST_PRED_SETGE_64

202 OP2_INST_MUL_64

203 OP2_INST_ADD_64

204 reserved
205 OP2_INST_FLT64_TO_FLT32

206 OP2_INST_FLT32_TO_FLT64

207 OP2_INST_SAD_ACCUM_PREV_UINT

208 OP2_INST_DOT

209 OP2_INST_MUL_PREV

210 OP2_INST_MUL_IEEE_PREV

211 OP2_INST_ADD_PREV

212 OP2_INST_MULADD_PREV

213 OP2_INST_MULADD_IEEE_PREV

214 OP2_INST_INTERP_XY

215 OP2_INST_INTERP_ZW

216 OP2_INST_INTERP_X

217 OP2_INST_INTERP_Z

218 OP2_INST_STORE_FLAGS

219 OP2_INST_LOAD_STORE_FLAGS

220 - 223 reserved
224 OP2_INST_INTERP_LOAD_P0

225 OP2_INST_INTERP_LOAD_P10

226 OP2_INST_INTERP_LOAD_P20

BANK_SWIZZLE [20:18] enum(3)

(BS) Specifies how to load operands into the SP.
0 ALU_VEC_012, SQ_ALU_SCL_210
1 ALU_VEC_021, SQ_ALU_SCL_122
2 ALU_VEC_120, SQ_ALU_SCL_212
3 ALU_VEC_102, SQ_ALU_SCL_221
4 ALU_VEC_201
5 ALU_VEC_210
6-8 reserved

DST_GPR [27:21] enum(7)

Destination address to which result is written. Always a GPR address.

DST_REL (DR) 28 enum(1)

Specifies whether to use absolute or relative addressing.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-31
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

DST_CHAN (DC) [30:29] enum(2)

Specifies to which element of DST_GPR the result is written.
0 CHAN_X: write to X element of destination.
1 CHAN_Y: write to Y element of destination.
2 CHAN_Z: write to Z element of destination.
3 CHAN_W: write to W element of destination.

CLAMP (C) 31 int(1)

If set, clamp the result to [0.0, 1.0]. Not mathematically defined for opcodes that
produce integer results.

Related ALU_WORD0

ALU_WORD1_OP3

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-32 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 1 Three Source Operands
Instructions ALU_WORD1_OP3

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed
by ALU_WORD0 and ALU_WORD1_{OP2, OP3}. Each instruction using this format pair has either an
OP2 or an OP3 version (not both). The OP3 version specifies ALU instructions that take three
source operands, plus a destination operand.

Opcode Field Name Bits Format
SRC2_SEL [8:0] enum(9)

Location or value of this source operand.
[127:0] Value in GPR[127:0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1.
[255:192] inline constant values.
[287:256] Kcache constants in bank 2.
[319:288] Kcache constants in bank 3.
Other special values are shown below.

217 ALU_SRC_LDS_BASE_ADDR: Supplies the base address of the LDS space allo-
cated to this thread.

218 ALU_SRC_LDS_SIZE: Supplies the size of the LDS space allocated to this
thread.

219 ALU_SRC_LDS_OQ_A: Use contents of LDS output queue A, and leave it on the
queue.

220 ALU_SRC_LDS_OQ_B: Use contents of LDS output queue B, and leave it on the
queue.

221 ALU_SRC_LDS_OQ_A_POP: Use contents of LDS output queue A, and pop both
the A and B queues at the end of the instruction group (xyzwt).

222 ALU_SRC_LDS_OQ_B_POP: Use contents of LDS output queue B, and pop both
the A and B queues at the end of the instruction group (xyzwt).

223 ALU_SRC_LDS_DIRECT_A: Direct read of LDS on the A cycle. Address is
defined in literal constant-0 (xy).

224 ALU_SRC_LDS_DIRECT_B: Direct read of LDS on the B cycle. Address is
defined in literal constant-0 (xy).

225 ALU_SCR_CLAUSE_GLOBAL: 32-bit clause global value written by MOVA_INIT.
227 ALU_SRC_TIME_HI: Upper 32 bits of 64-bit clock counter.
228 ALU_SRC_TIME_LO: Lower 32 bits of 64-bit clock counter.
229 ALU_SRC_MASK_HI: Upper 32bits of active mask.
230 ALU_SRC_MASK_LO: Lower 32bits of active mask.
231 ALU_SRC_HW_WAVE_ID: Hardware wave ID (int).
232 ALU_SRC_SIMD_ID: Compute unit id (int).
233 ALU_SRC_SE_ID: Shader engine ID (int).
234 ALU_SRC_HW_THREADGRP_ID: Hardware thread group ID (int) within a compute

unit. CS and HS only.
235 ALU_SRC_WAVE_ID_IN_GRP: Wave id within thread group (int). CS and HS only.
236 ALU_SRC_NUM_THREADGRP_WAVES: Number of waves in thread group (int). CS

and HS only; must barrier before using.
237 ALU_SRC_HW_ALU_ODD: This clause executes on the even (0) or odd (1) path

(int).
238 ALU_SRC_LOOP_IDX: Current value of the loop index (int)
240 ALU_SRC_PARAM_BASE_ADDR: Parameter cache base (LDS_ALLOC_PS), (int).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-33
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

241 ALU_SRC_NEW_PRIM_MASK: Bit mask. 1 bit per quad, '1' indicates that this quad
starts a new primitive. The mask omits bit for first quad because it always
begins a new primitive. For example, in a vectorsize 64 system, this mask is
{[15:1],1'b1}.

242 ALU_SRC_PRIM_MASK_HI: Upper 32 bits of 64-bit expansion of NEW_PRIM_MASK.
Used for general parameter interpolation.

243 ALU_SRC_PRIM_MASK_LO: Lower 32 bits of 64-bit expansion of NEW_PRIM_MASK.
Used for general parameter interpolation.

244 ALU_SRC_1_DBL_L: special constant 1.0 double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: the constant 0.0.
249 ALU_SRC_1: the constant 1.0 float.
250 ALU_SRC_1_INT: the constant 1 integer.
251 ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant.
254 ALU_SRC_PV: previous ALU.[X,Y,Z,W] result.

SRC2_REL

(SR)

9 enum(1)

Addressing mode for this source operand.
0 Absolute: no relative addressing.
1 Relative: add index from INDEX_MODE to this address. See “ALU_WORD0,” on

page 9-23, for the specification of INDEX_MODE.

SRC2_CHAN
(S2C)

[11:10] enum(2)

Source element to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

SRC2_NEG

(SN)

12 int(1)

Negation.
0 Do not negate input for this operand.
1 Negate input for this operand. Use only for floating-point inputs.

ALU Doubleword 1 Three Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-34 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU_INST [17:13] enum(5)

Instruction. Gaps in opcode values are not marked in the list below. See Chapter 8
for descriptions of each instruction. Note: opcode values do not begin at zero.
4 OP3_INST_BFE_UINT

5 OP3_INST_BFE_INT

6 OP3_INST_BFI_INT

7 OP3_INST_FMA

8 OP3_INST_MULADD_INT234

9 OP3_INST_CNDNE_64

10 OP3_INST_FMA_64

11 OP3_INST_LERP_UINT

12 OP3_INST_BIT_ALIGN_INT

13 OP3_INST_BYTE_ALIGN_INT

14 OP3_INST_SAD_ACCUM_UINT

15 OP3_INST_SAD_ACCUM_HI_UINT

16 OP3_INST_MULADD_UINT24

17 OP3_INST_LDS_IDX_OP: This opcodes implies ALU_WORD*_LDS_IDX_OP encod-
ing.

20 OP3_INST_MULADD

21 OP3_INST_MULADD_M2

22 OP3_INST_MULADD_M4

23 OP3_INST_MULADD_D2

24 OP3_INST_MULADD_IEEE

25 OP3_INST_CNDE

26 OP3_INST_CNDGT

27 OP3_INST_CNDGE

28 OP3_INST_CNDE_INT

29 OP3_INST_CNDGT_INT

30 OP3_INST_CNDGE_INT

31 OP3_INST_MUL_LIT

BANK_SWIZZLE [20:18] enum(3)

(BS) Specifies how to load operands into the SP.
0 ALU_VEC_012, SQ_ALU_SCL_210
1 ALU_VEC_021, SQ_ALU_SCL_122
2 ALU_VEC_120, SQ_ALU_SCL_212
3 ALU_VEC_102, SQ_ALU_SCL_221
4 ALU_VEC_201
5 ALU_VEC_210
6-8 reserved

DST_GPR [27:21] enum(7)

Destination address to which result is written. Always a GPR address.

DST_REL

(DR)

28 enum(1)

Specifies whether to use absolute or relative addressing.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

ALU Doubleword 1 Three Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-35
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

DST_CHAN

(DC)

[30:29] enum(2)

Specifies to which element of DST_GPR the result is written.
0 CHAN_X: write to X element of destination.
1 CHAN_Y: write to Y element of destination.
2 CHAN_Z: write to Z element of destination.
3 CHAN_W: write to W element of destination.

CLAMP 31 int(1)

If set, clamp the result to [0.0, 1.0]. Not mathematically defined for opcodes that
produce integer results.

Related ALU_WORD0

ALU_WORD1_OP2

ALU Doubleword 1 Three Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-36 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 1 Zero to Two Source Operands MOVA
Instructions ALU_WORD1_OP2_MOVA

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0 and ALU_WORD1_OP2_MOVA. This instruction format is used only for the MOVA
instruction.

Opcode Field Name Bits Format
SRC0_ABS (S0A)

SRC1_ABS (S1A)

0
1

int(1)
int(1)

Absolute value.
0 Use the actual value of the input for this operand.
1 Use the absolute value of the input for this operand. Use only for floating-

point inputs. This function is performed before negation.

UPDATE_EXEC_MA
SK (UEM)

2 int(1)

Update active mask.
0 Do not update the active mask after executing this instruction.
1 reserved

UPDATE_PRED
(UP)

3 int(1)

Update predicate.
0 Do not update the stored predicate.
1 Update the stored predicate based on the predicate operation computed

here.

WRITE_MASK
(WM)

4 int(1)

Write result to destination vector element.
0 Do not write this scalar result to the destination GPR vector element.
1 Write this scalar result to the destination GPR vector element.

OMOD [6:5] enum(2)

Output modifier.
0 ALU_OMOD_OFF: identity. This value must be used for operations that pro-

duce an integer result.
1 ALU_OMOD_M2: multiply by 2.0.
2 ALU_OMOD_M4: multiply by 4.0.
3 ALU_OMOD_D2: divide by 2.0.

ALU_INST [17:7] enum(11)

Instruction. The top three bits of this field must be zero. Gaps in opcode values
are not marked in the list below. See Chapter 6 for descriptions of each
instruction.
All are reserved except for
204 OP2_INST_MOVA_INT

BANK_SWIZZLE [20:18] enum(3)

(BS) Specifies how to load operands into the SP.
0 ALU_VEC_012, SQ_ALU_SCL_210
1 ALU_VEC_021, SQ_ALU_SCL_122
2 ALU_VEC_120, SQ_ALU_SCL_212
3 ALU_VEC_102, SQ_ALU_SCL_221
4 ALU_VEC_201
5 ALU_VEC_210
6-8 reserved

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-37
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

MOVA_DST [27:21]

Specifies where to store MOVA results.
0 Store MOVA result nine lsbs in AR.X.
1 Store MOVA result in CF_PC. From GPR sources, only the 9 lsbs are cop-

ied.
2 Store MOVA result nine lsbs in CF_IDX0.
3 Store MOVA result nine lsbs in CF_IDX1.
4 Store MOVA result eight lsbs in CLAUSE_GLOBAL[7:0].
5 Store MOVA result eight lsbs in CLAUSE_GLOBAL[15:8].
6 Store MOVA result eight lsbs in CLAUSE_GLOBAL[23:16].
7 Store MOVA result eight lsbs in CLAUSE_GLOBAL[31:24].
8-64 reserved

DST_REL (DR) 28 enum(1)

Specifies whether to use absolute or relative addressing.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

DST_CHAN (DC) [30:29] enum(2)

Specifies to which element of DST_GPR the result is written.
0 CHAN_X: write to X element of destination.
1 CHAN_Y: write to Y element of destination.
2 CHAN_Z: write to Z element of destination.
3 CHAN_W: write to W element of destination.

CLAMP (C) 31 int(1)

If set, clamp the result to [0.0, 1.0]. Not mathematically defined for opcodes that
produce integer results.

Related ALU_WORD0

ALU_WORD1_OP3

ALU Doubleword 1 Zero to Two Source Operands MOVA (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-38 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 1 Zero to Two Source Operands
Instructions ALU_WORD1_OP2_EXECUTE_MASK

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0 and ALU_WORD1_OP2_EXECUTE_MASK. Used for PRED and KILL instructions that update
the execute mask with the instruction’s result.

Opcode Field Name Bits Format
SRC0_ABS (S0A)

SRC1_ABS (S1A)

0
1

int(1)
int(1)

Absolute value.
0 Use the actual value of the input for this operand.
1 Use the absolute value of the input for this operand. Use only for floating-

point inputs. This function is performed before negation.

UPDATE_EXEC_MA
SK (UEM)

2 int(1)

Update active mask.
0 reserved
1 Update the active mask after executing this instruction, based on the cur-

rent predicate.

UPDATE_PRED
(UP)

3 int(1)

Update predicate.
0 Do not update the stored predicate.
1 Update the stored predicate based on the predicate operation computed

here.

WRITE_MASK
(WM)

4 int(1)

Write result to destination vector element.
0 Do not write this scalar result to the destination GPR vector element.
1 Write this scalar result to the destination GPR vector element.

EXECUTE_MASK_O
P

[6:5] enum(2)

Execution on active thread.
0 Deactivate the active thread if the Predicate register bit is cleared to 0 or the

PRED_SEL bitfield [30:29] of ALU_WORD0 does not select this thread.
1 Deactivate the active thread if the Predicate register bit is cleared to 0 or the

PRED_SEL bitfield [30:29] of ALU_WORD0 does not select this thread, and
do not reactivate this thread until the innermost loop is exited.

2 Deactivate the active thread if the Predicate register bit is cleared to 0 or the
PRED_SEL bitfield [30:29] of ALU_WORD0 does not select this thread, and
do not reactivate this thread until the innermost loop is repeated or exited.

3 Deactivate the active thread if the Predicate register bit is cleared to 0 or the
PRED_SEL bitfield [30:29] of ALU_WORD0 does not select this thread.
This is independent of the KILL instruction and is for using predicate oper-
ations to kill threads.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-39
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU_INST [17:7] enum(11)

Instruction. The top three bits of this field must be zero. Gaps in opcode values
are not marked in the list below. See Chapter 6 for descriptions of each
instruction.
0-29 reserved
30 OP2_INST_PRED_SETGT_UINT

31 OP2_INST_PRED_SETGE_UINT

32 OP2_INST_PRED_SETE

33 OP2_INST_PRED_SETGT

34 OP2_INST_PRED_SETGE

35 OP2_INST_PRED_SETNE

36 OP2_INST_PRED_SET_INV

37 OP2_INST_PRED_SET_POP

38 OP2_INST_PRED_SET_CLR

39 OP2_INST_PRED_SET_RESTORE

40 OP2_INST_PRED_SETE_PUSH

41 OP2_INST_PRED_SETGT_PUSH

42 OP2_INST_PRED_SETGE_PUSH

43 OP2_INST_PRED_SETNE_PUSH

44 OP2_INST_KILLE

45 OP2_INST_KILLGT

ALU_INST [17:8] enum(10)

46 OP2_INST_KILLGE

47 OP2_INST_KILLNE

65:48 reserved
66 OP2_INST_PRED_SETE_INT

67 OP2_INST_PRED_SETGT_INT

68 OP2_INST_PRED_SETGE_INT

69 OP2_INST_PRED_SETNE_INT

70 OP2_INST_KILLE_INT

71 OP2_INST_KILLGT_INT

72 OP2_INST_KILLGE_INT

73 OP2_INST_KILLNE_INT

74 OP2_INST_PRED_SETE_PUSH_INT

75 OP2_INST_PRED_SETGT_PUSH_INT

76 OP2_INST_PRED_SETGE_PUSH_INT

77 OP2_INST_PRED_SETNE_PUSH_INT

78 OP2_INST_PRED_SETLT_PUSH_INT

79 OP2_INST_PRED_SETLE_PUSH_INT

198:80 reserved
199 OP2_INST_PRED_SETGT_64

200 OP2_INST_PRED_SETE_64

201 OP2_INST_PRED_SETGE_64

Rest reserved

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-40 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

BANK_SWIZZLE [20:18] enum(3)

(BS) Specifies how to load operands into the SP.
0 ALU_VEC_012, SQ_ALU_SCL_210
1 ALU_VEC_021, SQ_ALU_SCL_122
2 ALU_VEC_120, SQ_ALU_SCL_212
3 ALU_VEC_102, SQ_ALU_SCL_221
4 ALU_VEC_201
5 ALU_VEC_210
6-8 reserved

DST_GPR [27:21] enum(7)

Destination address to which result is written. Always a GPR address.

DST_REL (DR) 28 enum(1)

Specifies whether to use absolute or relative addressing.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

DST_CHAN (DC) [30:29] enum(2)

Specifies to which element of DST_GPR the result is written.
0 CHAN_X: write to X element of destination.
1 CHAN_Y: write to Y element of destination.
2 CHAN_Z: write to Z element of destination.
3 CHAN_W: write to W element of destination.

CLAMP (C) 31 int(1)

If set, clamp the result to [0.0, 1.0]. Not mathematically defined for opcodes that
produce integer results.

Related ALU_WORD0

ALU_WORD1_OP3

ALU Doubleword 1 Zero to Two Source Operands (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-41
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 0 for LDS IDX
Instructions ALU_WORD0_LDS_IDX_OP

Description This is the least-significant doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0_LDS_IDX_OP and ALU_WORD1_LDS_IDX_OP. These ALU opcodes move data between
GPRs and the local data store (LDS). Indexed operations take the LDS address from a GPR and
either read, write, or perform an atomic arithmetic operation on data in the LDS with GPR data,
then write back the result to the LDS.

Opcode Field Name Bits Format
SRC0_SEL
SRC1_SEL

[8:0]
[21:13]

enum(9)
enum(9)

[127:0] Value in GPR[127:0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1.
[255:192] inline constant values.
[287:256] Kcache constants in bank 2.
[319:288] Kcache constants in bank 3.

217 ALU_SRC_LDS_BASE_ADDR: Supplies the base address of the LDS space
allocated to this thread.

218 ALU_SRC_LDS_SIZE: Supplies the size of the LDS space allocated to this
thread.

219 ALU_SRC_LDS_OQ_A: Use contents of LDS output queue A, and leave it
on the queue.

220 ALU_SRC_LDS_OQ_B: Use contents of LDS output queue B, and leave it
on the queue.

221 ALU_SRC_LDS_OQ_A_POP: Use contents of LDS output queue A, and pop
both the A and B queues at the end of the instruction group (xyzwt).

222 ALU_SRC_LDS_OQ_B_POP: Use contents of LDS output queue B, and pop
both the A and B queues at the end of the instruction group (xyzwt).

223 ALU_SRC_LDS_DIRECT_A: Direct read of LDS on the A cycle. Address is
defined in literal constant-0 (xy).

224 ALU_SRC_LDS_DIRECT_B: Direct read of LDS on the B cycle. Address is
defined in literal constant-0 (xy).

225 ALU_SCR_CLAUSE_GLOBAL: 32-bit clause global value written by
MOVA_INIT.

227 ALU_SRC_TIME_HI: Upper 32 bits of 64-bit clock counter.
228 ALU_SRC_TIME_LO: Lower 32 bits of 64-bit clock counter.
229 ALU_SRC_MASK_HI: Upper 32bits of active mask.
230 ALU_SRC_MASK_LO: Lower 32bits of active mask.
231 ALU_SRC_HW_WAVE_ID: Hardware wave ID (int)
232 ALU_SRC_SIMD_ID: Compute unit id (int).
233 ALU_SRC_SE_ID: Shader engine ID (int).
234 ALU_SRC_HW_THREADGRP_ID: Hardware thread group ID (int) within a

compute unit. CS and HS only.
235 ALU_SRC_WAVE_ID_IN_GRP: Wave id within thread group (int). CS and HS

only.
236 ALU_SRC_NUM_THREADGRP_WAVES: Number of waves in thread group (int).

CS and HS only, must barrier before using.
237 ALU_SRC_HW_ALU_ODD: Is this clause executing on the even(0) or odd(1)

path (int).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-42 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

238 ALU_SRC_LOOP_IDX: Current value of the loop index (int).
240 ALU_SRC_PARAM_BASE_ADDR: Parameter cache base (LDS_ALLOC_PS)

(int).
241 ALU_SRC_NEW_PRIM_MASK: Bit mask. One bit per quad. Set indicates that

this quad starts a new primitive. Mask omits bit for first quad because it
always begins a new primitive. For example, in a vectorsize 64 system,
this mask is {[15:1],1'b1}.

242 ALU_SRC_PRIM_MASK_HI: Upper 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interpolation.

243 ALU_SRC_PRIM_MASK_LO: Lower 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interpolation.

244 ALU_SRC_1_DBL_L: special constant 1.0 double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: special constant 0.0.
249 ALU_SRC_1: special constant 1.0 float.
250 ALU_SRC_1_INT: special constant 1 integer.
251 ALU_SRC_M_1_INT: special constant -1 integer.
252 ALU_SRC_0_5: special constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant.
254 ALU_SRC_PV: previous vector result.

SRC0_REL
SRC1_REL

9
22

enum(1)
enum(1)

Relative addressing.
0 No relative addressing used.
1 Add index from INDEX_MODE to this address.

SRC0_CHAN
SRC1_CHAN

[11:10]
[24:23]

enum(2)
enum(2)

Specifies which element of the source to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

IDX_OFFSET_4 12 int(1)

Index offset bit 4.

IDX_OFFSET_5 25 int(1)

Index offset bit 5.

INDEX_MODE [28:26] enum(3)

Specifies the relative addressing mode to use for operands that have the REL
bit set.
0 INDEX_AR_X: constant/GPR: add AR.X.
4 INDEX_LOOP:add current loop index value.
5 INDEX_GLOBAL:treat GPR address as absolute, not thread-relative.
6 INDEX_GLOBAL_AR_X:treat GPR address as absolute, and add GPR-

index (AR.X).

PRED_SEL [30:29] enum(2)

ALU Doubleword 0 for LDS IDX

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-43
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Predicate to apply to this instruction.
0 PRED_SEL_OFF:execute all pixels.
1 reserved
2 PRED_SEL_ZERO:execute when predicate = 0.
3 PRED_SEL_ONE:execute when predicate = 1.

LAST 31 int(1)

When set, indicates this is the last 64-bit word for this instruction.

Related ALU_WORD0_LDS_IDX_OP

ALU Doubleword 0 for LDS IDX

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-44 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Doubleword 1 for LDS IDX
Instructions ALU_WORD1_LDS_IDX_OP

Description This is the most-significant doubleword in the 64-bit microcode-format pair formed by
ALU_WORD0_LDS_IDX_OP and ALU_WORD1_LDS_IDX_OP. These ALU opcodes move data between
GPRs and the local data store (LDS). Indexed operations take the LDS address from a GPR and
either read, write, or perform an atomic arithmetic operation on data in the LDS with GPR data,
then write back the result to the LDS.

Opcode Field Name Bits Format
SRC2_SEL [8:0]

[21:13]
enum(9)
reserved

[127:0] Value in GPR[127:0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1.
[255:192] inline constant values.
[287:256] Kcache constants in bank 2.
[319:288] Kcache constants in bank 3.

217 ALU_SRC_LDS_BASE_ADDR: Supplies the base address of the LDS space
allocated to this thread.

218 ALU_SRC_LDS_SIZE: Supplies the size of the LDS space allocated to this
thread.

219 ALU_SRC_LDS_OQ_A: Use contents of LDS output queue A, and leave it
on the queue.

220 ALU_SRC_LDS_OQ_B: Use contents of LDS output queue B, and leave it
on the queue.

221 ALU_SRC_LDS_OQ_A_POP: Use contents of LDS output queue A, and pop
both the A and B queues at the end of the instruction group (xyzwt).

222 ALU_SRC_LDS_OQ_B_POP: Use contents of LDS output queue B, and pop
both the A and B queues at the end of the instruction group (xyzwt).

223 ALU_SRC_LDS_DIRECT_A: Direct read of LDS on the A cycle. Address is
defined in literal constant-0 (xy).

224 ALU_SRC_LDS_DIRECT_B: Direct read of LDS on the B cycle. Address is
defined in literal constant-0 (xy).

225 ALU_SCR_CLAUSE_GLOBAL: 32-bit clause global value written by
MOVA_INIT.

227 ALU_SRC_TIME_HI: Upper 32 bits of 64-bit clock counter.
228 ALU_SRC_TIME_LO: Lower 32 bits of 64-bit clock counter.
229 ALU_SRC_MASK_HI: Upper 32bits of active mask.
230 ALU_SRC_MASK_LO: Lower 32bits of active mask.
231 ALU_SRC_HW_WAVE_ID: Hardware wave ID (int)
232 ALU_SRC_SIMD_ID: Compute unit id (int).
233 ALU_SRC_SE_ID: Shader engine ID (int).
234 ALU_SRC_HW_THREADGRP_ID: Hardware thread group ID (int) within a

compute unit. CS and HS only.
235 ALU_SRC_WAVE_ID_IN_GRP: Wave id within thread group (int). CS and HS

only.
236 ALU_SRC_NUM_THREADGRP_WAVES: Number of waves in thread group (int).

CS and HS only, must barrier before using.
237 ALU_SRC_HW_ALU_ODD: Is this clause executing on the even(0) or odd(1)

path (int).

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-45
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

238 ALU_SRC_LOOP_IDX: Current value of the loop index (int).
240 ALU_SRC_PARAM_BASE_ADDR: Parameter cache base (LDS_ALLOC_PS)

(int).
241 ALU_SRC_NEW_PRIM_MASK: Bit mask. One bit per quad. Set indicates that

this quad starts a new primitive. Mask omits bit for first quad because it
always begins a new primitive. For example, in a vectorsize 64 system,
this mask is {[15:1],1'b1}.

242 ALU_SRC_PRIM_MASK_HI: Upper 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interpolation.

243 ALU_SRC_PRIM_MASK_LO: Lower 32 bits of 64-bit expansion of
NEW_PRIM_MASK. Used for general parameter interpolation.

244 ALU_SRC_1_DBL_L: special constant 1.0 double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: special constant 0.0.
249 ALU_SRC_1: special constant 1.0 float.
250 ALU_SRC_1_INT: special constant 1 integer.
251 ALU_SRC_M_1_INT: special constant -1 integer.
252 ALU_SRC_0_5: special constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant.
254 ALU_SRC_PV: previous vector result.

SRC2_REL 9 enum(1)

Relative addressing.
0 No relative addressing used.
1 Add index from INDEX_MODE to this address.

SRC2_CHAN [11:10] enum(2)

Specifies which element of the source to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

IDX_OFFSET_1 12 int(1)

Index offset bit 4.

ALU_INST [17:13] enum(5)

The only legal value for this field is:
17 OP3_INST_LDS_IDX_OP: This opcodes implies ALU_WORD*_LDS_IDX_OP

encoding.

BANK_SWIZZLE [20:18] enum(3)

Specifies how to load operands into the SP.
0 ALU_VEC_012, ALU_SCL_210
1 ALU_VEC_021, ALU_SCL_122
2 ALU_VEC_120, ALU_SCL_212
3 ALU_VEC_102, ALU_SCL_221
4 ALU_VEC_201

5 ALU_VEC_210

ALU Doubleword 1 for LDS IDX

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-46 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

LDS_OP [26:21] enum(6)

Local data share atomic opcode.
0 DS_INST_ADD: OP(dst,src, ...) dst=src0_sel, src=src1_sel. 1A1D

ADD(dst,src) : DS(dst) += src. dst is src0_sel, src is src1_sel.
1 DS_INST_SUB: 1A1D SUB(dst,src) : DS(dst) = DS(dst) - src.
2 DS_INST_RSUB: 1A1D RSUB(dst,src): DS(dst) = src - DS(dst).
3 DS_INST_INC: 1A1D INC(dst) : (DS(dst)>=src) ? DS(dst) = 0 : DS(dst)++.
4 DS_INST_DEC: 1A1D DEC(dst) : DS(dst) = ((DS(dst)==0) || (DS(dst)>src))

? src : DS(dst)-1.
5 DS_INST_MIN_INT: 1A1D MIN(dst,src) : DS(dst) = min(DS(dst),src).
6 DS_INST_MAX_INT: 1A1D MAX(dst,src) : DS(dst) = max(DS(dst),src).
7 DS_INST_MIN_UINT: 1A1D MIN(dst,src) : DS(dst) = min (DS(dst),src).
8 DS_INST_MAX_UINT: 1A1D MAX(dst,src) : DS(dst) = max(DS(dst),src).
9 DS_INST_AND: 1A1D AND(dst,src) : DS(dst) &= src.
10 DS_INST_OR: 1A1D OR(dst,src) : DS(dst) |= src
11 DS_INST_XOR: 1A1D XOR(dst,src) : DS(dst) ^= src
12 DS_INST_MSKOR: 1A2D MKSOR(dst,mask,src) : DS(dst) = ((DS(dst) &

~msk) | src).
13 DS_INST_WRITE: 1A1D WRITE(dst,src) : DS(dst) = src.
14 DS_INST_WRITE_REL: 1A2D WRITEREL(dst,src0,src1) : tmp = dst +

DS_idx_offset (offset in dwords). DS(dst) = src0, DS(tmp) = src1.
15 DS_INST_WRITE2: 1A2D WRITE2(dst,src0,src1) : tmp =

dst+(DS_idx_offset * 64). DS(dst) = src0, DS(tmp) = src1.
16 DS_INST_CMP_STORE: 1A2D CMP_STORE(dst, cmp, src) : DS(dst) =

(DS(dst) == cmp) ? src : DS(dst)
17 DS_INST_CMP_STORE_SPF: 1A2D CMP_STORE_SPF(dst, cmp, src) :

DS(dst) = (DS(dst) == cmp) ? src : DS(dst)
18 DS_INST_BYTE_WRITE: 1A1D BYTEWRITE (dst, src) : DS(dst) = src[7:0]
19 DS_INST_SHORT_WRITE: 1A1D SHORTWRITE(dst, src) : DS(dst) =

src[15:0]
20-31 reserved
32 DS_INST_ADD_RET: 1A1D ADD(dst,src) : OQA=DS(dst), DS(dst) += src.

dst is src0_sel, src is src1_sel.
33 DS_INST_SUB_RET: 1A1D SUB(dst,src) : OQA=DS(dst), DS(dst) =

DS(dst) - src.
34 DS_INST_RSUB_RET: 1A1D RSUB(dst,src) : OQA=DS(dst), DS(dst) = src

- DS(dst).
35 DS_INST_INC_RET: 1A1D INC(dst) : OQA=DS(dst), (DS(dst)>=src) ?

DS(dst) = 0 : DS(dst)++.
36 DS_INST_DEC_RET: 1A1D DEC(dst) : OQA=DS(dst), DS(dst) =

((DS(dst)==0) || (DS(dst)>src)) ? src : DS(dst)-1.
37 DS_INST_MIN_INT_RET: 1A1D MIN(dst,src) : OQA=DS(dst), DS(dst) =

min (DS(dst),src).
38 DS_INST_MAX_INT_RET: 1A1D MAX(dst,src) : OQA=DS(dst), DS(dst) =

max(DS(dst),src).
39 DS_INST_MIN_UINT_RET: 1A1D MIN(dst,src) : OQA=DS(dst), DS(dst) =

min (DS(dst),src).
40 DS_INST_MAX_UINT_RET: 1A1D MAX(dst,src) : OQA=DS(dst), DS(dst) =

max(DS(dst),src)
41 DS_INST_AND_RET: 1A1D AND(dst,src) : OQA=DS(dst), DS(dst) &= src
42 DS_INST_OR_RET: 1A1D OR(dst,src) : OQA=DS(dst), DS(dst) |= src
43 DS_INST_XOR_RET: 1A1D XOR(dst,src) : OQA=DS(dst), DS(dst) ^= src

ALU Doubleword 1 for LDS IDX

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-47
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

44 DS_INST_MSKOR_RET: 1A2D MSKOR(dst,msk,src) : OQA=DS(dst),
DS(dst) = ((DS(dst) & ~msk) | src).

45 DS_INST_XCHG_RET: 1A1D Exchange(dst,src) : OQA=DS(dst), DS(dst) =
src.

46 DS_INST_XCHG_REL_RET: 1A2D ExchangeRel(dst,src0,src1) : tmp = dst +
DS_idx_offset. OQA=DS(dst), OQB=DS(tmp); DS(dst)=src0,
DS(tmp)=src1.

47 DS_INST_XCHG2_RET: 1A2D Exchange2(dst,src0,src1) : tmp = dst +
DS_idx_offset*64. OQA=DS(dst), OQB=DS(tmp); DS(dst)=src0,
DS(tmp)=src1.

48 DS_INST_CMP_XCHG_RET: 1A2D CompareExchange(dst,cmp,src) :
OQA=DS(dst); (DS(dst)==cmp) ? DS(dst)=src : DS(dst)=DS(dst).

49 DS_INST_CMP_XCHG_SPF_RET: 1A2D CompareEx-
changeSPF(dst,cmp,src) : OQA=DS(dst); (DS(dst)==cmp) ?
DS(dst)=src : DS(dst)=DS(dst).

50 DS_INST_READ_RET: 1A READ(dst) : OQA = DS(dst).
51 DS_INST_READ_REL_RET: 1A READ_REL(dst) :

tmp=dst+sq_DS_idx_offset; OQA=DS(dst), OQB=DS(tmp).
52 DS_INST_READ2_RET: 2A READ2(dst0,dst1) : OQA=DS(dst0),

OQB=DS(dst1).
53 DS_INST_READWRITE_RET: 2A1D READWRITE(dst0,dst1,data) :

OQA=DS(dst0), DS(dst1)=data.
54 DS_INST_BYTE_READ_RET: 1A BYTEREAD(dst) : OQA=SignEx-

tend(DS(dst)[7:0]).
55 DS_INST_UBYTE_READ_RET: 1A UBYTEREAD(dst) : OQA={24'h0,

DS(dst)[7:0]}.
56 DS_INST_SHORT_READ_RET: 1A SHORTREAD(dst) : OQA=SignEx-

tend(DS(dst)[15:0]}
57 DS_INST_USHORT_READ_RET: 1A USHORTREAD(dst) : OQA={16'h0,

DS(dst)[15:0]}
62:58 reserved
63 DS_INST_ATOMIC_ORDERED_ALLOC_RET: 1A GDS-only (intercepted by

ordered alloc unit). This adds the 7 lsb of 1a to a hidden ordered append
count in wave order and returns the pre-op value to the specified desti-
nation register. This opcode can only be used by GDS and with broad-
cast first set.

IDX_OFFSET_0 27 int(1)

Index offset bit 0. Dword offset, except for LDS_OP value 15, which is a 64-
dword offset.

IDX_OFFSET_2 28 int(1)

Index offset bit 2.

DST_CHAN [30:29] enum(2)

Specifies to which DST_GPR element results are written.
0 CHAN_X: write to X element of destination.
1 CHAN_Y: write to Y element of destination.
2 CHAN_Z: write to Z element of destination.
3 CHAN_W: write to W element of destination.

INDEX_OFFSET_3 31 int(1)

Index offset bit 3.

Related ALU_WORD1_LDS_iDX_OP

ALU Doubleword 1 for LDS IDX

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-48 ALU Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Literal Doubleword0 Constant Contents for Direct LDS Reads
Instructions ALU_WORD1_LDS_DIRECT_LITERAL_LO

Description When an ALU instruction includes a direct-read of LDS, the instruction must be followed by a
64-bit literal constant formed by ALU_WORD1_LDS_DIRECT_LITERAL_LO and
ALU_WORD1_LDS_DIRECT_LITERAL_HI. This defines the address from which to read. An LDS
direct read occurs when one of the source selects to an ALU operation is
ALU_SRC_LDS_DIRECT_A or ALU_SRC_LDS_DIRECT_B.

Opcode Field Name Bits Format
OFFSET_A [12:0] int(13)

Dword offset for LDS direct read.

STRIDE_A [19:13] int(7)

Dword stride. Stride must not cause bank conflict in LDS RAM.

RESERVED [21:20] Reserved.

Bank (constant buffer number) for second set of locked cache lines.

THREAD_REL_A 22 int(1)

Bank (constant buffer number) for second set of locked cache lines.

RESERVED [31:23] Reserved.

Related CF_ALU_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

ALU Instructions 9-49
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Literal Doubleword1 Constant Contents for Direct LDS Reads
Instructions ALU_WORD1_LDS_DIRECT_LITERAL_HI

Description When an ALU instruction includes a direct-read of LDS, the instruction must be followed by a
64-bit literal constant formed by ALU_WORD1_LDS_DIRECT_LITERAL_LO and
ALU_WORD1_LDS_DIRECT_LITERAL_HI. This defines the address from which to read. An LDS
direct read occurs when one of the source selects to an ALU operation is
ALU_SRC_LDS_DIRECT_A or ALU_SRC_LDS_DIRECT_B.

Opcode Field Name Bits Format
OFFSET_B [12:0] int(13)

Dword offset for LDS direct read.

STRIDE_B [19:13] int(7)

Dword stride. Stride must not cause bank conflict in LDS RAM.

RESERVED [21:20] Reserved.

Bank (constant buffer number) for second set of locked cache lines.

THREAD_REL_B 22 int(1)

Bank (constant buffer number) for second set of locked cache lines.

[30:23] Reserved.

DIRECT_READ_32 31 int(1)

0 Read 16 dwords for A and B on each of four cycles.
1 Read 32 dwords for A in one cycle, then 32 dwords for B in the next cycle,

then repeat.

Related CF_ALU_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-50 Vertex Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.3 Vertex Fetch Instruction Formats
Vertex fetch clauses are specified in the CF_WORD0 and CF_WORD1 formats,
described in Section 9.1 on page 9-3. After the clause is specified, the
instructions below can be issued. Graphics programs typically use these
instructions to load vertex data from off-chip memory into GPRs.

All microcode formats for vertex fetches are 64 bits wide.

Vertex Fetch Clause Doubleword 0
Instructions VTX_WORD0

Description This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by VTX_WORD0,
VTX_WORD1_{SEM, GPR}, VTX_WORD2, plus a doubleword filled with zeros, as described in
Chapter 5. Each instruction using this format 4-tuple has either an SEM or an GPR version (not
both) for its second doubleword. The instructions are specified in the VTX_WORD0 doubleword.

Opcode Field Name Bits Format
VC_INST [4:0] enum(5)

Instruction.
0 VC_INST_FETCH: vertex fetch (X = uint32 index). Use VTX_WORD1_GPR

(page 9-52). Not for use with MEM_RD_WORD* or GDS_WORD* encodings.
1 VC_INST_SEMANTIC: semantic vertex fetch. Use VTX_WORD1_SEM

(page 9-55). Not for use with MEM_RD_WORD* or GDS_WORD* encodings.
14 VC_INST_GET_BUFFER_RESINFO: returns the number of elements in a

buffer..
All other values are reserved.

FETCH_TYPE (FT) [6:5] enum(2)

Specifies which index offset.
0 VTX_FETCH_VERTEX_DATA

1 VTX_FETCH_INSTANCE_DATA

2 VTX_FETCH_NO_INDEX_OFFSET

FETCH_WHOLE_QUAD
(FWQ)

7 int(1)

0 Texture instruction can ignore inactive pixels.
1 Texture instruction must fetch data for all pixels in any quad which as at

least one pixel is both active and valid. The result can be used as source
coordinate of a dependent read.

Set this only in PS stage.

BUFFER_ID [15:8] int(8)

Constant ID to use for this fetch (indicates the buffer address, size, and
format).

SRC_GPR [22:16] int(7)

Source GPR address to get fetch address from.

SRC_REL (SR) 23 enum(1)

Specifies whether source address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Vertex Fetch Instruction Formats 9-51
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SRC_SEL_X (SSX) [25:24] enum(2)

Specifies which element of SRC to use for the fetch address.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.

SRC_SEL_Y (SSY) [27:26] enum(2)

Specifies which element of SRC to use for the LDS write address.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.

STRUCTURED_READ
(SR)

[29:28]

Used for VTX structured read.
0 Normal vertex fetch. Not from structured buffer.
1 Vertex fetch from structured buffer with offset from GPR.
2 Vertex fetch from structured buffer with offset from instruction.
3 reserved

LDS_REQ (LR) 30

Return data write to LDS.

COALESCED_READ
(CR)

31

Used for a coalesced vfetch. This is a performance hint. Set this when
fetching a single Dword per thread and the thread addresses are
consecutive.

Related VTX_WORD1_GPR

VTX_WORD1_SEM

VTX_WORD2

Vertex Fetch Clause Doubleword 0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-52 Vertex Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Vertex Fetch Clause Doubleword 1 GPR
Instructions VTX_WORD1_GPR

Description This doubleword is part of the 128-bit 4-tuple formed by VTX_WORD0, VTX_WORD1_{SEM, GPR},
VTX_WORD2, plus a doubleword filled with zeros (DWROD3), as described in Chapter 5. Each
instruction using this format 4-tuple has either a SEM or GPR format (not both) for its second
doubleword. The instructions are specified in the VTX_WORD0 doubleword. This GPR format is
used by FETCH instructions that specify a destination GPR directly. See the next format for the
semantic-table option.

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

Destination GPR address to which result is written.

DST_REL (DR) 7 enum(1)

Specifies whether destination address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

RESERVED 8 Reserved. Set to 0.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)

DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used to
mask elements when writing to the destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 SEL_MASK: mask this element.

USE_CONST_FIELDS
(UCF)

21 int(1)

0 Use format given in this instruction.
1 Use format given in the fetch constant instead of in this instruction.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Vertex Fetch Instruction Formats 9-53
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

DATA_FORMAT [27:22] int(6)

Specifies vertex data format (ignored if USE_CONST_FIELDS is set).
Note that in the following list, numbers 3, 18, 20, 21, 23, 24, 44, 45, 46, and
54 through 62 are for vertex fetches; all others are for texture fetches.
0 FMT_INVALID 32 FMT_16_16_16_16_FLOAT
1 FMT_8 33 FMT_RESERVED_33
2 FMT_4_4 34 FMT_32_32_32_32
3 FMT_3_3_2 35 FMT_32_32_32_32_FLOAT
4 FMT_RESERVED_4 36 FMT_RESERVED_36
5 FMT_16 37 FMT_1
6 FMT_16_FLOAT 38 FMT_1_REVERSED
7 FMT_8_8 39 FMT_GB_GR
8 FMT_5_6_5 40 FMT_BG_RG
9 FMT_6_5_5 41 FMT_32_AS_8
10 FMT_1_5_5_5 42 FMT_32_AS_8_8
11 FMT_4_4_4_4 43 FMT_5_9_9_9_SHAREDEXP
12 FMT_5_5_5_1 44 FMT_8_8_8
13 FMT_32 45 FMT_16_16_16
14 FMT_32_FLOAT 46 FMT_16_16_16_FLOAT
15 FMT_16_16 47 FMT_32_32_32
16 FMT_16_16_FLOAT 48 FMT_32_32_32_FLOAT
17 FMT_8_24 49 FMT_BC1
18 FMT_8_24_FLOAT 50 FMT_BC2
19 FMT_24_8 51 FMT_BC3
20 FMT_24_8_FLOAT 52 FMT_BC4
21 FMT_10_11_11 53 FMT_BC5
22 FMT_10_11_11_FLOAT 54 FMT_APC0
23 FMT_11_11_10 55 FMT_APC1
24 FMT_11_11_10_FLOAT 56 FMT_APC2
25 FMT_2_10_10_10 57 FMT_APC3
26 FMT_8_8_8_8 58 FMT_APC4
27 FMT_10_10_10_2 59 FMT_APC5
28 FMT_X24_8_32_FLOAT 60 FMT_APC6
29 FMT_32_32 61 FMT_APC7
30 FMT_32_32_FLOAT 62 FMT_CTX1
31 FMT_16_16_16_16 63 FMT_RESERVED_63

NUM_FORMAT_ALL
(NFA)

[29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT
and gamma) (ignored if USE_CONST_FIELDS is set).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0,1] if

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2^N] if unsigned, or

[-2^M, 2^M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point

representation (1 == 0x3F800000).

FORMAT_COMP_ALL
(FCA)

30 enum(1)

Specifies sign of source elements (ignored if USE_CONST_FIELDS = 1).
0 FORMAT_COMP_UNSIGNED

1 FORMAT_COMP_SIGNED

Vertex Fetch Clause Doubleword 1 GPR (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-54 Vertex Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SRF_MODE_ALL
(SMA)

31 enum(1)

Mapping to use when converting from signed repeating fraction (SRF) to float
(ignored if USE_CONST_FIELDS is set).
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: data represents numbers in the

range [-1.0, 1.0] in increments of 1/(2^numBits-1-1). For example, 4 bit
numbers use increments of 1/7. The -1 has two encodings.

1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero.
Data represents numbers in the range [-1.0, 1.0] with no representation
of zero and only one representation of -1. Increments in 2/(2^numBits-1-1).
For example, 4 bit numbers use increments of 2/15.

Related VTX_WORD0

VTX_WORD1_SEM

VTX_WORD2

Vertex Fetch Clause Doubleword 1 GPR (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Vertex Fetch Instruction Formats 9-55
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Vertex Fetch Clause Doubleword 1 Semantic-Table Specification
Instructions VTX_WORD1_SEM

Description This doubleword is part of the 128-bit 4-tuple formed by VTX_WORD0, VTX_WORD1_{SEM, GPR},
VTX_WORD2, plus a doubleword filled with zeros, as described in Chapter 5. Each instruction using
this format 4-tuple has either a SEM or GPR format (not both) for its second doubleword. The
instructions are specified in the VTX_WORD0 doubleword. This SEM format is used by SEMANTIC
instructions that specify a destination using a semantic table.

Opcode Field Name Bits Format
SEMANTIC_ID [7:0] int(8)

Specifies an eight-bit semantic ID used to look up the destination GPR in the
semantic table. The semantic table is written by the host and maintained by
hardware.

RESERVED 8 Reserved. Set to 0.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)

DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used to
mask elements when writing to the destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 SEL_MASK: mask this element.

USE_CONST_FIELDS
(UCF)

21 int(1)

0 Use format given in this instruction.
1 Use format given in the fetch constant instead of in this instruction.

DATA_FORMAT [27:22] int(6)

Specifies vertex data format (ignored if USE_CONST_FIELDS is set).
See list for DATA_FORMAT [27:22] in VTX_WORD1_GPR, page 9-52.

NUM_FORMAT_ALL
(NFA)

[29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT
and gamma) (ignored if USE_CONST_FIELDS is set).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0,1] if

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2^N] if unsigned, or

[-2^M, 2^M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point

representation (1 == 0x3F800000).

FORMAT_COMP_ALL
(FCA)

30 enum(1)

Specifies sign of source elements (ignored if USE_CONST_FIELDS = 1).
0 FORMAT_COMP_UNSIGNED

1 FORMAT_COMP_SIGNED

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-56 Vertex Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SRF_MODE_ALL
(SMA)

31 enum(1)

Mapping to use when converting from signed repeating fraction (SRF) to float
(ignored if USE_CONST_FIELDS is set).
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: data represents numbers in the

range [-1.0, 1.0] in increments of 1/(2^numBits-1-1). For example, 4 bit
numbers use increments of 1/7. The -1 has two encodings.

1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero. Data
represents numbers in the range [-1.0, 1.0] with no representation of zero
and only one representation of -1. Increments in 2/(2^numBits-1-1). For
example, 4 bit numbers use increments of 2/15.

Related VTX_WORD0

VTX_WORD1

VTX_WORD1_GPR

VTX_WORD2

Vertex Fetch Clause Doubleword 1 Semantic-Table Specification (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Vertex Fetch Instruction Formats 9-57
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Vertex Fetch Clause Doubleword 2
Instructions VTX_WORD2

Description This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by VTX_WORD0,
VTX_WORD1_{SEM, GPR}, VTX_WORD2, plus a doubleword filled with zeros, as described in
Chapter 5.

Opcode Field Name Bits Format
OFFSET [15:0] int(16)

Offset to begin reading from. Byte-aligned.

ENDIAN_SWAP (ES) [17:16] enum(2)

Endian control (ignored if USE_CONST_FIELDS is set).
0 ENDIAN_NONE: no endian swap (XOR by 0).
1 ENDIAN_8IN16: 8-bit swap in 16 bit word (XOR by 1):

AABBCCDD → BBAADDCC.
2 ENDIAN_8IN32: 8-bit swap in a 32-bit word (XOR by 3):

AABBCCDD → DDCCBBAA.

CONST_BUF_NO_STRIDE
(CBNS)

18 int(1)

0 Do not force stride to zero for constant buffer fetches that use abso-
lute addresses.

1 Force stride to zero for constant buffer fetches that use absolute
addresses.

RESERVED 19 Reserved.

ALT_CONST (AC) 20 int(1)

0 This ALU clause does not use constants from an alternate thread.
1 This ALU clause uses constants from an alternate thread type:

PS→VS, VS→GS, GS→VS, ES→GS. Note that ES and VS share
constants.

BUFFER_INDEX_MODE

(BIM)

[22:21] enum(2)

Specifies whether to add index0 or index1 to the vertex buffer resource.
ID#.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

RESERVED [31:21] Reserved.

Related VTX_WORD0

VTX_WORD1_GPR

VTX_WORD1_SEM

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-58 Texture Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.4 Texture Fetch Instruction Formats
Fetches through a texture cache clause are initiated using the CF_WORD[0,1]
formats, described in Section 9.1 on page 9-3. After the clause is initiated, the
instructions below can be issued. Graphics programs typically use fetches
through a texture cache clause to load texture data from memory into GPRs.
General-computing programs typically use fetches through a texture cache
clause as conventional data loads from memory into GPRs that are unrelated to
textures.

All microcode formats for fetches through a texture cache clause are 96 bits
wide, formed by three doublewords, and padded with zeros to 128 bits.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Texture Fetch Instruction Formats 9-59
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Texture Fetch Doubleword 0
Instructions TEX_WORD0

Description This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by
TEX_WORD[0,1,2] plus a doubleword filled with zeros, as described in Chapter 5.

Opcode Field Name Bits Format
TEX_INST [4:0] enum(5)

Instruction.
0 reserved
1 reserved
2 reserved
3 TEX_INST_LD: fetch data, address XYZL are uint32.
4 TEX_INST_GET_TEXTURE_RESINFO: retrieve width, height, depth, number of

mipmap levels.
5 TEX_INST_GET_NUMBER_OF_SAMPLES: retrieve width, height, depth, number of

samples of an MSAA surface.
6 TEX_INST_GET_COMP_TEX_LOD: X = clamped LOD; Y = non-clamped.
7 TEX_INST_GET_GRADIENTS_H: slopes relative to horizontal: X = dx/dh,

Y = dy/dh, Z = dz/dh, W = dw/dh.
8 TEX_INST_GET_GRADIENTS_V: slopes relative to vertical: X = dx/dv, Y = dy/dv,

Z = dz/dv, W = dw/dv.
9 TEX_INST_SET_TEXTURE_OFFSETS: sets texture offsets from a GPR for use

with GATHER4_O and GATHER4_C_O.
10 TEX_INST_KEEP_GRADIENTS: Compute gradients from coordinates and store

them.
11 TEX_INST_SET_GRADIENTS_H: XYZ set horizontal gradients.
12 TEX_INST_SET_GRADIENTS_V: XYZ set vertical gradients.
13 reserved
14 reserved
15 reserved
16 TEX_INST_SAMPLE

17 TEX_INST_SAMPLE_L

18 TEX_INST_SAMPLE_LB

19 TEX_INST_SAMPLE_LZ

20 TEX_INST_SAMPLE_G.
21 TEX_INST_GATHER4: fetches unfiltered texels from a bilinear sample, packs

into xyzw.
22 TEX_INST_SAMPLE_G_LB

23 TEX_INST_GATHER4_O

24 TEX_INST_SAMPLE_C

25 TEX_INST_SAMPLE_C_L

26 TEX_INST_SAMPLE_C_LB

27 TEX_INST_SAMPLE_C_LZ

28 TEX_INST_SAMPLE_C_G

29 TEX_INST_GATHER4_C

30 TEX_INST_SAMPLE_C_G_LB

31 TEX_INST_GATHER4_C_O

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-60 Texture Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

INST_MOD [6:5] int(2)

Instruction modifier. Different meaning for different TEX_INSTs. Used for: LD,
GetGradientsH/V, and Gather4.

Opcode Instruction Modifier Description
3 LD Determines the type of load operation to be done.

0 ld (Normal load operation.)
1 ldfptr (Perform special load operation to

retrieve fragment pointers for a MSAA sur-
face.)

 2-3 reserved

7 GetGradientsH Determines the type of GetGradientsH operation.
0 Use coarse derivative calculation (all pixels in

the quad use the same gradients).
1 Use fine derivative calculation (each pixel in

the quad has a unique gradient).
2-3 reserved

8 GetGradientsV Determines the type of GetGradientsV operation.
0 Use coarse derivative calculation (all pixels in

the quad use the same gradients).
1 Use fine derivative calculation (each pixel in

the quad has a unique gradient).
2-3 reserved

21 Gather4 Determines the element to be retrieved by the
Gather4 operation.
0 Returns the X element.
1 Returns the Y element.
2 Returns the Z element.
3 Returns the W element.

FETCH_WHOLE_
QUAD (FWQ)

7 int(1)

0 Texture instruction can ignore inactive pixels.
1 Texture instruction fetches data for all pixels in any quad which as at least one

pixel both active and valid. Result can be used as source coordinate of a
dependent read.

RESOURCE_ID [15:8] int(8)

Surface ID to read from (specifies the buffer address, size, and format). 160
available for GS and PS programs; 176 shared across FS and VS.

SRC_GPR [22:16] int(7)

Source GPR address to get the texture lookup address from.

SRC_REL (SR)23 enum(1)

Indicate whether source address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

ALT_CONST

(AC)

24 int(1)

0 This ALU clause does not use constants from an alternate thread.
1 This ALU clause uses constants from an alternate thread type: PS→VS,

VS→GS, GS→VS, ES→GS. Note that ES and VS share constants. Has no
effect on HS, LS, or CS.

Texture Fetch Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Texture Fetch Instruction Formats 9-61
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

RESOURCE_IND
EX_MODE

(RIM)

[26:25] enum(2)

Specifies whether to add index0 or index1 to the resource ID#.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

SAMPLER_INDE
X_MODE

(SIM)

[28:27] enum(2)

Specifies whether to add index0 or index1 to the sampler ID#.
0 CF_INDEX_NONE: do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

RESERVED [31:29] Reserved.

Related TEX_WORD1

TEX_WORD2

Texture Fetch Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-62 Texture Fetch Instruction Formats
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Texture Fetch Doubleword 1
Instructions TEX_WORD1

Description This is the middle doubleword in the 128-bit 4-tuple formed by TEX_WORD[0,1,2] plus a
doubleword filled with zeros, as described in Chapter 5.

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

Destination GPR address to which result is written.

DST_REL (DR) 7 enum(1)

Specifies whether destination address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index (aL) value to this address.

RESERVED 8 Reserved.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)

DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used
to mask elements when writing to destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 SEL_MASK: mask this element.

LOD_BIAS [27:21] int(7)

Constant level-of-detail (LOD) bias to add to the computed bias for this
lookup. Twos-complement S3.4 fixed-point value with range [-4, 4).

COORD_TYPE_X (CTX)

COORD_TYPE_Y (CTY)

COORD_TYPE_Z (CTZ)

COORD_TYPE_W (CTW)

28
29
30
31

enum(1)
enum(1)
enum(1)
enum(1)

Specifies the type of source element.
0 TEX_UNNORMALIZED: Element is in [0, dim); repeat and mirror modes

unavailable.
1 TEX_NORMALIZED: Element is in [0,1]; repeat and mirror modes avail-

able.

Related TEX_WORD0

TEX_WORD2

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Texture Fetch Instruction Formats 9-63
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Texture Fetch Doubleword 2
Instructions TEX_WORD2

Description This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by
TEX_WORD[0,1,2] plus a doubleword filled with zeros, as described in Chapter 5.

Opcode Field Name Bits Format
OFFSET_X [4:0] int(5)

Value added to X element of texel address before sampling (in texel space).
S3.1 fixed-point value ranging from [-8, 8).

OFFSET_Y [9:5] int(5)

Value added to Y element of texel address before sampling (in texel space).
S3.1 fixed-point value ranging from [-8, 8).

OFFSET_Z [14:10] int(5)

Value added to Z element of texel address before sampling (in texel space).
S3.1 fixed-point value ranging from [-8, 8).

SAMPLER_ID [19:15] int(5)

Sampler ID to use (specifies filter options, etc.). Value in the range [0, 17].

SRC_SEL_X (SSX)

SRC_SEL_Y (SSY)

SRC_SEL_Z (SSZ)

SRC_SEL_W (SSW)

[22:20]
[25:23]
[28:26]
[31:29]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies the element source for SRC.XYZW.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.

Related TEX_WORD0

TEX_WORD1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-64 Memory Read Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.5 Memory Read Instructions
The following are instructions to read from the following buffer types:

• scratch

• reduction

• global

Memory-Read Clause Instruction Doubleword 0
Instructions MEM_RD_WORD0

Description Memory read instruction doubleword 0.

Opcode Field Name Bits Format
MEM_INST [4:0] enum(5)

Must be MEM_INST_MEM.
The only legal value is 2: MEM_INST_MEM: memory read/write. All other values
are illegal.
This opcode is exclusively for MEM_RD_WORD* and GDS_WORD* encodings.

ELEM_SIZE [6:5] int(2)

Number of dwords per element, minus one. This field is interpreted as a
value: 1,2, or 4 (3 is illegal). The value from INDEX_GPR is multiplied by this
factor, if applicable. Normally, ELEM_SIZE = four dwords for scratch, one
dword for other types.

FETCH_WHOLE_QUAD 7 int(1)

0 Texture instruction can ignore inactive pixels.
1 Texture instruction must fetch data for all pixels in any quad that has at

least one pixel valid. The result can be used as a source coordinate of a
dependent read.

Set this only in PS stage.

MEM_OP [10:8] enum(3)

Sub-opcode for scratch and scatter memory reads. The sub-opcode must
match the CF_INST opcode used to issue the clause (see value descriptions
below).
0 MEM_RD_SCRATCH: Scratch (temp) buffer read. Use only in

CF_INST_VC/TC[_ACK] clauses.
2 MEM_RD_SCATTER: Scatter (mem-export) buffer read. Use only in

CF_INST_VC/TC[_ACK] clauses.
4 reserved
5 reserved
6 reserved
7 reserved

UNCACHED 11 int(1)

Uncached (cache-bypass) read. When writing and reading in one kernel
pass, this bit must be set.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Memory Read Instructions 9-65
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

INDEXED 12 int(1)

Indexed access (set) or not (cleared). Indexed includes source-GPR in
address calculation.

SRC_SEL_Y [14:13] int(2)

Indicates which component of src to use for the LDS write address.
0 SEL_X: use X component
1 SEL_Y: use Y component
2 SEL_Z: use Z component
3 SEL_W: use W component

RESERVED 15 Reserved

Must be cleared for AMD HD 6900 series and later products.

SRC_GPR [22:16] int(7)

Source GPR address from which to get fetch address.

SRC_REL 23 enum(1) none

Indicate whether source address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index value to this address.

SRC_SEL_X [25:24] enum(2) none

Indicate which component of src to use for the fetch address.
0 SEL_X: use X component
1 SEL_Y: use Y component
2 SEL_Z: use Z component
3 SEL_W: use W component

BURST_CNT [29:26] int(4) none

Burst count 0 indicates one read, 15 indicates 16 reads. ARRAY_BASE and
DST_GPR are incremented for each step in the burst. Not applied to coalesced
reads.

LDS_REQ 30 int(1)

Return data write to LDS.

COALESCED_READ 31 int(1)

Used for a coalesced read. This is a performance hint. Set this when fetching
a single Dword per thread and the thread addresses are consecutive.

Related MEM_RD_WORD1, MEM_RD_WORD2.

Memory-Read Clause Instruction Doubleword 0 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-66 Memory Read Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Memory-Read Instruction Doubleword 1
Instructions MEM_RD_WORD1

Description Memory read instruction doubleword 1.

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

Destination GPR address to which the result is written.

DST_REL 7 enum(1)

Indicate whether destination address is absolute or relative to an index.
0 Absolute: no relative addressing.
1 Relative: add current loop index value to this address.

RESERVED 8 Reserved.

DST_SEL_X

DST_SEL_Y

DST_SEL_Z

DST_SEL_W

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Indicate which component of the result to write to dst.XYZW. Can be used
to mask out components when writing to destination GPR.
0 SEL_X: use X component.
1 SEL_Y: use Y component.
2 SEL_Z: use Z component.
3 SEL_W: use W component.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 SEL_MASK: mask out this component.

RESERVED 21 Reserved.

DATA_FORMAT [27:22] int(6)

Indicate vertex data format.
See list for DATA_FORMAT [27:22] in VTX_WORD1_GPR, page 9-52, and
VTX_WORD1_SEM, page 9-55.

NUM_FORMAT_ALL [29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT
and gamma).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0, 1] if

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2N] if unsigned, or

[-2M, 2M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point

representation (1 == 0x3F800000).

FORMAT_COMP_ALL 30 enum(1)

Indicate if source components are signed.
0 FORMAT_COMP_UNSIGNED.
1 FORMAT_COMP_SIGNED.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Memory Read Instructions 9-67
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SRF_MODE_ALL 31 enum(0)

Mapping to use when converting from signed repeating fraction (SRF) to
float.
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: data represents numbers in the

range [-1.0, 1.0] in increments of 1/(2^numBits-1-1). For example, 4 bit
numbers use increments of 1/7. The -1 has two encodings.

1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero.
Data represents numbers in the range [-1.0, 1.0] with no representation
of zero and only one representation of -1. Increments in 2/(2^numBits-1-1).
For example, 4 bit numbers use increments of 2/15.

Related MEM_RD_WORD0, MEM_RD_WORD2.

Memory-Read Instruction Doubleword 1 (Cont.)

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-68 Memory Read Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Memory-Read Clause Instruction Doubleword 2
Instructions MEM_RD_WORD2

Description Memory read clause instruction doubleword 2.

Opcode Field Name Bits Format
ARRAY_BASE [12:0] int(13)

• For scratch or reduction input or output, this is the base address of the array
in multiples of four doublewords [0,32764].

• For stream or ring output, this is the base address of the array in multiples of
one doubleword [0,8191].

RESERVED [15:13] Reserved.

ENDIAN_SWAP [17:16] enum(2)

Endian control (ignored if USE_CONST_FIELDS = 1).
0 ENDIAN_NONE: no endian swap (XOR by 0)
1 ENDIAN_8IN16: Eight-bit swap in 16-bit word (XOR by 1):

AABBCCDD → BBAADDCC
2 ENDIAN_8IN32: Eight-bit swap in 32-bit word (XOR by 3):

AABBCCDD → DDCCBBAA

RESERVED [19:18] Reserved.

ARRAY_SIZE [31:20] int(12)

The array size is calculated in the following way: Four element sizes (ELEMSIZE)
are available; these specify 1, 2, or 4 dwords. ELEMSIZE=0 represents one dword,
with possible values up to 4096; ELEMSIZE=3 represents four dwords, with
possible values up to 16,384.
Used only for scratch reads (no effect on scatter).
Also see the ARRAY_SIZE field in the CF_ALLOC_EXPORT_WORD1_BUF instruction, on
page 9-19.

Related MEM_RD_WORD0, MEM_RD_WORD1.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Global Data Share Read/Write Instructions 9-69
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

9.6 Global Data Share Read/Write Instructions
The section describes instructions that transfer data between GPRs and global
data share memory.

Memory: Global Data-Share Instruction Doubleword 0
Instructions MEM_GDS_WORD0

Description Global memory data share instruction word 0.

Opcode Field Name Bits Format
MEM_INST [4:0] enum(5)

The only legal value is 2: MEM_INST_MEM: memory read/write.
All other values are illegal.
Use only for MEM_RD_WORD* and GDS_WORD* encodings.

RESERVED [7:5] Reserved.

MEM_OP [10:8] enum(3)

Sub-opcode for GDS read/writes or TF-buffer writes. The subopcode must match
the CF_INST opcode used to issue the clause, as indicated below.
0 reserved
1 reserved
2 reserved
4 MEM_GDS: Global data sharing read or write. Use only in CF_INST_GDS clause.
5 MEM_TF_WRITE: Tesselation buffer write. Use only in CF_INST_GDS clause.
6 reserved
7 reserved

SRC_GPR [17:11] int(7)

Source GPR (supplies data to GDS or TF buffer).
TF_write: X=(tf_idx + tf_base), Y=tf_lod, Z=unused.

SRC_REL_MODE [19:18] enum(2)

(SRM) Indicate whether source-GPR is absolute or relative to an index or global GPR.
0 REL_NONE: Normal mode - no offset applied to GPR address.
1 REL_LOOP: add current loop index value.
2 REL_GLOBAL: treat GPR address as absolute, not thread-relative.

SRC_SEL_X

SRC_SEL_Y

SRC_SEL_Z

[22:20]
[25:23]
[28:26]

enum(3)
enum(3)
enum(3)

Select source component from GPR.xzyw01. Set unused components to 0.
0 SEL_X: use X component.
1 SEL_Y: use Y component.
2 SEL_Z: use Z component.
3 SEL_W: use W component.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 reserved
7 reserved

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-70 Global Data Share Read/Write Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

RESERVED [31:29] Reserved.

Related MEM_GDS_WORD1, MEM_GDS_WORD2.

Memory: Global Data-Share Instruction Doubleword 0

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Global Data Share Read/Write Instructions 9-71
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Memory: Global Data-Share Instruction Doubleword 1
Instructions MEM_GDS_WORD1

Description Global memory data share instruction dword 1.

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

For GDS operations that return data, this specifies to which GPR data is returned.
A return of one value is written the X element. If two values are returned, the
results are written to the X and Y elements. This is ignored if no value is returned
or if this is a TF_WRITE.

DST_REL_MODE [8:7] enum(2)

(DRM) Indicate whether the source GPR is absolute or relative to an index, or global
GPR. This is ignored if there is no return value or if this is a tessellation factor
write.
0 REL_NONE: Normal mode; no offset applied to GPR address.
1 REL_LOOP: add current loop index value.
2 REL_GLOBAL: treat GPR address as absolute, not thread-relative.

GDS_OP [14:9] enum(6)

Global data share operation. Ignored for tessellation factor write.
0 DS_INST_ADD: OP(dst,src, ...) dst=src0_sel, src=src1_sel. 1A1D

ADD(dst,src) : DS(dst) += src. dst is src0_sel, src is src1_sel.
1 DS_INST_SUB: 1A1D SUB(dst,src) : DS(dst) = DS(dst) - src.
2 DS_INST_RSUB: 1A1D RSUB(dst,src): DS(dst) = src - DS(dst).
3 DS_INST_INC: 1A1D INC(dst) : (DS(dst)>=src) ? DS(dst) = 0 : DS(dst)++.
4 DS_INST_DEC: 1A1D DEC(dst) : DS(dst) = ((DS(dst)==0) || (DS(dst)>src)) ? src

: DS(dst)-1.
5 DS_INST_MIN_INT: 1A1D MIN(dst,src) : DS(dst) = min (DS(dst),src).
6 DS_INST_MAX_INT: 1A1D MAX(dst,src) : DS(dst) = max(DS(dst),src).
7 DS_INST_MIN_UINT: 1A1D MIN(dst,src) : DS(dst) = min (DS(dst),src).
8 DS_INST_MAX_UINT: 1A1D MAX(dst,src) : DS(dst) = max(DS(dst),src)
9 DS_INST_AND: 1A1D AND(dst,src) : DS(dst) &= src.
10 DS_INST_OR: 1A1D OR(dst,src) : DS(dst) |= src.
11 DS_INST_XOR: 1A1D XOR(dst,src) : DS(dst) ^= src.
12 DS_INST_MSKOR: 1A2D MKSOR(dst,mask,src) : DS(dst) = ((DS(dst) & ~msk) |

src).
13 DS_INST_WRITE: 1A1D WRITE(dst,src) : DS(dst) = src.
14 DS_INST_WRITE_REL: 1A2D WRITEREL(dst,src0,src1) : tmp = dst +

sq_DS_idx_offset (offset in dwords). DS(dst) = src0, DS(tmp) = src1.
15 DS_INST_WRITE2: 1A2D WRITE2(dst,src0,src1) : tmp =

dst+(sq_DS_idx_offset * 64). DS(dst) = src0, DS(tmp) = src1.
16 DS_INST_CMP_STORE: 1A2D CMP_STORE(dst, cmp, src) : DS(dst) = (DS(dst)

== cmp) ? src : DS(dst).
17 DS_INST_CMP_STORE_SPF: 1A2D CMP_STORE_SPF(dst, cmp, src) : DS(dst)

= (DS(dst) == cmp) ? src : DS(dst).
18 DS_INST_BYTE_WRITE: 1A1D BYTEWRITE (dst, src) : DS(dst) = src[7:0].
19 DS_INST_SHORT_WRITE: 1A1D SHORTWRITE(dst, src) : DS(dst) = src[15:0]
32 DS_INST_ADD_RET: 1A1D ADD(dst,src) : OQA=DS(dst), DS(dst) += src. dst is

src0_sel, src is src1_sel.
33 DS_INST_SUB_RET: 1A1D SUB(dst,src) : OQA=DS(dst), DS(dst) = DS(dst) -

src.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-72 Global Data Share Read/Write Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

34 DS_INST_RSUB_RET: 1A1D RSUB(dst,src) : OQA=DS(dst), DS(dst) = src -
DS(dst)

35 DS_INST_INC_RET: 1A1D INC(dst) : OQA=DS(dst), (DS(dst)>=src) ? DS(dst)
= 0 : DS(dst)++

36 DS_INST_DEC_RET: 1A1D DEC(dst) : OQA=DS(dst), DS(dst) = ((DS(dst)==0) ||
(DS(dst)>src)) ? src : DS(dst)-1

37 DS_INST_MIN_INT_RET: 1A1D MIN(dst,src) : OQA=DS(dst), DS(dst) = min
(DS(dst),src)

38 DS_INST_MAX_INT_RET: 1A1D MAX(dst,src) : OQA=DS(dst), DS(dst)
= max(DS(dst),src)

39 DS_INST_MIN_UINT_RET: 1A1D MIN(dst,src) : OQA=DS(dst), DS(dst) = min
(DS(dst),src)

40 DS_INST_MAX_UINT_RET: 1A1D MAX(dst,src) : OQA=DS(dst), DS(dst) =
max(DS(dst),src)

41 DS_INST_AND_RET: 1A1D AND(dst,src) : OQA=DS(dst), DS(dst) &= src
42 DS_INST_OR_RET: 1A1D OR(dst,src) : OQA=DS(dst), DS(dst) |= src
43 DS_INST_XOR_RET: 1A1D XOR(dst,src) : OQA=DS(dst), DS(dst) ^= src
44 DS_INST_MSKOR_RET: 1A2D MSKOR(dst,msk,src) : OQA=DS(dst), DS(dst) =

((DS(dst) & ~msk) | src).
45 DS_INST_XCHG_RET: 1A1D Exchange(dst,src) : OQA=DS(dst), DS(dst) = src
46 DS_INST_XCHG_REL_RET: 1A2D ExchangeRel(dst,src0,src1) : tmp = dst +

sq_DS_idx_offset. OQA=DS(dst), OQB=DS(tmp); DS(dst)=src0,
DS(tmp)=src1

47 DS_INST_XCHG2_RET: 1A2D Exchange2(dst,src0,src1) : tmp = dst +
sq_DS_idx_offset*64. OQA=DS(dst), OQB=DS(tmp); DS(dst)=src0,
DS(tmp)=src1

48 DS_INST_CMP_XCHG_RET: 1A2D CompareExchange(dst,cmp,src) :
OQA=DS(dst); (DS(dst)==cmp) ? DS(dst)=src : DS(dst)=DS(dst)

49 DS_INST_CMP_XCHG_SPF_RET: 1A2D CompareExchangeSPF(dst,cmp,src) :
OQA=DS(dst); (DS(dst)==cmp) ? DS(dst)=src : DS(dst)=DS(dst)

50 DS_INST_READ_RET: 1A READ(dst) : OQA = DS(dst)
51 DS_INST_READ_REL_RET: 1A READ_REL(dst) : tmp=dst+sq_DS_idx_offset;

OQA=DS(dst), OQB=DS(tmp)
52 DS_INST_READ2_RET: 2A READ2(dst0,dst1) : OQA=DS(dst0), OQB=DS(dst1)
53 DS_INST_READWRITE_RET: 2A1D READWRITE(dst0,dst1,data) :

OQA=DS(dst0), DS(dst1)=data
54 DS_INST_BYTE_READ_RET: 1A BYTEREAD(dst) : OQA=SignEx-

tend(DS(dst)[7:0])
55 DS_INST_UBYTE_READ_RET: 1A UBYTEREAD(dst) : OQA={24'h0,

DS(dst)[7:0]}
56 DS_INST_SHORT_READ_RET: 1A SHORTREAD(dst) : OQA=SignEx-

tend(DS(dst)[15:0]}
57 DS_INST_USHORT_READ_RET: 1A USHORTREAD(dst) : OQA={16'h0,

DS(dst)[15:0]}
63 DS_INST_ATOMIC_ORDERED_AL LOC_RET: 1A GDS-only (intercepted by

ordered alloc unit). This adds the 7 lsb of 1a to a hidden ordered append count
in wave order and returns the pre-op value to the specified destination register.
This opcode can only be used by GDS and with broadcast first set.

RESERVED 15 Reserved.

SRC_GPR [22:16] int(7)

Dword offset for GDS read or write. Ignored if for tessellation factor write.

RESERVED 23 Reserved.

Memory: Global Data-Share Instruction Doubleword 1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Global Data Share Read/Write Instructions 9-73
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

UAV_INDEX_MO
DE

[25:24] enum(2)

(UIM) Indicate whether index0, index1, or nothing to the UAV_ID.
0 CF_INDEX_NONE: Do not index the constant buffer.
1 CF_INDEX_0: add index0 to the constant (CB#/T#/S#/UAV#) number.
2 CF_INDEX_1: add index1 to the constant (CB#/T#/S#/UAV#) number.
3 CF_INVALID: invalid.

UAV_ID [29:26]

Identifies append/consume count within group of a context. Do not use
with TF.

ALLOC_CONSUM
E

30

(AC) When set, accesses append/consume counter. Ignored for tessellation factor write
and GDS with no return.

BCAST_FIRST_
REQ

31

(BFR) GDS processes and responds to the first active pixel only. Return data is
broadcast to all pixels regardless of active status.

Related MEM_GDS_WORD0, MEM_GDS_WORD2.

Memory: Global Data-Share Instruction Doubleword 1

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

9-74 Global Data Share Read/Write Instructions
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Memory: Data-Share Read Instruction Doubleword 0
Instructions MEM_GDS_WORD2

Description Global data share instruction doubleword 2.

DST_SEL_X

DST_SEL_Y

DST_SEL_Z

DST_SEL_W

[2:0]
[5:3]
[8:6]
[11:9]

enum(3)
enum(3)
enum(3)
enum(3)

Select destination component from GPR.xzyw01.
0 SEL_X: use X component
1 SEL_Y: use Y component
2 SEL_Z: use Z component
3 SEL_W: use W component
4 SEL_0: use constant 0.0
5 SEL_1: use constant 1.0
6 reserved
7 SEL_MASK: mask out this component.

RESERVED [31:12] Reserved.

Related MEM_GDS_WORD0, MEM_GDS_WORD1.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD Northern Islands-Family Instruction Set Architecture A-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Appendix A
Instruction Table

Instruction Description Page

Control Flow Instructions

ALU Initiate ALU Clause 8-1

ALU_BREAK Initiate ALU Clause, Loop Break 8-2

ALU_CONTINUE Initiate ALU Clause, Continue Unmasked Pixels 8-3

ALU_ELSE_AFTER Initiate ALU Clause, Stack Push and Else After 8-4

ALU_EXTENDED ALU Clause Instruction Extension 8-5

ALU_POP_AFTER Initiate ALU Clause, Pop Stack After 8-6

ALU_POP2_AFTER Initiate ALU Clause, Pop Stack Twice After 8-7

ALU_PUSH_BEFORE Initiate ALU Clause, Stack Push Before 8-8

CALL Call Subroutine 8-9

CALL_FS Call Fetch Subroutine 8-10

CUT_VERTEX End Primitive Strip, Start New Primitive Strip 8-11

ELSE Else 8-12

EMIT_CUT_VERTEX Emit Vertex, End Primitive Strip 8-13

EMIT_VERTEX Vertex Exported to Memory 8-14

END End Kernel 8-15

EXPORT Export from VS or PS 8-16

EXPORT_DONE Export Last Data 8-17

GDS Global Data Share 8-18

GWS_BARRIER Global Wavefront Barrier 8-19

GWS_INIT Global Wavefront Resource Initialization 8-20

GWS_SEMA_P Global Wavefront Sync Semaphore P 8-21

GWS_SEMA_V Global Wavefront Sync Semaphore V 8-22

HALT Halt Wavefront Execution 8-23

JUMP Jump to Address 8-24

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-2
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

JUMPTABLE Jump Table 8-25

KILL Kill Pixels Conditional 8-26

LOOP_BREAK Break Out Of Innermost Loop 8-27

LOOP_CONTINUE Continue Loop 8-28

LOOP_END End Loop 8-29

LOOP_START Start Loop 8-30

LOOP_START_DX10 Start Loop (DirectX 10) 8-31

LOOP_START_NO_AL Enter Loop If Zero, No Push 8-32

MEM_EXPORT Access Scatter Buffer 8-33

MEM_EXPORT_COMBINED Export Combined Address And Data 8-34

MEM_RAT Export To UAV 8-35

MEM_RAT_CACHELESS Export To UAV Without Caching 8-36

MEM_RAT_COMBINED_CACHELESS Export To UAV Of Combined Address And Data Without
Caching

8-37

MEM_RING, MEM_RING1,
MEM_RING2, MEM_RING3

Export To UAV Without Caching 8-38

MEM_STREAM0_BUF0,
MEM_STREAM0_BUF1,
MEM_STREAM0_BUF2,
MEM_STREAM0_BUF3,
MEM_STREAM1_BUF0,
MEM_STREAM1_BUF1,
MEM_STREAM1_BUF2,
MEM_STREAM1_BUF3,
MEM_STREAM2_BUF0,
MEM_STREAM2_BUF1,
MEM_STREAM2_BUF2,
MEM_STREAM2_BUF3,
MEM_STREAM3_BUF0,
MEM_STREAM3_BUF1,
MEM_STREAM3_BUF2,
MEM_STREAM3_BUF3

Memory Write On Stream # 8-39

MEM_WR_SCRATCH Access Scratch Buffer 8-40

NOP No Operation 8-41

POP Pop From Stack 8-42

PUSH Push State To Stack 8-43

RETURN Return From Subroutine 8-44

TC Initiate Fetch Clause Through Texture Cache 8-45

TC_ACK Fetch Clause Through Texture Cache With ACK 8-46

WAIT_ACK Wait for Write or Fetch-Read ACKs 8-47

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Instructions

ADD Floating-Point Add 8-48

ADD_64 Add Floating-Point, 64-Bit 8-49

ADD_INT Add Integer 8-52

ADD_PREV Dependent Add 8-53

ADDC_UINT Output Carry Bit of Unsigned Integer ADD 8-54

AND_INT AND Bitwise 8-55

ASHR_INT Scalar Arithmetic Shift Right 8-56

BCNT_ACCUM_PREV_INT Count Bits Set 32 Accumulate 8-57

BCNT_INT Count Bits Set 8-58

BFE_INT Signed Integer Bitfield Extract 8-59

BFE_UINT Unsigned Integer Bitfield Extract 8-60

BFI_INT Bitfield Insert 8-61

BFM_INT Bitfield Mask 8-62

BFREV_INT Dword Reversal 8-63

BIT_ALIGN_INT Bit Align 8-64

BYTE_ALIGN_INT Byte Align 8-65

CEIL Floating-Point Ceiling 8-66

CNDE Floating-Point Conditional Move If Equal 8-67

CNDE_INT Integer Conditional Move If Equal 8-68

CNDGE Floating-Point Conditional Move If Greater Than Or
Equal

8-69

CNDGE_INT Integer Conditional Move If Greater Than Or Equal 8-70

CNDGT Floating-Point Conditional Move If Greater Than 8-71

CNDGT_INT Integer Conditional Move If Greater Than 8-72

CNDNE_64 Double-Precision Floating-Point Conditional Move If Not
Equal

8-73

COS Scalar Cosine 8-74

CUBE Cube Map 8-75

DOT Variable-Length Dot Product 8-76

DOT_IEEE Variable-Length Dot Product With IEEE Rules 8-77

DOT4 Four-Channel Dot Product 8-78

DOT4_IEEE Four-Channel Dot Product, IEEE 8-79

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-4
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

EXP_IEEE Scalar Base-2 Exponent, IEEE 8-80

FFBH_INT Find First Bit Signed High 8-81

FFBH_UINT Find First Bit Unsigned High 8-82

FFBL_INT Find First Bit Signed Low 8-83

FLOOR Floating-Point Floor 8-84

FLT_TO_INT Floating-Point To Signed Integer 8-85

FLT_TO_INT_FLOOR Float to Signed Integer Using FLOOR 8-86

FLT_TO_INT_RPI Convert Float Input to Signed Integer Value 8-87

FLT_TO_UINT Floating-Point To Unsigned Integer 8-88

FLT_TO_UINT4 Float to Unsigned Conversion of Four Floating Point
Inputs

8-89

FLT16_TO_FLT32 16-Bit Floating-Point to 32-Bit Floating-Point 8-90

FLT32_TO_FLT16 Floating-Point 32-Bit To Floating-Point 16-Bit 8-91

FLT32_TO_FLT64 Floating-Point 32-Bit To Floating-Point 64-Bit 8-92

FLT64_TO_FLT32 Floating-Point 64-Bit To Floating-Point 32-Bit 8-94

FMA Fused Single-Precision Multiply-Add 8-96

FMA_64 Double-Precision Floating-Point Fused Multiply-Add 8-97

FRACT Floating-Point Fractional 8-98

FRACT_64 Floating-Point Fractional, 64-Bit 8-99

FREXP_64 Split Double-Precision Floating_Point Into Fraction and
Exponent

8-101

GROUP_BARRIER Group Barrier 8-103

GROUP_SEQ_BEGIN Begin of Group Sequence 8-104

GROUP_SEQ_END End Group Sequence 8-105

INT_TO_FLT Integer To Floating-Point 8-106

INTERP_LOAD_P0 Read Parameter Data From LDS for P0 8-107

INTERP_LOAD_P10 Read Parameter Data from LDS for P1 - P0 8-108

INTERP_LOAD_P20 Read Parameter Data from LDS for P2 - P0 8-109

INTERP_X Interpolation of the X Channel 8-110

INTERP_XY Interpolation for X,Y Channels 8-111

INTERP_Z Interpolation of the Z Channel 8-112

INTERP_ZW Interpolation of the Z, W Channels 8-113

KILLE Floating-Point Pixel Kill If Equal 8-114

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

KILLE_INT Integer Kill If Equal 8-115

KILLGE Floating-Point Pixel Kill If Greater Than Or Equal 8-116

KILLGE_INT Integer Kill If Greater Than Or Equal 8-117

KILLGE_UINT Unsigned Integer Kill If Greater Than Or Equal 8-118

KILLGT Floating-Point Pixel Kill If Greater Than 8-119

KILLGT_INT Integer Kill If Greater Than 8-120

KILLGT_UINT Unsigned Integer Kill If Greater Than 8-121

KILLNE Floating-Point Pixel Kill If Not Equal 8-122

KILLNE_INT Integer Kill If Not Equal 8-123

LDEXP_64 Combine Separate Fraction and Exponent into Double-
precision

8-124

LERP_UINT Linear Interpolation 8-126

LOAD_STORE_FLAGS Load and Store Flags 8-127

LOG_CLAMPED Scalar Base-2 Log 8-128

LOG_IEEE Scalar Base-2 IEEE Log 8-129

LSHL_INT Scalar Logical Shift Left 8-130

LSHR_INT Scalar Logical Shift Right 8-131

MAX Floating-Point Maximum 8-132

MAX_64 Double-Precision Floating-Point Maximum 8-133

MAX_DX10 Floating-Point Maximum, DirectX 10 8-134

MAX_INT Integer Maximum 8-135

MAX_UINT Unsigned Integer Maximum 8-136

MAX4 Four-Channel Maximum 8-137

MBCNT_32HI_INT Masked Count Bits Set 32 High 8-138

MBCNT_32LO_ACCUM_PREV_INT Masked Count Bits Set 32 Low 8-139

MIN Floating-Point Minimum 8-140

MIN_64 Double-Precision Floating-Point Minimum 8-141

MIN_DX10 Floating-Point Minimum, DirectX 10 8-142

MIN_INT Signed Integer Minimum 8-143

MIN_UINT Unsigned Integer Minimum 8-144

MOV Copy To GPR 8-145

MOVA_INT Copy Signed Integer To Integer in AR and GPR 8-146

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-6
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

MUL Floating-Point Multiply 8-147

MUL_64 Floating-Point Multiply, 64-Bit 8-148

MUL_IEEE Floating-Point Multiply, IEEE 8-150

MUL_IEEE_PREV Dependent Multiply with IEEE Rules 8-151

MUL_LIT Scalar Multiply Emulating LIT Operation 8-153

MUL_PREV Dependent Multiply 8-153

MUL_UINT24 24-Bit Unsigned Integer Multiply (Low-Order) 8-154

MULADD Floating-Point Multiply-Add 8-155

MULADD_D2 Floating-Point Multiply-Add, Divide by 2 8-156

MULADD_IEEE IEEE Floating-Point Multiply-Add 8-157

MULADD_IEEE_PREV Dependent Multiply Add With IEEE Rules 8-158

MULADD_M2 Floating-Point Multiply-Add, Multiply by 2 8-159

MULADD_M4 Floating-Point Multiply-Add, Multiply by 4 8-160

MULADD_PREV Dependent Multiply-Add 8-161

MULADD_UINT24 24-Bit Unsigned Integer Multiply-Add 8-162

MULHI_INT Signed Scalar Multiply, High-Order 32 Bits 8-163

MULHI_UINT Unsigned Scalar Multiply, High-Order 32 Bits 8-164

MULHI_UINT24 24-Bit Unsigned Integer Multiply (High-Order) 8-165

MULLO_INT Signed Scalar Multiply, Low-Order 32-Bits 8-166

MULLO_UINT Unsigned Scalar Multiply, Low-Order 32-Bits 8-167

NOP No Operation 8-168

NOT_INT Bit-Wise NOT 8-169

OFFSET_TO_FLT Four-Bit Signed Integer to 32-Bit Float 8-170

OR_INT Logical Bit-Wise OR 8-171

PRED_SET_CLR Predicate Counter Clear 8-172

PRED_SET_INV Predicate Counter Invert 8-173

PRED_SET_POP Predicate Counter Pop 8-174

PRED_SET_RESTORE Predicate Counter Restore 8-175

PRED_SETE Floating-Point Predicate Set If Equal 8-176

PRED_SETE_64 Floating-Point Predicate Set If Equal, 64-Bit 8-177

PRED_SETE_INT Integer Predicate Set If Equal 8-179

PRED_SETE_PUSH Floating-Point Predicate Counter Increment If Equal 8-180

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

PRED_SETE_PUSH_INT Integer Predicate Counter Increment If Equal 8-181

PRED_SETGE Floating-Point Predicate Set If Greater Than Or Equal 8-182

PRED_SETGE_64 Floating-Point Predicate Set If Greater Than Or Equal,
64-Bit

8-183

PRED_SETGE_INT Integer Predicate Set If Greater Than Or Equal 8-186

PRED_SETGE_PUSH Predicate Counter Increment If Greater Than Or Equal 8-187

PRED_SETGE_PUSH_INT Integer Predicate Counter Increment If Greater Than Or
Equal

8-188

PRED_SETGE_UINT Unsigned Integer Predicate Set If Greater Than Or
Equal

8-189

PRED_SETGT Floating-Point Predicate Set If Greater Than 8-190

PRED_SETGT_64 Floating-Point Predicate Set If Greater Than, 64-Bit 8-191

PRED_SETGT_INT Integer Predicate Set If Greater Than 8-193

PRED_SETGT_PUSH Predicate Counter Increment If Greater Than 8-194

PRED_SETGT_PUSH_INT Integer Predicate Counter Increment If Greater Than 8-195

PRED_SETGT_UINT Unsigned Integer Predicate Set If Greater Than 8-196

PRED_SETLE_PUSH_INT Predicate Counter Increment If Less Than Or Equal 8-197

PRED_SETLT_PUSH_INT Predicate Counter Increment If Less Than 8-198

PRED_SETNE Floating-Point Predicate Set If Not Equal 8-199

PRED_SETNE_INT Scalar Predicate Set If Not Equal 8-200

PRED_SETNE_PUSH Predicate Counter Increment If Not Equal 8-201

PRED_SETNE_PUSH_INT Predicate Counter Increment If Not Equal 8-202

RECIP_64 Double Reciprocal 8-203

RECIP_CLAMPED Scalar Reciprocal, Clamp to Maximum 8-204

RECIP_CLAMPED_64 Double Reciprocal Clamped 8-205

RECIP_FF Scalar Reciprocal, Clamp to Zero 8-206

RECIP_IEEE Scalar Reciprocal, IEEE Approximation 8-207

RECIP_INT Signed Integer Scalar Reciprocal 8-208

RECIP_UINT Unsigned Integer Scalar Reciprocal 8-209

RECIPSQRT_64 Double Reciprocal Square Root 8-210

RECIPSQRT_CLAMPED Scalar Reciprocal Square Root, Clamp to Maximum 8-211

RECIPSQRT_CLAMPED_64 Double Reciprocal Square Root Clamped 8-212

RECIPSQRT_FF Scalar Reciprocal Square Root, Clamp to Zero 8-213

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-8
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

RECIPSQRT_IEEE Scalar Reciprocal Square Root, IEEE Approximation 8-214

RNDNE Floating-Point Round To Nearest Even Integer 8-215

SAD_ACCUM_HI_UINT Sum of Absolute Differences With Accumulation Into
MSB

8-216

SAD_ACCUM_PREV_UINT Sum of Absolute Differences With Accumulation From
Previous Channel

8-217

SAD_ACCUM_UINT Sum of Absolute Differences With Accumulation Into
LSB

8-218

SET_CF_IDX0 Move Index From GPR To Index Register 0 8-219

SET_CF_IDX1 Move Index From GPR To Index Register1 8-220

SET_LDS_SIZE Set Local/Global Mode and LDS Size 8-221

SET_MODE Override Rounding and Denorm Modes 8-220

SETE Floating-Point Set If Equal 8-223

SETE_64 Double-Precision Floating-Point If Greater Than Or
Equal

8-224

SETE_DX10 Floating-Point Set If Equal DirectX 10 8-225

SETE_INT Integer Set If Equal 8-226

SETGE Floating-Point Set If Greater Than Or Equal 8-227

SETGE_64 Double-Precision Floating-Point Set If Greater Than Or
Equal

8-228

SETGE_DX10 Floating-Point Set If Greater Than Or Equal, DirectX 10 8-229

SETGE_INT Signed Integer Set If Greater Than Or Equal 8-230

SETGE_UINT Unsigned Integer Set If Greater Than Or Equal 8-231

SETGT Floating-Point Set If Greater Than 8-232

SETGT_64 Double-Precision Floating-Point Set If Greater Than 8-233

SETGT_DX10 Floating-Point Set If Greater Than, DirectX 10 8-234

SETGT_INT Signed Integer Set If Greater Than 8-235

SETGT_UINT Unsigned Integer Set If Greater Than 8-236

SETNE Floating-Point Set If Not Equal 8-237

SETNE_64 Double-Precision Floating-Point Set If Not Equal 8-238

SETNE_DX10 Floating-Point Set If Not Equal, DirectX 10 8-239

SETNE_INT Integer Set If Not Equal 8-240

SIN Scalar Sine 8-241

SQRT_64 Double Square Root 8-242

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SQRT_IEEE Scalar Square Root, IEEE Approximation 8-243

STORE_FLAGS Store Flags 8-244

SUB_INT Integer Subtract 8-245

SUBB_UINT Output Borrow Bit of Unsigned Integer Subtract 8-246

TRUNC Floating-Point Truncate 8-247

UBYTE0_FLT, UBYTE1_FLT,
UBYTE2_FLT, UBYTE3_FLT

Byte # Float 8-248

UINT_TO_FLT Unsigned Integer To Floating-point 8-249

XOR_INT Logical Bit-Wise XOR 8-250

Instructions for Fetches Through a Texture Cache Clause

FETCH Vertex Fetch 8-251

GET_BUFFER_RESINFO Return Number of Elements in a Buffer 8-252

SEMANTIC Semantic Vertex Fetch 8-253

GATHER4 Fetch Four Texels (In A 2x23 Pattern) 8-254

GATHER4_C Gather4 With Depth Comparison 8-255

GATHER4_C_O Gather4 With Depth Comparison and GPR Coordinate
Offsets

8-256

GATHER4_O Gather4 with GPR Coordinate Offsets 8-257

GET_GRADIENTS_H Get Slopes Relative To Horizontal 8-258

GET_GRADIENTS_V Get Slopes Relative To Vertical 8-259

GET_LOD Get Computed Level of Detail For Pixels 8-260

GET_NUMBER_OF_SAMPLES Get Number of Samples 8-261

GET_TEXTURE_RESINFO Get Texture Resolution 8-262

KEEP_GRADIENTS Keep Gradients 8-263

LD Load Texture Elements 8-264

SAMPLE Sample Texture 8-265

SAMPLE_C Sample Texture with Comparison 8-266

SAMPLE_C_G Sample Texture with Comparison and Gradient 8-267

SAMPLE_C_G_LB Sample Texture with Comparison, Gradient, and LOD
Bias

8-268

SAMPLE_C_L Sample Texture with LOD 8-269

SAMPLE_C_LB Sample Texture with LOD Bias 8-270

SAMPLE_C_LZ Sample Texture with LOD Zero 8-271

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

A-10
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SAMPLE_G Sample Texture with Gradient 8-272

SAMPLE_G_LB Sample Texture with Gradient and LOD Bias 8-273

SAMPLE_L Sample Texture with LOD 8-274

SAMPLE_LB Sample Texture with LOD Bias 8-275

SAMPLE_LZ Sample Texture with LOD Zero 8-276

SET_GRADIENTS_H Set Horizontal Gradients 8-277

SET_GRADIENTS_V Set Vertical Gradients 8-278

SET_TEXTURE_OFFSETS Set Texture Offsets 8-279

Memory Read Instructions

MEM_RD_SCATTER Read Scatter Buffer 8-280

MEM_RD_SCRATCH Read Scratch Buffer 8-281

Data Share Read/Write Instructions

MEM_GDS Global Data Share Write 8-282

MEM_TF_WRITE Tesselation Buffer Write 8-283

GLOBAL_DS_WRITE Global Data Share Write 8-284

GLOBAL_DS_READ Global Data Share Read 8-285

Local Data Share (LDS) Instruction

LDS_IDX_OP LDS Indexed Operation 8-286

Instruction Description Page

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{BUF, SWIZ} One of the multiple options listed. In this case, the string BUF or the string SWIZ.

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

0x Indicates that the following is a hexadecimal number.

1011b A binary value, in this example a 4-bit value.

29’b0 29 bits with the value 0.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

absolute A displacement that references the base of a code segment, rather than an instruction
pointer. See relative.

active mask A 1-bit-per-pixel mask that controls which pixels in a “quad” are really running. Some
pixels might not be running if the current “primitive” does not cover the whole quad. A
mask can be updated with a PRED_SET* ALU instruction, but updates do not take effect
until the end of the ALU clause.

address stack A stack that contains only addresses (no other state). Used for flow control. Popping
the address stack overrides the instruction address field of a flow control instruction.
The address stack is only modified if the flow control instruction decides to jump.

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream
processing backend for load balancing of computations between the CPU and GPU
compute device.

aL (also AL) Loop register. A three-component vector (x, y and z) used to count iterations of a loop.

allocate To reserve storage space for data in an output buffer (“scratch buffer,” “ring buffer,”
“stream buffer,” or “reduction buffer”) or for data in an input buffer (“scratch buffer” or
“ring buffer”) before exporting (writing) or importing (reading) data or addresses to, or
from that buffer. Space is allocated only for data, not for addresses. After allocating
space in a buffer, an “export” operation can be done.

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-2
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

ALU Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction,
multiplication, division, and bit manipulation on integer and floating point values. In
stream computing, these are known as stream cores.
ALU.[X,Y,Z,W] - an ALU that can perform four vector operations in which the four oper-

ands (integers or single-precision floating point values) do not have to be
related. It performs “SIMD” operations. Thus, although the four operands need
not be related, all four operations execute the same instruction.

ALU.Trans - (not relevant on HD 6900 and later devices) An ALU unit that can perform
one ALU.Trans (transcendental, scalar) operation, or advanced integer opera-
tion, on one integer or single-precision floating-point value, and replicate the
result. A single instruction can co-issue four ALU.Trans operations to an
ALU.[X,Y,Z,W] unit and one (possibly complex) operation to an ALU.Trans unit,
which can then replicate its result across all four component being operated on
in the associated ALU.[X,Y,Z,W] unit.

AMD APP
KernelAnalyzer

A performance profiling tool for developing, debugging, and profiling stream kernels
using high-level stream computing languages.

AR Address register.

ATI Stream™ SDK A complete software development suite for developing applications for AMD Acceler-
ated Parallel Processing compute devices. Currently, the ATI Stream SDK includes
OpenCL and CAL.

aTid Absolute work-item ID (formerly thread ID). It is the ordinal count of all work-items being
executed (in a draw call).

b A bit, as in 1Mb for one megabit, or lsb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

border color Four 32-bit floating-point numbers (XYZW) specifying the border color.

branch granularity The number of work-items executed during a branch. For AMD GPUs, branch granu-
larity is equal to wavefront granularity.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space.

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible
interface to AMD Accelerated Parallel Processing compute devices. This lower-level
API gives users direct control over the hardware: they can directly open devices, allo-
cate memory resources, transfer data and initiate kernel execution. CAL also provides
a JIT compiler for AMD IL.

CF Control Flow.

cfile Constant file or constant register.

channel A component in a vector.

clamp To hold within a stated range.

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the compute device
ISA. Executed without pre-emption.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

clause size The total number of slots required for an stream core clause.

clause temporaries Temporary values stored at GPR that do not need to be preserved past the end of a
clause.

clear To write a bit-value of 0. Compare “set”.

command A value written by the host processor directly to the GPU compute device. The com-
mands contain information that is not typically part of an application program, such as
setting configuration registers, specifying the data domain on which to operate, and ini-
tiating the start of data processing.

command processor A logic block in the R700 (HD4000-family of devices) that receives host commands,
interprets them, and performs the operations they indicate.

component (1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One
of four data items in a 4-component register.

compute device A parallel processor capable of executing multiple work-items of a kernel in order to
process streams of data.

compute kernel Similar to a pixel shader, but exposes data sharing and synchronization.

compute shader Similar to a pixel shader, but exposes data sharing and synchronization.

compute unit pipeline A hardware block consisting of five stream cores, one stream core instruction decoder
and issuer, one stream core constant fetcher, and support logic. All parts of a compute
unit pipeline receive the same instruction and operate on different data elements. Also
known as “slice.”

constant buffer Off-chip memory that contains constants. A constant buffer can hold up to 1024 four-
component vectors. There are fifteen constant buffers, referenced as cb0 to cb14. An
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen
immediate constant buffers, referenced as icb0 to icb14.

constant cache A constant cache is a hardware object (off-chip memory) used to hold data that remains
unchanged for the duration of a kernel (constants). “Constant cache” is a general term
used to describe constant registers, constant buffers or immediate constant buffers.

constant file Same as constant register.

constant index
register

Same as “AR” register.

constant registers On-chip registers that contain constants. The registers are organized as four 32-bit
component of a vector. There are 256 such registers, each one 128-bits wide.

constant waterfalling Relative addressing of a constant file. See waterfalling.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the GPU compute device stream core runs.

CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to
the GPU compute device.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-4
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

CS Compute shader; commonly referred to as a compute kernel. A shader type, analogous
to VS/PS/GS/ES.

CTM Close-to-Metal.
A thin, HW/SW interface layer. This was the predecessor of the AMD CAL.

DC Data Copy Shader.

device A device is an entire AMD Accelerated Parallel Processing compute device.

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the GPU compute device’s local memory. This allows other
computations to occur in parallel, increasing overall system performance.

double word Dword. Two words, or four bytes, or 32 bits.

double quad word Eight words, or 16 bytes, or 128 bits. Also called “octword.”

domain of execution A specified rectangular region of the output buffer to which work-items are mapped.

DPP Data-Parallel Processor.

dst.X The X “slot” of an destination operand.

dword Double word. Two words, or four bytes, or 32 bits.

element A component in a vector.

engine clock The clock driving the stream core and memory fetch units on the GPU compute device.

enum(7) A seven-bit field that specifies an enumerated set of decimal values (in this case, a set
of up to 27 values). The valid values can begin at a value greater than, or equal to,
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush
caches, and report status back to the host application.

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input
and output functions. Prior to exporting, an allocation operation must be performed to
reserve space in the associated buffer.

FC Flow control.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent
operations.

FLOP Floating Point Operation.

flush To writeback and invalidate cache data.

FMA Fused multiply add.

frame A single two-dimensional screenful of data, or the storage space required for it.

frame buffer Off-chip memory that stores a frame. Sometimes refers to the all of the GPU memory
(excluding local memory and caches).

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

FS Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex
shader” (VS), and it runs in the same work-item context as the vertex program, and
thus is treated for execution purposes as part of the vertex program. The FS provides
driver independence between the process of fetching data required by a VS, and the
VS itself. This includes having a semantic connection between the outputs of the fetch
process and the inputs of the VS.

function A subprogram called by the main program or another function within an AMD IL stream.
Functions are delineated by FUNC and ENDFUNC.

gather Reading from arbitrary memory locations by a work-item.

gather stream Input streams are treated as a memory array, and data elements are
addressed directly.

global buffer GPU memory space containing the arbitrary address locations to which uncached ker-
nel outputs are written. Can be read either cached or uncached. When read in
uncached mode, it is known as mem-import. Allows applications the flexibility to read
from and write to arbitrary locations in input buffers and output buffers, respectively.

global memory Memory for reads/writes between work-items. On HD Radeon 5XXX series devices and
later, atomic operations can be used to synchronize memory operations.

GPGPU General-purpose compute device. A GPU compute device that performs general-pur-
pose calculations.

GPR General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point,
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision
data components (values). These registers can be indexed, and consist of an on-chip
part and an off-chip part, called the “scratch buffer,” in memory.

GPU Graphics Processing Unit. An integrated circuit that renders and displays graphical
images on a monitor. Also called Graphics Hardware, Compute Device, and Data Par-
allel Processor.

GPU engine clock
frequency

Also called 3D engine speed.

GPU compute device A parallel processor capable of executing multiple work-items of a kernel in order to
process streams of data.

GS Geometry Shader.

HAL Hardware Abstraction Layer.

host Also called CPU.

iff If and only if.

IL Intermediate Language. In this manual, the AMD version: AMD IL. A pseudo-assembly
language that can be used to describe kernels for GPU compute devices. AMD IL is
designed for efficient generalization of GPU compute device instructions so that pro-
grams can run on a variety of platforms without having to be rewritten for each platform.

in flight A work-item currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare
“opcode”, “operation”, and “instruction packet”.

instruction packet A group of tokens starting with an IL_OpCode token that represent a single AMD IL
instruction.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-6
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kcache A memory area containing “waterfall” (off-chip) constants. The cache lines of these con-
stants can be locked. The “constant registers” are the 256 on-chip constants.

kernel A user-developed program that is run repeatedly on a stream of data. A parallel function
that operates on every element of input streams. A device program is one type of ker-
nel. Unless otherwise specified, an AMD Accelerated Parallel Processing compute
device program is a kernel composed of a main program and zero or more functions.
Also called Shader Program. This is not to be confused with an OS kernel, which con-
trols hardware.

LAPACK Linear Algebra Package.

LDS Local Data Share. Part of local memory. These are read/write registers that support
sharing between all work-items in a work-group. Synchronization is required.

LERP Linear Interpolation.

local memory fetch
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the
memory controller, and c) loads registers with data returned from the cache. They are
run at stream core or engine clock speeds. Formerly called texture units.

LOD Level Of Detail.

loop index A register initialized by software and incremented by hardware on each iteration of a
loop.

lsb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control
purpose.

MBZ Must be zero.

mem-export An AMD IL term random writes to the global buffer.

mem-import Uncached reads from the global buffer.

memory clock The clock driving the memory chips on the GPU compute device.

microcode format An encoding format whose fields specify instructions and associated parameters. Micro-
code formats are used in sets of two or four. For example, the two mnemonics,
CF_WORD[0,1] indicate a microcode-format pair, CF_WORD0 and CF_WORD1.

MIMD Multiple Instruction Multiple Data.
– Multiple SIMD units operating in parallel (Multi-Processor System)
– Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local GPU compute device memory,
such as a “frame buffer”, to which a graphics pipeline writes data.

MSAA Multi-Sample Anti-Aliasing.

msb Most-significant bit.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

MSB Most-significant byte.

neighborhood A group of four work-items in the same wavefront that have consecutive work-item IDs
(Tid). The first Tid must be a multiple of four. For example, work-items with Tid = 0, 1,
2, and 3 form a neighborhood, as do work-items with Tid = 12, 13, 14, and 15.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0
using the formula: normalized value = value/ (b–a+ 1)

oct word Eight words, or 16 bytes, or 128 bits. Same as “double quad word”. Also referred to as
octa word.

opcode The numeric value of the code field of an “instruction”.

opcode token A 32-bit value that describes the operation of an instruction.

operation The function performed by an “instruction”.

PaC Parameter Cache.

PCI Express A high-speed computer expansion card interface used by modern graphics cards, GPU
compute devices and other peripherals needing high data transfer rates. Unlike previ-
ous expansion interfaces, PCI Express is structured around point-to-point links. Also
called PCIe.

PoC Position Cache.

pop Write “stack” entries to their associated hardware-maintained control-flow state. The
POP_COUNT field of the CF_WORD1 microcode format specifies the number of stack entries
to pop for instructions that pop the stack. Compare “push.”

pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the AMD Accelerated Parallel Processing compute device.

program Unless otherwise specified, a program is a set of instructions that can run on the AMD
Accelerated Parallel Processing compute device. A device program is a type of kernel.

PS Pixel Shader, aka pixel kernel.

push Read hardware-maintained control-flow state and write their contents onto the stack.
Compare pop.

PV Previous vector register. It contains the previous four-component vector result from a
ALU.[X,Y,Z,W] unit within a given clause.

quad For a compute kernel, this consists of four consecutive work-items. For pixel and other
shaders, this is a group of 2x2 work-items in the NDRange. Always processed together.

rasterization The process of mapping work-items from the domain of execution to the SIMD engine.
This term is a carryover from graphics, where it refers to the process of turning geom-
etry, such as triangles, into pixels.

rasterization order The order of the work-item mapping generated by rasterization.

RAT Random Access Target. Same as UAV. Allows, on DX11 hardware, writes to, and reads
from, any arbitrary location in a buffer.

RB Ring Buffer.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-8
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

register For a GPU, this is a 128-bit address mapped memory space consisting of four 32-bit
components.

relative Referencing with a displacement (also called offset) from an index register or the loop
index, rather than from the base address of a program (the first control flow [CF]
instruction).

render backend unit The hardware units in a processing element responsible for writing the results of a ker-
nel to output streams by writing the results to an output cache and transferring the
cache data to memory.

resource A block of memory used for input to, or output from, a kernel.

ring buffer An on-chip buffer that indexes itself automatically in a circle.

Rsvd Reserved.

sampler A structure that contains information necessary to access data in a resource. Also
called Fetch Unit.

SC Shader Compiler.

scalar A single data component, unlike a vector which contains a set of two or more data
elements.

scatter Writes (by uncached memory) to arbitrary locations.

scatter write Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a
memory space known as the global buffer.

scratch buffer A variable-sized space in off-chip-memory that stores some of the “GPRs”.

set To write a bit-value of 1. Compare “clear”.

shader processor Pre-OpenCL term that is now deprecated. Also called thread processor.

shader program User developed program. Also called kernel.

SIMD Pre-OpenCL term that is now deprecated. Single instruction multiple data unit.
– Each SIMD receives independent stream core instructions.
– Each SIMD applies the instructions to multiple data elements.
Now called a compute unit.

SIMD Engine Pre-OpenCL term that is now deprecated. A collection of thread processors, each of
which executes the same instruction each cycle.

SIMD pipeline In OpenCL terminology: compute unit pipeline. Pre-OpenCL term that is now depre-
cated. A hardware block consisting of five stream cores, one stream core instruction
decoder and issuer, one stream core constant fetcher, and support logic. All parts of a
SIMD pipeline receive the same instruction and operate on different data elements. Also
known as “slice.”

Simultaneous
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

slot A position, in an “instruction group,” for an “instruction” or an associated literal constant.
An ALU instruction group consists of one to seven slots, each 64 bits wide. All ALU
instructions occupy one slot, except double-precision floating-point instructions, which
occupy either two or four slots. The size of an ALU clause is the total number of slots
required for the clause.

SPU Shader processing unit.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-9
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

SR Globally shared registers. These are read/write registers that support sharing between
all wavefronts in a SIMD (not a work-group). The sharing is column sharing, so work-
items with the same work-item ID within the wavefront can share data. All operations
on SR are atomic.

src0, src1, etc. In floating-point operation syntax, a 32-bit source operand. Src0_64 is a 64-bit source
operand.

stage A sampler and resource pair.

stream A collection of data elements of the same type that can be operated on in parallel.

stream buffer A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip
memory to the processor.

stream core The fundamental, programmable computational units, responsible for performing inte-
ger, single, precision floating point, double precision floating point, and transcendental
operations. They execute VLIW instructions for a particular work-item. Each processing
element handles a single instruction within the VLIW instruction.

stream operator A node that can restructure data.

swizzling To copy or move any component in a source vector to any element-position in a desti-
nation vector. Accessing elements in any combination.

thread Pre-OpenCL term that is now deprecated. One invocation of a kernel corresponding to
a single element in the domain of execution. An instance of execution of a shader pro-
gram on an ALU. Each thread has its own data; multiple threads can share a single
program counter. Generally, in OpenCL terms, there is a one-to-one mapping of work-
items to threads.

thread group Pre-OpenCL term that is now deprecated. It contains one or more thread blocks.
Threads in the same thread-group but different thread-blocks might communicate to
each through global per-SIMD shared memory. This is a concept mainly for global data
share (GDS). A thread group can contain one or more wavefronts, the last of which can
be a partial wavefront. All wavefronts in a thread group can run on only one SIMD
engine; however, multiple thread groups can share a SIMD engine, if there are enough
resources. Generally, in OpenCL terms, there is a one-to-one mapping of work-groups
to thread groups.

thread processor Pre-OpenCL term that is now deprecated. The hardware units in a SIMD engine
responsible for executing the threads of a kernel. It executes the same instruction per
cycle. Each thread processor contains multiple stream cores. Also called shader
processor.

thread-block Pre-OpenCL term that is now deprecated. A group of threads which might communicate
to each other through local per SIMD shared memory. It can contain one or more wave-
fronts (the last wavefront can be a partial wavefront). A thread-block (all its wavefronts)
can only run on one SIMD engine. However, multiple thread blocks can share a SIMD
engine, if there are enough resources to fit them in.

Tid Work-item id (previously called a thread id) within a thread block. An integer number
from 0 to Num_threads_per_block-1

token A 32-bit value that represents an independent part of a stream or instruction.

UAV Unordered Access View. Same as random access target (RAT). They allow compute
shaders to store results in (or write results to) a buffer at any arbitrary location. On DX11
hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs
cannot be created from typed resources (textures).

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Glossary-10
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

uncached read/write
unit

The hardware units in a GPU compute device responsible for handling uncached read
or write requests from local memory on the GPU compute device.

vector (1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector
with three elements is known as a “3-vector”. (2) See “AR”. (3) See ALU.[X,Y,Z,W].

VLIW design Very Long Instruction Word.
– Co-issued up to 6 operations (5 stream cores + 1 FC); where FC = flow control.
– 1.25 Machine Scalar operation per clock for each of 64 data elements
– Independent scalar source and destination addressing

vTid Work-item ID (formerly thread ID) within a work-group.

waterfall To use the address register (AR) for indexing the GPRs. Waterfall behavior is deter-
mined by a “configuration registers.”

wavefront Group of work-items executed together on a single SIMD engine. Composed of quads.
A full wavefront contains 64 work-items; a wavefront with fewer than 64 work-items is
called a partial wavefront. Wavefronts that have fewer than a full set of work-items are
called partial wavefronts. For the HD4000-family of devices, there are 64. 32, 16 work-
items in a full wavefront. Work-items within a wavefront execute in lockstep.

write combining Combining several smaller writes to memory into a single larger write to minimize any
overhead associated with write commands.

Term Description

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

AMD Northern Islands-Family Instruction Set Architecture Index-1
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

Index

Symbols

(x, y) identifier pair . 1-2
_64 suffix . 4-24

Numerics

2D matrix . 1-1

A

absolute addressing 2-17
access

AR-relative . 4-8
constant waterfall 4-8

access constant . 4-4
ALU instruction . 4-2
dynamically-indexed 4-8
statically-indexed 4-8

active mask. 2-12, 2-14, 3-10
active pixel state . 3-10
ADDR . 3-17, 3-18
address

constant-register . 4-5
out-of-bounds . 4-6
source . 4-9

address register (AR) 2-13, 4-5, 9-25
addressing

absolute mode 2-16, 2-17
kernel-based . 2-17

adjacent-instruction dependency 4-22
aL . 2-12, 3-7, 3-20, 4-2, 8-32, 9-6, 9-14, 9-18,

9-25, 9-50, 9-52, 9-60, 9-62
alignment restrictions

clause-initiation instructions 3-5
allocate

data-storage space. 3-2
stack . 3-14

ALU
branch-loop instruction 3-17
data flow . 4-10
output modifier . 4-20

ALU clause . 2-10, 3-1
initiation. 3-6
PRED_SET* instructions 3-14

size . 4-3
ALU execution pipelines

even and odd . 2-18
ALU instruction . 2-1

accessing constants 4-2
list of . 4-15

ALU instruction group. 4-3
terms. 2-8

ALU microcode format 4-1
ALU slot size . 4-4
ALU.[X,Y,Z,W] 4-2, 4-6

assignment . 4-4
cycle restriction. 4-11
execute each operation 4-14

ALU.W. 4-2
ALU.X . 4-2
ALU.Y . 4-2
ALU.Z . 4-2
ALU_BREAK

branch-loop instruction 3-17
ALU_CONTINUE

branch-loop instruction 3-17
ALU_ELSE_AFTER

branch-loop instruction 3-17
instruction . 3-21

ALU_INST. 4-4
ALU_POP_AFTER

branch-loop instruction 3-17
ALU_POP2_AFTER

branch-loop instruction 3-17
ALU_PUSH_BEFORE

branch-loop instruction 3-17
instruction . 3-21

ALU_SRC_LITERAL
source operand . 4-3

AR. 3-xii, 2-13, 4-5, 9-25
AR index . 4-6
arbitrary swizzle 3-8, 3-9, 4-7
array . 1-2

data-parallel processor (DPP) 1-1
ARRAY_BASE 3-8, 3-9
ARRAY_SIZE . 3-8
AR-relative access . 4-8

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-2
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

assignment
ALU.[X,Y,Z,W] . 4-4

atomic
parallel reduction. 2-18

atomic reduction . 2-18
Atomic reduction variables 2-17

B

bank
swizzle. 4-12, 4-13

BARRIER. 3-5
bicubic weights . 2-15
bit

LAST . 4-3
border color . 2-15
branch counter . 4-22
branching

conditional execution 3-15
branch-loop instruction 3-11, 3-15

ALU . 3-17
ALU_BREAK . 3-17
ALU_CONTINUE 3-17
ALU_ELSE_AFTER 3-17
ALU_POP2_AFTER 3-17
ALU_PUSH_BEFORE 3-17
CALL . 3-17
CALL_FS. 3-17
ELSE . 3-17
JUMP . 3-17
LOOP_BREAK . 3-17
LOOP_CONTINUE 3-17
LOOP_END. 3-16
LOOP_START . 3-16
LOOP_START_DX10 3-16
LOOP_START_NO_AL. 3-16
POP. 3-16
PUSH . 3-16
PUSH_ELSE . 3-16
RETURN . 3-17
RETURN_FS. 3-17

buffers . 3-8
ring . 3-8, 3-9
stream . 3-8, 3-9

burst memory reads 6-2
BURST_COUNT . 3-8

C

cached read . 6-2
CALL

branch-loop instruction 3-17
subroutine instruction 3-20

CALL* instruction . 3-15
CALL_COUNT. 3-20

CALL_FS instruction 3-20
branch-loop . 3-17

CF instruction
conditional execution 3-10
set stack operations 3-18

CF microcode format fields. 3-3
CF program ending . 3-2
CF_COND_ACTIVE

condition test. 3-13
pixel state . 3-13

CF_COND_BOOL
condition test. 3-13
pixel state . 3-13

CF_COND_NOT_BOOL
condition test. 3-13
pixel state . 3-13

CF_CONST . 3-18
cf_inst . 3-2
clause

memory read. 6-1
clause temp GPR . 2-18
clause temp GPRs

accessing . 2-18
clause temp registers 2-18
clause temporaries . 4-4
clause-initiation instructions

alignment restrictions 3-5
types . 3-5

clauses . 2-10
ALU . 2-10, 3-1
fetch through texture cache . . 2-10, 3-1, 5-1
instructions . 2-9
multiple . 2-10
term . 2-8
types . 2-10

clause-temporary GPRs 2-13
cleared valid mask 3-11
command processor 1-1
common memory buffer

thread share 3-8, 3-10
compute shader . 2-2
COND . 3-18

condition test. 3-13
field . 3-13

condition (COND) field 3-13
condition test . 3-11

CF_COND_ACTIVE 3-13
CF_COND_BOOL. 3-13
CF_COND_NOT_BOOL 3-13
COND . 3-13
VALID_PIXEL_MODE. 3-13
WHOLE_QUAD_MODE 3-13

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-3
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

conditional execution
branching . 3-15
looping . 3-15
subroutine calls 3-15

conditional jumps
control-flow instructions 3-1

constant
access. 4-4

dynamically-indexed. 4-8
statically-indexed 4-8

file read reserve 4-14
inline . 4-7
literal . 4-7
swizzles vector-element 4-2

constant cache 2-13, 4-7
constant register read port restrictions. . . . 4-10
constant registers (CRs). 2-13
constant waterfall . 2-13

access. 4-8
constant-fetch operation 5-2
constant-register address 4-5
constants. 4-5

access ALU instruction. 4-2
DX10 ALU . 4-7
index pairs . 1-2

continue loop . 3-1
control flow . 3-1
control-flow instructions 2-9, 2-10

ALU* . 3-6
conditional jumps 3-1
loops . 3-1
subroutines . 3-1
TC . 3-6

counter
branch. 4-22
predicate . 4-22

CRs . 3-xii, 2-13
CS . 2-2
CUT_VERTEX . 3-10
cycle restriction . 4-13

ALU.[X,Y,Z,W] . 4-11

D

data flow
ALU. 4-10

data sharing . 2-15
dataflow. 1-4

programmer view 1-3
data-parallel processor (DPP) array. 1-1
data-storage space allocation. 3-2
DC. 2-1
deactivated

invalid pixel . 3-12

definition . 2-2, 5-2
export . 3-6
import . 3-6
quad . 3-11, 5-2

dependency adjacent-instruction 4-22
dependency detection processor 4-23
destination register 4-21
detects optimize processor. 4-23
DirectX10 loop . 3-19
DirectX10-style loop 3-1
DirectX9

loop. 3-18
loop index . 4-5
LOOP_END . 3-18
LOOP_START . 3-18

DirectX9-style loop . 3-1
DMA copy . 2-1
DMA program . 2-1
Domain Shader. 2-1
double-precision

floating-point operation. 4-24
doubleword layouts, memory 3-3
DPP. 1-2

data-parallel processor. 1-1
DS . 2-1
dst.X . 4-4
DX10

ALU constants . 4-7
constant cache . 4-7

dynamic index. 4-8
dynamically-indexed

constant access . 4-8

E

ELEM_SIZE . 3-8
elements . 4-2

swizzle source . 5-1
ELSE

branch-loop instruction 3-17
pixel state . 3-18

EMIT_CUT_VERTEX 3-10
EMIT_VERTEX . 3-10
end of CF program. 3-2
endian order . 3-xii
enum . 9-2
even

ALU execution pipeline 2-18
execute

CF instructions conditionally 3-10
each ALU.[X,Y,Z,W] operation 4-14
initialization . 4-13
texture-fetch clause 3-6

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-4
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

export. 3-9
definition . 3-6
normal . 3-7
operation . 3-10
term . 2-8

EXPORT_WRITE . 3-8
EXPORT_WRITE_IND 3-8

F

F register . 2-13
fetch

through texture cache clause 3-1, 5-1
fetch program . 2-1
fetch shader . 2-1
fetch subroutine. 2-1
fetch term . 2-8
fetch through texture cache

clauses . 2-10
instructions . 2-1

FETCH_WHOLE_QUAD 5-2
field

ADDR . 3-17, 3-18
CF microcode formats 3-3
COND . 3-13
condition . 3-13
INDEX_MODE . 3-18
RESOURCE_ID . 5-1
SAMPLER_ID . 5-1
SRC*_ELEM . 4-9
VALID_PIXEL_MODE. 3-12

file read
reserve constant 4-14

floating-point constant register (F) 2-13
floating-point operation

double-precision 4-24
floating-point operations 4-24
flow-control loop index 4-5
format

ALU microcode . 4-1
OP2 . 4-4
OP3 . 4-4
texture-fetch microcode 5-1

fragment program . 2-2
fragment shader . 2-2
fragment term . 2-8
frame buffers . 2-2
FS . 2-1

G

gather reads . 3-9
GDS. 2-14
general-purpose registers (GPRs) 2-13
geometry program. 2-1

geometry shader . 2-1
geometry shader (GS) 3-2
Global Data Share (GDS). 2-14
global GPR . 2-18
global persistent register. 2-18
global registers

absolute-addressed. 2-16
GPR

clause temp. 2-18
global. 2-17, 2-18
ordering . 2-18
private . 2-18
read port restrictions. 4-10
swizzles across address. 4-2
temporary pool . 2-17

GPR read, reserve 4-13
GPRs. 3-xii, 2-13
GS . 2-1

H

hardware-generated interrupts 1-1
host commands. 1-2
host interface. 1-2
HS . 2-1
Hull Shader . 2-1

I

I register . 2-12
identifier pair (x, y) . 1-2
IEEE floating-point exceptions 1-3
import - definition . 3-6
inactive-branch - pixel state 3-10
inactive-break - pixel state 3-11
inactive-continue - pixel state 3-11
increment. 3-18, 8-30
index

AR . 4-6
dynamic. 4-8
flow-control loop . 4-5
loop . 3-20
register . 4-2

index mode . 2-17
index pairs. 1-2

constants. 1-2
inputs. 1-2
outputs . 1-2

INDEX_MODE field. 3-18
indirect lookup . 4-8
initialization execution 4-13
initiation

ALU clause . 3-6
texture-fetch clause. 3-6

inline constants . 4-7

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-5
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

innermost loop . 3-1
input index pairs . 1-2
input modifiers . 4-9
instruction . 3-2

ALU_ELSE_AFTER 3-21
ALU_PUSH_BEFORE 3-21
branch-loop. 3-11
CALL* . 3-15
CALL_FS . 3-20
KILL restriction . 4-19
LOOP_BREAK . 3-19
LOOP_CONTINUE 3-19
LOOP_END 3-15, 3-18, 3-19
LOOP_START . 3-18
LOOP_START*. 3-15
LOOP_START_DX10 3-19
MOVA . 4-21
MOVA* . 4-5, 4-6

predication . 4-20
NOP . 4-21
POP . 3-15
PRED_SET* restriction. 4-19
PUSH* . 3-15
restrictions reduction 4-19
RETURN. 3-15
texture predicate. 5-1
two source operands 4-21

instruction group 2-9, 4-2, 4-3, 9-25
instruction slots. 4-4

instruction slot. 4-3
instruction group. 4-4

instruction term . 2-7
instruction-related terms 2-7
instructions

ALU. 2-1
clauses . 2-9
control flow . 2-9
fetch through texture cache 2-1
subsequent . 2-1
types . 2-10

int . 9-2
integer constant . 3-18
integer constant register (I) 2-12
interrupts

hardware-generated 1-1
software . 1-3

inter-thread communication 2-17
invalid pixel - deactivated 3-12

J

JUMP
branch-loop instruction 3-17
pixel state . 3-18

jump
LOOP_BREAK . 3-19
specified address 3-2

K

kcache constants . 4-5
kernel . 1-2
kernel size for cleartype filtering 2-15
kernel-based addressing 2-17
KILL. 4-19

instruction, restriction 4-19
killed pixel . 3-11

L

LAST bit . 4-3
LDS . 2-14, 2-19
list of ALU instruction 4-15
LIT. 8-150
literal constants. 4-3, 4-7

restriction . 4-11
terms. 2-8

local data share . 2-19
Local Data Share (LDS) 2-14
locked pages. 3-6
lookup, indirect . 4-8
loop

conditional execution 3-15
continue . 3-1
control-flow instructions 3-1
DirectX10 . 3-19
DirectX10-style . 3-1
DirectX9 . 3-18
DirectX9-style . 3-1
innermost . 3-1
repeat . 3-1, 3-20

loop increment 3-18, 8-30
loop index . 3-xii, 3-7, 3-20, 4-2, 4-5, 5-1, 8-32,

9-6, 9-8, 9-9, 9-14, 9-18, 9-50, 9-52, 9-60,
9-62
DirectX9 . 4-5

loop index (aL) 2-12, 9-25
loop index initializer 3-18, 8-30
LOOP_BREAK

branch-loop instruction 3-17
instruction . 3-19
jump . 3-19

LOOP_CONTINUE
branch-loop instruction 3-17
instruction . 3-19

LOOP_END
branch-loop instruction 3-16
DirectX9 . 3-18
instruction 3-15, 3-18, 3-19

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-6
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

LOOP_START
branch-loop instruction 3-16
DirectX9 . 3-18
instruction . 3-18

LOOP_START*
instruction . 3-15

LOOP_START_DX10
branch-loop instruction 3-16
instruction . 3-19

LOOP_START_NO_AL
branch-loop instruction 3-16

M

manipulate performance 3-2
mask - active. 3-10
matrix - 2D . 1-1
MEM_EXPORT 3-8, 3-9
MEM_RING . 3-8
MEM_SCRATCH. 3-7, 3-9
MEM_STREAM . 3-8
memory address calculation 6-1
memory controller . 1-1
memory doubleword layouts 3-3
memory hierarch

data sharing . 2-15
memory latency. 1-4
memory read clauses 6-1
microcode

format texture-fetch. 5-1
microcode format. 3-2
microcode format term 2-7
modifier

ALU output . 4-20
input . 4-9

MOV_INDEX_GLOBAL 2-18
MOVA

instruction . 4-21
MOVA*

instruction . 4-6
predication . 4-20

restriction. 4-19
MOVA* instruction. 4-5
MRT. 2-2
multiple clauses. 2-10
multiple render targets 2-2

N

NOP instruction . 4-21
normal export . 3-7

O

odd
ALU execution pipeline. 2-18

OP2 format . 4-4
OP3 format . 4-4
opcode. 3-2
operand scalar . 4-8
operation

constant-fetch . 5-2
export . 3-10
floating-point double-precision 4-24
square . 4-12

optimize. 4-12
optimize

detects processor 4-23
square operations 4-12

out-of-bounds addresses 4-6
output modifier ALU 4-20
output, index pairs. 1-2
output, predicate . 4-21

P

page. 3-6
locked . 3-6

parallel atomic accumulation. 2-18
parallel atomic reductions 2-18
parallel microarchitecture 1-1
parameter . 3-3
perform manipulations. 3-2
performance . 2-18

boosting. 2-15
increase with atomic reduction 2-18

permanently disable pixels 3-12
per-pixel state . 3-11
pixel

condition test. 3-11
invalid deactivated 3-12
killed . 3-11
permanently disable 3-12
term . 2-8

pixel masks . 2-12
pixel program . 2-2
pixel quads . 2-2
pixel shader. 2-2
pixel shader (PS) . 3-7
pixel state . 2-14, 3-10

active. 3-10
ELSE . 3-18
inactive-branch . 3-10
inactive-break . 3-11
inactive-continue 3-11
JUMP . 3-18

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-7
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

POP . 3-18
PUSH . 3-18

POP
branch-loop instruction 3-16
instruction . 3-15
pixel state . 3-18

PRED_SET* . 3-6, 4-19
instruction restriction. 4-19

PRED_SET* instructions
ALU clauses . 3-14

predicate . 2-10
counter . 4-22
MOVA* instruction 4-20
output . 4-21
single . 2-10
stack . 2-10
texture instruction 5-1

predicate register . 2-14
previous vector (PV) 2-13, 4-2

register . 4-6
primitive strip. 2-4, 2-6
primitive term . 2-8
private GPR . 2-18
processor detects a dependency 4-23
program execution order 2-4, 2-6
programmer view dataflow 1-3
PS . 2-2, 3-7
PUSH

branch-loop instruction 3-16
pixel state . 3-18

PUSH*
instruction . 3-15

PUSH_ELSE
branch-loop instruction 3-16

PV . 2-13, 4-2, 4-6
register . 4-21

temporary . 4-13

Q

quad . 5-2
term. 2-8

quad - definition . 3-11

R

read
memory burst . 6-2

read cached . 6-2
read data thread 3-9, 3-10
read port

constant register restriction 4-10
GPR restriction . 4-10

read uncached . 6-2
reduction instruction restrictions 4-19

register
destination . 4-21
global persistent 2-18
previous vector . 4-6
PV. 4-21
reserved for global usage 2-17
temporary

PV. 4-13
registers

clause temp . 2-18
general pool . 2-16
types of shared. 2-16
wavefront private 2-16

repeat loop . 3-1, 3-20
reserve

constant file read 4-14
GPR read . 4-13

RESOURCE_ID . 5-1
restriction

constant register read port 4-10
cycle . 4-13

ALU.[X,Y,Z,W] 4-11
GPR read port . 4-10
KILL instruction. 4-19
literal constant . 4-11
MOVA* . 4-19
PRED_SET* instruction 4-19

restrictions alignment
clause-initiation instructions 3-5

RETURN
branch-loop instruction 3-17
instruction . 3-15
subroutine instruction 3-20

RETURN_FS
branch-loop instruction 3-17

ring buffer . 3-8, 3-9

S

SAMPLER_ID . 5-1
scalar operand . 4-8
scatter - writes . 3-8
scratch buffer . 3-7, 3-9
shared registers

maximum number. 2-16
types . 2-16

single predicate. 2-10
slot . 4-3

T . 4-7
term. 2-8

source address . 4-9
source elements swizzle 5-1
source operand. 2-1

ALU_SRC_LITERAL. 4-3

A M D H D 6 9 0 0 S E R I E S TE C H N O L O G Y

Index-8
Copyright © 2011 Advanced Micro Devices, Inc. All rights reserved.

specified address jump 3-2
squaring operations. 4-12
SRC*_ELEM field . 4-9
src.X . 4-4
SRC_REL . 5-1
stack . 2-12, 3-1

allocation . 3-14
predicate . 2-10

stack entry subentries 3-14
stack operations

CF instruction set 3-18
state register . 2-17
statically-indexed

constant access . 4-8
stream buffer . 3-8, 3-9
subentries - stack entry. 3-14
subroutine

CAL instruction . 3-20
control-flow instructions 3-1
RETURN instruction 3-20

subroutine calls
conditional execution 3-15

subsequent instructions 2-1
swizzle . 4-12

across GPR address 4-2
arbitrary 3-8, 3-9, 4-7
bank . 4-12, 4-13
constant vector-element 4-2
source elements . 5-1

T

T slot . 4-7
TC control-flow instruction 3-6
temp shared registers

global and clause 2-18
temporary register

PV . 4-13
terms

ALU instruction group 2-8
clauses . 2-8
export . 2-8
fetch . 2-8
fragment . 2-8
instruction-related 2-7
instructions . 2-7
literal constant. 2-8
microcode format 2-7
pixel . 2-8
primitive. 2-8
quad . 2-8
slot. 2-8
vertex . 2-8

texel . 5-1

texture instruction predicate 5-1
texture resources . 2-15
texture samplers . 2-15
texture-fetch

microcode format 5-1
texture-fetch clause

execution. 3-6
initiation . 3-6

thread
common memory buffer sharing. . . 3-8, 3-10
memory hierarchy 2-15
read data. 3-9, 3-10

threads
of execution

sharing data . 2-15
trip count . 3-18, 8-30
two source operands instruction. 4-21
types

clause-initiation instructions 3-5
clauses . 2-10
of instructions . 2-10

U

uncached read . 6-2
unordered access views 2-2

V

valid mask 2-12, 2-14, 3-10
cleared . 3-11

valid pixel mode . 3-12
VALID_PIXEL_MODE 3-5, 3-11, 3-12

condition test. 3-13
vector. 4-2
vector-element constant swizzles 4-2
vertex geometry translator 2-3, 2-5
vertex program . 2-1
vertex shader . 2-1
vertex shader (VS) . 3-7
vertex term . 2-8
VGT . 2-3, 2-5
VS . 2-1

vertex shader . 3-7

W

waterfall . 3-xii, 2-13
wavefront

private registers 2-16
whole quad mode . 3-11
WHOLE_QUAD_MODE 3-5, 3-11, 5-2

condition test. 3-13
write export . 3-9
writes scatter . 3-8

	HD 6900 Series Instruction Set Architecture
	Contents
	Preface
	About This Document
	Audience
	Organization
	Registers
	Endian Order
	Conventions
	Related Documents
	Differences Between the Evergreen Family and HD 6900 Series of Devices
	Contact Information

	Chapter 1 Introduction
	Figure 1.1 AMD HD 6900 Series Block Diagram
	Figure 1.2 Programmer’s View of HD 69XX Dataflow

	Chapter 2 Program Organization and State
	2.1 Program Types
	2.1.1 Data Flows
	Table 2.1 Data Flow When Different Shaders Stages are En/Disabled

	2.1.2 Geometry Program Absent
	Table 2.2 Order of Program Execution (Geometry Program Absent)

	2.1.3 Geometry Shader Present
	Table 2.3 Order of Program Execution (Geometry Program Present)

	2.1.4 Tessellation Without Geometry Shader
	Table 2.4 Order of Program Execution (Geometry Program Absent)

	2.1.5 Tessellation With Geometry Shader
	Table 2.5 Order of Program Execution (Geometry Program Present)

	2.2 Instruction Terminology
	Table 2.6 Basic Instruction-Related Terms

	2.3 Control Flow and Clauses
	Table 2.7 Flow of a Typical Program

	2.4 Instruction Types and Grouping
	2.5 Program State
	Table 2.8 Control-Flow State
	Table 2.9 ALU State
	Table 2.10 Fetch Through Texture Cache Clause and Constant-Fetch State

	2.6 Data Sharing
	Figure 2.1 Shared Memory Hierarchy on the AMD HD 6900 Series of Stream Processors
	2.6.1 Types of Shared Registers
	2.6.1.1 Shared GPRs
	2.6.1.2 Clause Temporary GPRs
	Figure 2.2 Possible GPR Distribution Between Global, Clause Temps, and Private Registers

	2.6.2 Local Data Share (LDS)
	2.6.3 Global Data Share (GDS)

	2.7 Device Memory

	Chapter 3 Control Flow (CF) Programs
	3.1 CF Microcode Encoding
	3.2 Summary of Fields in CF Microcode Formats
	Table 3.1 CF Microcode Field Summary

	3.3 Clause-Initiation Instructions
	Table 3.2 Types of Clause-Initiation Instructions
	3.3.1 ALU Clause Initiation
	3.3.2 Texture Cache Clause Initiation and Execution

	3.4 Import and Export Instructions
	3.4.1 Normal Exports (Pixel, Position, Parameter Cache)
	Table 3.3 Possible ARRAY_BASE Values

	3.4.2 Memory Writes
	3.4.3 Memory Reads

	3.5 Synchronization with Other Blocks
	3.6 Conditional Execution
	3.6.1 Valid and Active Masks
	3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE
	3.6.3 The Condition (COND) Field
	3.6.4 Computation of Condition Tests
	Table 3.4 Condition Tests

	3.6.5 Stack Allocation
	Table 3.5 Stack Subentries
	Table 3.6 Stack Space Required for Flow-Control Instructions

	3.7 Branch and Loop Instructions
	Table 3.7 Branch-Loop Instructions
	3.7.1 ADDR Field
	3.7.2 Stack Operations and Jumps
	3.7.3 DirectX9 Loops
	3.7.4 DirectX10 Loops
	3.7.5 Repeat Loops
	3.7.6 Subroutines
	3.7.7 ALU Branch-Loop Instructions

	3.8 Synchronizing Across Threadgroups (Global Wave Sync)

	Chapter 4 ALU Clauses
	4.1 ALU Microcode Formats
	Figure 4.1 ALU Microcode Format Pair

	4.2 Overview of ALU Features
	Figure 4.2 Organization of ALU Vector Elements in GPRs

	4.3 ALU Instruction Slots and Instruction Groups
	Table 4.1 Instruction Slots in an Instruction Group

	4.4 Assignment to ALU.[X,Y,Z,W]
	4.5 OP2 and OP3 Microcode Formats
	4.6 GPRs and Constants
	4.6.1 Relative Addressing
	Table 4.2 Index for Relative Addressing

	4.6.2 Previous Vector (PV) Registers
	4.6.3 Out-of-Bounds Addresses
	4.6.4 ALU Constants
	4.6.4.1 Constant Cache
	4.6.4.2 Literal Constants
	4.6.4.3 Inline Constants
	4.6.4.4 Statically-Indexed Constant Access
	4.6.4.5 Dynamically-Indexed Constant Access (AR-relative, Constant Waterfalling)
	4.6.4.6 ALU Constant Buffer Sharing

	4.7 Scalar Operands
	4.7.1 Source Addresses
	4.7.2 Input Modifiers
	4.7.3 Data Flow
	Figure 4.3 ALU Data Flow

	4.7.4 GPR Read Port Restrictions
	4.7.5 Constant Register Read Port Restrictions
	4.7.6 Literal Constant Restrictions
	4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units
	4.7.8 Read-Port Mapping Algorithm
	Table 4.3 Example Function’s Loading Cycle
	4.7.8.1 Initialization Execution
	4.7.8.2 Reserving GPR Read
	4.7.8.3 Reserving Constant Buffer Read
	4.7.8.4 Execution for Each ALU.[X,Y,Z,W] Operation

	4.8 ALU Instructions
	Table 4.4 ALU Instructions
	4.8.1 KILL and PRED_SET* Instruction Restrictions
	4.8.2 Reduction Instruction Restrictions
	4.8.3 MOVA* Restrictions

	4.9 ALU Outputs
	4.9.1 Output Modifiers
	4.9.2 Destination Registers
	4.9.3 Predicate Output
	4.9.4 NOP Instruction
	4.9.5 MOVA Instructions

	4.10 Predication and Branch Counters
	4.11 Adjacent-Instruction Dependencies
	4.12 Double-Precision Floating-Point Operations
	4.13 Wavefront Synchronization Within a Work-Group
	4.13.1 ALU Rounding and Denormals
	4.13.2 Floating-Point Flags

	Chapter 5 Texture Cache Clauses
	5.1 Microcode Formats for Fetches Through a Texture Cache Clause
	Figure 5.1 Microcode-Format 4-Tuple for Fetches Through a Texture Cache Clause

	5.2 Constant-Fetch Operations
	5.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE
	5.4 Constant Sharing

	Chapter 6 Memory Read Clauses
	6.1 Memory Address Calculation
	6.2 Cached and Uncached Reads
	6.3 Burst Memory Reads
	6.4 UAV Reads and Writes
	6.4.1 UAV Writes
	6.4.2 UAV Reads

	Chapter 7 Data Share Operations
	7.1 Overview
	Figure 7.1 High-Level Memory Configuration

	7.2 Dataflow in Memory Hierarchy
	Figure 7.2 Memory Hierarchy Dataflow

	7.3 LDS Access
	7.3.1 Direct Reads
	7.3.2 Parameter Reads (Into Interpolation Instructions)
	7.3.3 LDS Parameters
	Figure 7.3 LDS Layout with Parameters and Data Share

	7.3.4 Indexed and Atomic Reads
	Figure 7.4 LDS Dataflow

	7.4 Examples
	7.4.1 LDS_READ dst
	7.4.2 LDS_WRITE dst, src0
	7.4.3 LDS_ADD dst, src0
	7.4.4 LDS_ADD_RTN dst, src0
	7.4.5 LDS_READ2 QAB, src0, src1

	7.5 Performance and Optimization

	Chapter 8 Instruction Set
	8.1 Control Flow (CF) Instructions
	Initiate ALU Clause
	ALU
	Initiate ALU Clause, Loop Break
	ALU_BREAK
	Initiate ALU Clause, Continue Unmasked Pixels
	ALU_CONTINUE
	Initiate ALU Clause, Stack Push and Else After
	ALU_ELSE_AFTER
	ALU Clause Instruction Extension
	ALU_EXTENDED
	Initiate ALU Clause, Pop Stack After
	ALU_POP_AFTER
	Initiate ALU Clause, Pop Stack Twice After
	ALU_POP2_AFTER
	Initiate ALU Clause, Stack Push Before
	ALU_PUSH_BEFORE
	Call Subroutine
	CALL
	Call Fetch Subroutine
	CALL_FS
	End Primitive Strip, Start New Primitive Strip
	CUT_VERTEX
	Else
	ELSE
	Emit Vertex, End Primitive Strip
	EMIT_CUT_VERTEX
	Vertex Exported to Memory
	EMIT_VERTEX
	End Kernel
	END
	Export from VS or PS
	EXPORT
	Export Last Data
	EXPORT_DONE
	Global Data Share
	GDS
	Global Wavefront Barrier
	GWS_BARRIER
	Global Wavefront Resource Initialization
	GWS_INIT
	Global Wavefront Sync Semaphore P
	GWS_SEMA_P
	Global Wavefront Sync Semaphore V
	GWS_SEMA_V
	Halt Wavefront Execution
	HALT
	Jump to Address
	JUMP
	Jump Table
	JUMPTABLE
	Kill Pixels Conditional
	KILL
	Break Out Of Innermost Loop
	LOOP_BREAK
	Continue Loop
	LOOP_CONTINUE
	End Loop
	LOOP_END
	Start Loop
	LOOP_START
	Start Loop (DirectX 10)
	LOOP_START_DX10
	Enter Loop If Zero, No Push
	LOOP_START_NO_AL
	Access Scatter Buffer
	MEM_EXPORT
	Export Combined Address And Data
	MEM_EXPORT_COMBINED
	Export To UAV
	MEM_RAT
	Export To UAV Without Caching
	MEM_RAT_CACHELESS
	Export To UAV Of Combined Address And Data Without Caching
	MEM_RAT_COMBINED_CACHELESS
	Export To UAV Without Caching
	MEM_RING
	MEM_RING1
	MEM_RING2
	MEM_RING3
	Memory Write On Stream #
	MEM_STREAM0_BUF0
	MEM_STREAM0_BUF1
	MEM_STREAM0_BUF2
	MEM_STREAM0_BUF3
	MEM_STREAM1_BUF0
	MEM_STREAM1_BUF1
	MEM_STREAM1_BUF2
	MEM_STREAM1_BUF3
	MEM_STREAM2_BUF0
	MEM_STREAM2_BUF1
	MEM_STREAM2_BUF2
	MEM_STREAM2_BUF3
	MEM_STREAM3_BUF0
	MEM_STREAM3_BUF1
	MEM_STREAM3_BUF2
	MEM_STREAM3_BUF3
	Access Scratch Buffer
	MEM_WR_SCRATCH
	No Operation
	NOP
	Pop From Stack
	POP
	Push State To Stack
	PUSH
	Return From Subroutine
	RETURN
	Initiate Fetch Clause Through Texture Cache
	TC
	Fetch Clause Through Texture Cache With ACK
	TC_ACK
	Wait for Write or Fetch-Read ACKs
	WAIT_ACK

	8.2 ALU Instructions
	Floating-Point Add
	ADD
	Add Floating-Point, 64-Bit
	ADD_64
	Table 8.1 Result of ADD_64 Instruction
	Add Integer
	ADD_INT
	Dependent Add
	ADD_PREV
	Output Carry Bit of Unsigned Integer ADD
	ADDC_UINT
	AND Bitwise
	AND_INT
	Scalar Arithmetic Shift Right
	ASHR_INT
	Count Bits Set 32 Accumulate
	BCNT_ACCUM_PREV_INT
	Count Bits Set
	BCNT_INT
	Signed Integer Bitfield Extract
	BFE_INT
	Unsigned Integer Bitfield Extract
	BFE_UINT
	Bitfield Insert
	BFI_INT
	Bitfield Mask
	BFM_INT
	Dword Reversal
	BFREV_INT
	Bit Align
	BIT_ALIGN_INT
	Byte Align
	BYTE_ALIGN_INT
	Floating-Point Ceiling
	CEIL
	Floating-Point Conditional Move If Equal
	CNDE
	Integer Conditional Move If Equal
	CNDE_INT
	Floating-Point Conditional Move If Greater Than Or Equal
	CNDGE
	Integer Conditional Move If Greater Than Or Equal
	CNDGE_INT
	Floating-Point Conditional Move If Greater Than
	CNDGT
	Integer Conditional Move If Greater Than
	CNDGT_INT
	Double-Precision Floating-Point Conditional Move If Not Equal
	CNDNE_64
	Scalar Cosine
	COS
	Cube Map
	CUBE
	Variable-Length Dot Product
	DOT
	Variable-Length Dot Product With IEEE Rules
	DOT_IEEE
	Four-Channel Dot Product
	DOT4
	Four-Channel Dot Product, IEEE
	DOT4_IEEE
	Scalar Base-2 Exponent, IEEE
	EXP_IEEE
	Find First Bit Signed High
	FFBH_INT
	Find First Bit Unsigned High
	FFBH_UINT
	Find First Bit Signed Low
	FFBL_INT
	Floating-Point Floor
	FLOOR
	Floating-Point To Signed Integer
	FLT_TO_INT
	Float to Signed Integer Using FLOOR
	FLT_TO_INT_FLOOR
	Convert Float Input to Signed Integer Value
	FLT_TO_INT_RPI
	Floating-Point To Unsigned Integer
	FLT_TO_UINT
	Float to Unsigned Conversion of Four Floating Point Inputs
	FLT_TO_UINT4
	16-Bit Floating-Point to 32-Bit Floating-Point
	FLT16_TO_FLT32
	Floating-Point 32-Bit To Floating-Point 16-Bit
	FLT32_TO_FLT16
	Floating-Point 32-Bit To Floating-Point 64-Bit
	FLT32_TO_FLT64

	Table 8.2 Result of FLT32_TO_FLT64 Instruction
	Floating-Point 64-Bit To Floating-Point 32-Bit
	FLT64_TO_FLT32

	Table 8.3 Result of FLT64_TO_FLT32 Instruction
	Fused Single-Precision Multiply-Add
	FMA
	Double-Precision Floating-Point Fused Multiply-Add
	FMA_64
	Floating-Point Fractional
	FRACT
	Floating-Point Fractional, 64-Bit
	FRACT_64

	Table 8.4 Result of FRACT_64 Instruction
	Split Double-Precision Floating_Point Into Fraction and Exponent
	FREXP_64

	Table 8.5 Result of FREXP_64 Instruction
	Group Barrier
	GROUP_BARRIER
	Integer To Floating-Point
	INT_TO_FLT
	Read Parameter Data From LDS for P0
	INTERP_LOAD_P0
	Read Parameter Data from LDS for P1 - P0
	INTERP_LOAD_P10
	Read Parameter Data from LDS for P2 - P0
	INTERP_LOAD_P20
	Interpolation of the X Channel
	INTERP_X
	Interpolation for X,Y Channels
	INTERP_XY
	Interpolation of the Z Channel
	INTERP_Z
	Interpolation of the Z, W Channels
	INTERP_ZW
	Floating-Point Pixel Kill If Equal
	KILLE
	Integer Kill If Equal
	KILLE_INT
	Floating-Point Pixel Kill If Greater Than Or Equal
	KILLGE
	Integer Kill If Greater Than Or Equal
	KILLGE_INT
	Unsigned Integer Kill If Greater Than Or Equal
	KILLGE_UINT
	Floating-Point Pixel Kill If Greater Than
	KILLGT
	Integer Kill If Greater Than
	KILLGT_INT
	Unsigned Integer Kill If Greater Than
	KILLGT_UINT
	Floating-Point Pixel Kill If Not Equal
	KILLNE
	Integer Kill If Not Equal
	KILLNE_INT
	Combine Separate Fraction and Exponent into Double-precision
	LDEXP_64

	Table 8.6 Result of LDEXP_64 Instruction
	Linear Interpolation
	LERP_UINT
	Load and Store Flags
	LOAD_STORE_FLAGS
	Scalar Base-2 Log
	LOG_CLAMPED
	Scalar Base-2 IEEE Log
	LOG_IEEE
	Scalar Logical Shift Left
	LSHL_INT
	Scalar Logical Shift Right
	LSHR_INT
	Floating-Point Maximum
	MAX
	Double-Precision Floating-Point Maximum
	MAX_64
	Floating-Point Maximum, DirectX 10
	MAX_DX10
	Integer Maximum
	MAX_INT
	Unsigned Integer Maximum
	MAX_UINT
	Four-Channel Maximum
	MAX4
	Masked Count Bits Set 32 High
	MBCNT_32HI_INT
	Masked Count Bits Set 32 Low
	MBCNT_32LO_ACCUM_PREV_INT
	Floating-Point Minimum
	MIN
	Double-Precision Floating-Point Minimum
	MIN_64
	Floating-Point Minimum, DirectX 10
	MIN_DX10
	Signed Integer Minimum
	MIN_INT
	Unsigned Integer Minimum
	MIN_UINT
	Copy To GPR
	MOV
	Copy Signed Integer To Integer in AR and GPR
	MOVA_INT
	Floating-Point Multiply
	MUL
	Floating-Point Multiply, 64-Bit
	MUL_64

	Table 8.7 Result of MUL_64 Instruction
	Floating-Point Multiply, IEEE
	MUL_IEEE
	Dependent Multiply with IEEE Rules
	MUL_IEEE_PREV
	Scalar Multiply Emulating LIT Operation
	MUL_LIT
	Dependent Multiply
	MUL_PREV
	24-Bit Unsigned Integer Multiply (Low-Order)
	MUL_UINT24
	Floating-Point Multiply-Add
	MULADD
	Floating-Point Multiply-Add, Divide by 2
	MULADD_D2
	IEEE Floating-Point Multiply-Add
	MULADD_IEEE
	Dependent Multiply Add With IEEE Rules
	MULADD_IEEE_PREV
	Floating-Point Multiply-Add, Multiply by 2
	MULADD_M2
	Floating-Point Multiply-Add, Multiply by 4
	MULADD_M4
	Dependent Multiply-Add
	MULADD_PREV
	24-Bit Unsigned Integer Multiply-Add
	MULADD_UINT24
	Signed Scalar Multiply, High-Order 32 Bits
	MULHI_INT
	Unsigned Scalar Multiply, High-Order 32 Bits
	MULHI_UINT
	24-Bit Unsigned Integer Multiply (High-Order)
	MULHI_UINT24
	Signed Scalar Multiply, Low-Order 32-Bits
	MULLO_INT
	Unsigned Scalar Multiply, Low-Order 32-Bits
	MULLO_UINT
	No Operation
	NOP
	Bit-Wise NOT
	NOT_INT
	Four-Bit Signed Integer to 32-Bit Float
	OFFSET_TO_FLT
	Logical Bit-Wise OR
	OR_INT
	Predicate Counter Clear
	PRED_SET_CLR
	Predicate Counter Invert
	PRED_SET_INV
	Predicate Counter Pop
	PRED_SET_POP
	Predicate Counter Restore
	PRED_SET_RESTORE
	Floating-Point Predicate Set If Equal
	PRED_SETE
	Floating-Point Predicate Set If Equal, 64-Bit
	PRED_SETE_64

	Table 8.8 Result of PRED_SETE_64 Instruction
	Integer Predicate Set If Equal
	PRED_SETE_INT
	Floating-Point Predicate Counter Increment If Equal
	PRED_SETE_PUSH
	Integer Predicate Counter Increment If Equal
	PRED_SETE_PUSH_INT
	Floating-Point Predicate Set If Greater Than Or Equal
	PRED_SETGE
	Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit
	PRED_SETGE_64

	Table 8.9 Result of PRED_SETGE_64 Instruction
	Integer Predicate Set If Greater Than Or Equal
	PRED_SETGE_INT
	Predicate Counter Increment If Greater Than Or Equal
	PRED_SETGE_PUSH
	Integer Predicate Counter Increment If Greater Than Or Equal
	PRED_SETGE_PUSH_INT
	Unsigned Integer Predicate Set If Greater Than Or Equal
	PRED_SETGE_UINT
	Floating-Point Predicate Set If Greater Than
	PRED_SETGT
	Floating-Point Predicate Set If Greater Than, 64-Bit
	PRED_SETGT_64

	Table 8.10 Result of PRED_SETGT_64 Instruction
	Integer Predicate Set If Greater Than
	PRED_SETGT_INT
	Predicate Counter Increment If Greater Than
	PRED_SETGT_PUSH
	Integer Predicate Counter Increment If Greater Than
	PRED_SETGT_PUSH_INT
	Unsigned Integer Predicate Set If Greater Than
	PRED_SETGT_UINT
	Predicate Counter Increment If Less Than Or Equal
	PRED_SETLE_PUSH_INT
	Predicate Counter Increment If Less Than
	PRED_SETLT_PUSH_INT
	Floating-Point Predicate Set If Not Equal
	PRED_SETNE
	Scalar Predicate Set If Not Equal
	PRED_SETNE_INT
	Predicate Counter Increment If Not Equal
	PRED_SETNE_PUSH
	Predicate Counter Increment If Not Equal
	PRED_SETNE_PUSH_INT
	Double Reciprocal
	RECIP_64
	Scalar Reciprocal, Clamp to Maximum
	RECIP_CLAMPED
	Double Reciprocal Clamped
	RECIP_CLAMPED_64
	Scalar Reciprocal, Clamp to Zero
	RECIP_FF
	Scalar Reciprocal, IEEE Approximation
	RECIP_IEEE
	Double Reciprocal Square Root
	RECIPSQRT_64
	Scalar Reciprocal Square Root, Clamp to Maximum
	RECIPSQRT_CLAMPED
	Double Reciprocal Square Root Clamped
	RECIPSQRT_CLAMPED_64
	Scalar Reciprocal Square Root, Clamp to Zero
	RECIPSQRT_FF
	Scalar Reciprocal Square Root, IEEE Approximation
	RECIPSQRT_IEEE
	Floating-Point Round To Nearest Even Integer
	RNDNE
	Sum of Absolute Differences With Accumulation Into MSB
	SAD_ACCUM_HI_UINT
	Sum of Absolute Differences With Accumulation From Previous Channel
	SAD_ACCUM_PREV_UINT
	Sum of Absolute Differences With Accumulation Into LSB
	SAD_ACCUM_UINT
	Set Local/Global Mode and LDS Size
	SET_LDS_SIZE
	Override Rounding and Denorm Modes
	SET_MODE
	Floating-Point Set If Equal
	SETE
	Double-Precision Floating-Point If Greater Than Or Equal
	SETE_64
	Floating-Point Set If Equal DirectX 10
	SETE_DX10
	Integer Set If Equal
	SETE_INT
	Floating-Point Set If Greater Than Or Equal
	SETGE
	Double-Precision Floating-Point Set If Greater Than Or Equal
	SETGE_64
	Floating-Point Set If Greater Than Or Equal, DirectX 10
	SETGE_DX10
	Signed Integer Set If Greater Than Or Equal
	SETGE_INT
	Unsigned Integer Set If Greater Than Or Equal
	SETGE_UINT
	Floating-Point Set If Greater Than
	SETGT
	Double-Precision Floating-Point Set If Greater Than
	SETGT_64
	Floating-Point Set If Greater Than, DirectX 10
	SETGT_DX10
	Signed Integer Set If Greater Than
	SETGT_INT
	Unsigned Integer Set If Greater Than
	SETGT_UINT
	Floating-Point Set If Not Equal
	SETNE
	Double-Precision Floating-Point Set If Not Equal
	SETNE_64
	Floating-Point Set If Not Equal, DirectX 10
	SETNE_DX10
	Integer Set If Not Equal
	SETNE_INT
	Scalar Sine
	SIN
	Double Square Root
	SQRT_64
	Scalar Square Root, IEEE Approximation
	SQRT_IEEE
	Store Flags
	STORE_FLAGS
	Integer Subtract
	SUB_INT
	Output Borrow Bit of Unsigned Integer Subtract
	SUBB_UINT
	Floating-Point Truncate
	TRUNC
	Byte # Float
	UBYTE0_FLT
	UBYTE1_FLT
	UBYTE2_FLT
	UBYTE3_FLT
	Unsigned Integer To Floating-point
	UINT_TO_FLT
	Logical Bit-Wise XOR
	XOR_INT

	8.3 Instructions for Fetches Through a Texture Cache Clause
	Vertex Fetch
	FETCH
	Return Number of Elements in a Buffer
	GET_BUFFER_RESINFO
	Semantic Vertex Fetch
	SEMANTIC
	Fetch Four Texels (In A 2x23 Pattern)
	GATHER4
	Gather4 With Depth Comparison
	GATHER4_C
	Gather4 With Depth Comparison and GPR Coordinate Offsets
	GATHER4_C_O
	Gather4 with GPR Coordinate Offsets
	GATHER4_O
	Get Slopes Relative To Horizontal
	GET_GRADIENTS_H
	Get Slopes Relative To Vertical
	GET_GRADIENTS_V
	Get Computed Level of Detail For Pixels
	GET_LOD
	Get Number of Samples
	GET_NUMBER_OF_SAMPLES
	Get Texture Resolution
	GET_TEXTURE_RESINFO
	Keep Gradients
	KEEP_GRADIENTS
	Load Texture Elements
	LD
	Sample Texture
	SAMPLE
	Sample Texture with Comparison
	SAMPLE_C
	Sample Texture with Comparison and Gradient
	SAMPLE_C_G
	Sample Texture with Comparison, Gradient, and LOD Bias
	SAMPLE_C_G_LB
	Sample Texture with LOD
	SAMPLE_C_L
	Sample Texture with LOD Bias
	SAMPLE_C_LB
	Sample Texture with LOD Zero
	SAMPLE_C_LZ
	Sample Texture with Gradient
	SAMPLE_G
	Sample Texture with Gradient and LOD Bias
	SAMPLE_G_LB
	Sample Texture with LOD
	SAMPLE_L
	Sample Texture with LOD Bias
	SAMPLE_LB
	Sample Texture with LOD Zero
	SAMPLE_LZ
	Set Horizontal Gradients
	SET_GRADIENTS_H
	Set Vertical Gradients
	SET_GRADIENTS_V
	Set Texture Offsets
	SET_TEXTURE_OFFSETS

	8.4 Memory Read Instructions
	Read Scatter Buffer
	MEM_RD_SCATTER
	Read Scratch Buffer
	MEM_RD_SCRATCH

	8.5 Data Share Read/Write Instructions
	Global Data Share Write
	MEM_GDS
	Tesselation Buffer Write
	MEM_TF_WRITE
	Global Data Share Write
	GLOBAL_DS_WRITE
	Global Data Share Read
	GLOBAL_DS_READ

	8.6 Local Data Share (LDS) Instructions
	LDS Indexed Operation
	LDS_IDX_OP
	Table 8.11 LDS Instructions for the LDS_OP Field

	Chapter 9 Microcode Formats
	Table 9.1 Summary of Microcode Formats
	9.1 Control Flow (CF) Instructions
	9.2 ALU Instructions
	9.3 Vertex Fetch Instruction Formats
	9.4 Texture Fetch Instruction Formats
	9.5 Memory Read Instructions
	9.6 Global Data Share Read/Write Instructions

	Appendix A Instruction Table
	Glossary of Terms
	Index

