News Posts matching #ARM

Return to Keyword Browsing

Big Tech and Lobby: Semiconductors in America Coalition (SIAC) Founded With Microsoft, Apple, Intel, AMD, TSMC, Others

Since lobbying is both legal and regulated in the US (an attempt to bring attempts of influencing political power by corporations under legal boundaries, as opposed to being done in the dark), it feels like it was only a matter of time before big tech attempted to join under one banner. As such, the Semiconductors in America Coalition (SIAC) has now been put together, and boasts of 64 members including Microsoft, Apple, TSMC, Intel, AMD, NVIDIA, Arm, and Samsung. It seems that all of these companies - which are often at odds with one another when it comes to competing for consumers' choice and money - have found enough similarities to get organized in an attempt to nudge political power in their favor.

SIAC said in a press release that its mission is to "advance federal policies that promote semiconductor manufacturing and research in the U.S. to strengthen America's economy, national security, and critical infrastructure." The first announcement from the SIAC following its foundation was its intention to support the CHIPS for America Act. The Act (supported by The Semiconductor Industry Association (SIA) and President Joe Biden) has already been approved by the House and the Senate as part of the National Defense Authorization Act for 2021 but has not yet been funded. It seems that SIAC's first mission is to get the government to open up its $50 billion-deep pockets.

UK Competition Regulator Probes AMD's Buyout of Xilinx

British competition regulator Competition and Markets Authority (CMA) on Monday, launched an enquiry into the ramifications of AMD's buy-out of FPGA maker Xilinx. The agency is soliciting opinions from the public on whether the $35 billion all-stock purchase will make goods and services less competitive for the UK. Unlike NVIDIA's Arm buyout the Xilinx acquisition is seeing no opposition from tech-giants. The Register notes that AMD could combine Xilinx's FPGAs with its x86 CPU and RDNA SIMD to create highly customizable HPC accelerators. AMD president Dr Lisa Su said "By combining our world-class engineering team and deep domain expertise, we will create an industry leader with the vision, talent and scale to define the future of high performance computing."

Samsung's Apple M1-rivaling Exynos SoC Powering Notebooks by H2-2021

Samsung is readying a powerful Arm-based SoC rivaling Apple's groundbreaking M1 silicon, under its Exynos brand. This chip is being designed for thin-and-light notebooks, as well as premium tablets, essentially letting Samsung target Apple's MacBook (M1) and iPad Pro form-factors. Unlike Apple, Samsung won't be burdened with having to rally its ISV partners to develop specifically for its hardware; the company is preparing to launch notebooks in the second half of 2021 that are powered by a Windows 10 on Arm derivative. This would give the notebook access to all of the applications already developed for the OS, including Office and certain Adobe Creativity Suite apps. The M1-rivaling Exynos chip will pack the latest-generation 64-bit Arm CPU cores, as well as an integrated GPU designed by AMD.

Arm Announces Neoverse N2 and V1 Server Platforms

The demands of data center workloads and internet traffic are growing exponentially, and new solutions are needed to keep up with these demands while reducing the current and anticipated growth of power consumption. But the variety of workloads and applications being run today means the traditional one-size-fits all approach to computing is not the answer. The industry demands flexibility; design freedom to achieve the right level of compute for the right application.

As Moore's Law comes to an end, solution providers are seeking specialized processing. Enabling specialized processing has been a focal point since the inception of our Neoverse line of platforms, and we expect these latest additions to accelerate this trend.

UK Stalls NVIDIA's Acquisition of Arm to Investigate "National Security Concerns"

The UK government has stalled NVIDIA's $40 billion acquisition of Arm by constituting an investigation in "public interest." This investigation will look into the national security implications to the UK, of the acquisition. Although Arm is being transacted between Japan's SoftBank Holdings and American NVIDIA, Arm itself is a UK-based entity. The Competition and Markets Authority (CMA) will lead the investigation, and file a report with the UK government by June 30, 2021.

NVIDIA responded to the development, stating that the acquisition has no material national-security issues affecting the UK. "We will continue to work closely with the British authorities, as we have done since the announcement of this deal," NVIDIA stated. Leading tech firms, namely Google, Qualcomm, and Microsoft, etc., voiced apprehensions over the deal. Unlike SoftBank, NVIDIA is a chip-designer in its own right, and could withhold cutting-edge Arm technology to itself, giving its CPUs/SoCs a competitive edge over other Arm licensees, these firms believe.

Intel CEO on NVIDIA CPUs: They Are Responding to Us

NVIDIA has recently announced the company's first standalone Grace CPU that will come out as a product in 2023. NVIDIA has designed Grace on Arm ISA, likely ARM v9, to represent a new way that data centers are built and deliver a whole new level of HPC and AI performance. However, the CPU competition in a data center space is considered one of the hardest markets to enter. Usually, the market is a duopoly between Intel and AMD, which supply x86 processors to server vendors. In the past few years, there have been few Arm CPUs that managed to enter the data canter space, however, NVIDIA is aiming to deliver much more performance and grab a bigger piece of the market.

As a self-proclaimed leader in AI, Intel is facing hard competition from NVIDIA in the coming years. In an interview with Fortune, Intel's new CEO Pat Gelsinger has talked about NVIDIA and how the company sees the competition between the two. Mr. Gelsinger is claiming that Intel is a leader in CPUs that feature AI acceleration built in the chip and that they are not playing defense, but rather offense against NVIDIA. You can check out the whole quote from the interview below.

NVIDIA Extends Data Center Infrastructure Processing Roadmap with BlueField-3 DPU

NVIDIA today announced the NVIDIA BlueField -3 DPU, its next-generation data processing unit, to deliver the most powerful software-defined networking, storage and cybersecurity acceleration capabilities available for data centers.

The first DPU built for AI and accelerated computing, BlueField-3 lets every enterprise deliver applications at any scale with industry-leading performance and data center security. It is optimized for multi-tenant, cloud-native environments, offering software-defined, hardware-accelerated networking, storage, security and management services at data-center scale.

NVIDIA Announces Grace CPU for Giant AI and High Performance Computing Workloads

NVIDIA today announced its first data center CPU, an Arm-based processor that will deliver 10x the performance of today's fastest servers on the most complex AI and high performance computing workloads.

The result of more than 10,000 engineering years of work, the NVIDIA Grace CPU is designed to address the computing requirements for the world's most advanced applications—including natural language processing, recommender systems and AI supercomputing—that analyze enormous datasets requiring both ultra-fast compute performance and massive memory. It combines energy-efficient Arm CPU cores with an innovative low-power memory subsystem to deliver high performance with great efficiency.

Arm Announces ARMv9 Architecture With a Focus on AI & Security

Today, Arm introduced the Armv9 architecture in response to the global demand for ubiquitous specialized processing with increasingly capable security and artificial intelligence (AI). Armv9 is the first new Arm architecture in a decade, building on the success of Armv8 which today drives the best performance-per-watt everywhere computing happens.

To address the greatest technology challenge today - securing the world's data - the Armv9 roadmap introduces the Arm Confidential Compute Architecture (CCA). Confidential computing shields portions of code and data from access or modification while in-use, even from privileged software, by performing computation in a hardware-based secure environment.

Next-Generation Nintendo Switch SoC to be Powered by NVIDIA's Ada Lovelace GPU Architecture

Nintendo's Switch console is one of the most successful consoles ever made by the Japanese company. It has sold in millions of units and has received great feedback from the gaming community. However, as the hardware inside the console becomes outdated, the company is thinking about launching a new revision of the console, with the latest hardware and technologies. Today, we got ahold of information about the graphics side of things in Nintendo's upcoming console. Powered by NVIDIA Tegra SoC, it will incorporate unknown Arm-based CPU cores. The latest rumors suggest that the CPU will be accommodated with NVIDIA's Ada Lovelace GPU architecture. According to @kopite7kimi, a known hardware leaker, who simply replied to VideoCardz's tweet with "Ada", we are going to see the appearance of Ada Lovelace GPU architecture in the new SoC. Additionally, the new Switch SoC will have hardware accelerated NVIDIA Deep Learning Super Sampling (DLSS) and 4K output.

Xilinx Announces Cost-Optimized UltraScale+ Portfolio for Ultra-Compact, High-Performance Edge Compute

Xilinx, Inc., the leader in adaptive computing, today announced the company has expanded its UltraScale+ portfolio for markets with new applications that require ultra-compact and intelligent edge solutions. With form factors that are 70 percent smaller than traditional chip-scale packaging, the new Artix and Zynq UltraScale+ devices can now address a wider range of applications within the industrial, vision, healthcare, broadcast, consumer, automotive, and networking markets.

As the world's only hardware adaptable cost-optimized portfolio based on 16 nanometer technology, Artix and Zynq UltraScale+ devices are available in TSMC's state-of-the-art InFO (Integrated Fan-Out) packaging technology. Using InFO, Artix and Zynq UltraScale+ devices meet the need for intelligent edge applications by delivering high-compute density, performance-per-watt, and scalability in compact packaging options.

Apple is Discontinuing Intel-based iMac Pro

According to the official company website, Apple will no longer manufacture its iMac Pro computers based on Intel processors. Instead, the company will carry these models in its store, only while the supplies last. Apple will be replacing these models with next-generation iMac Pro devices that will be home to the custom Apple Silicon processors, combining Arm CPU cores with custom GPU design. Having a starting price of 4990 USD, the Apple iMac Pro was able to max out at 15000 USD. The most expensive part was exactly the Intel Xeon processor inside it, among the AMD GPU with HBM. Configuration pricing was also driven by storage/RAM options. However, even the most expensive iMac Pro with its 2017 hardware had no chance against the regular 2020 iMac, so the product was set to be discontinued sooner or later.

When the stock of the iMac Pro runs out, Apple will replace this model with its Apple Silicon equipped variant. According to the current rumor mill, Apple is set to hold a keynote on March 16th that will be an announcement for new iMac Pro devices with custom processors. What happens is only up to Apple, so we have to wait and see.

SiPearl to Manufacture its 72-Core Rhea HPC SoC at TSMC Facilities

SiPearl has this week announced their collaboration with Open-Silicon Research, the India-based entity of OpenFive, to produce the next-generation SoC designed for HPC purposes. SiPearl is a part of the European Processor Initiative (EPI) team and is responsible for designing the SoC itself that is supposed to be a base for the European exascale supercomputer. In the partnership with Open-Silicon Research, SiPearl expects to get a service that will integrate all the IP blocks and help with the tape out of the chip once it is done. There is a deadline set for the year 2023, however, both companies expect the chip to get shipped by Q4 of 2022.

When it comes to details of the SoC, it is called Rhea and it will be a 72-core Arm ISA based processor with Neoverse Zeus cores interconnected by a mesh. There are going to be 68 mesh network L3 cache slices in between all of the cores. All of that will be manufactured using TSMC's 6 nm extreme ultraviolet lithography (EUV) technology for silicon manufacturing. The Rhea SoC design will utilize 2.5D packaging with many IP blocks stitched together and HBM2E memory present on the die. It is unknown exactly what configuration of HBM2E is going to be present. The system will also see support for DDR5 memory and thus enable two-level system memory by combining HBM and DDR. We are excited to see how the final product looks like and now we wait for more updates on the project.

AAEON Announces the SRG-3352C Compact Edge IoT Gateway System

AAEON, an industry leader in Edge Computing solutions, announces the SRG-3352C Compact Edge IoT Gateway System. The SRG-3352C brings reliable, cost effective gateway operations with expandability and wireless communication support designed to quickly deploy edge networks in a variety of environments.
The SRG-3352C builds upon the features, durability and reliability of the SRG-3352 Edge IoT Gateway System with expanded support for more connections and wireless communications. All of this is packed into a compact form factor that makes deploying the SRG-3352C even easier, powering more flexible edge network deployments.

The SRG-3352C is powered by the Arm Cortex-A8 800 MHz RISC processor. This innovative processor reduces the energy requirements of the system, allowing for a more efficient system to help save electricity costs. While powerful enough to connect edge networks together, the low energy usage can help cities with achieving green energy goals, and even allow the system to operate on solar power or batteries. It also eliminates the need for dedicated heatsinks, allowing the system to operate in wider temperatures, from 0°C up to 60°C without loss in performance.

Xilinx Revolutionizes the Modern Data Center with Software-Defined, Hardware Accelerated Alveo SmartNICs

Addressing the demands of the modern data center, Xilinx, Inc. (NASDAQ: XLNX) today announced a range of new data center products and solutions, including a new family of Alveo SmartNICs, smart world AI video analytics applications, an accelerated algorithmic trading reference design for sub-microsecond trading, and the Xilinx App Store.

Today's most demanding and complex applications, from networking and AI analytics to financial trading, require low-latency and real-time performance. Achieving this level of performance has been limited to expensive and lengthy hardware development. With these new products and solutions, Xilinx is eliminating the barriers for software developers to quickly create and deploy software-defined, hardware accelerated applications on Alveo accelerator cards.

NVIDIA Faces Challenges: Qualcomm, Google, and Microsoft Protest Arm Acquisition

In September of last year, NVIDIA has officially announced that the current industry rumor about its big acquisition was true. The company has announced that it is acquiring Arm Limited from the Softbank Group. Paying as much as $40 billion for the purchase, NVIDIA is gaining access to the complete company, along with its extensive portfolio of IP and knowledge. That means that NVIDIA is not essentially a holder of the Arm ISA, which is the most dominant ISA within mobile processors. Such a deal, however, is a bit hard to process without some troubles popping up along the way. As Arm held a neutral position as IP provider, NVIDIA is expected to remain as such, and the company even promised to stay true to that.

However, not everything is going as planned. Before completing the acquisition process, NVIDIA must first comply with regulators from all around the world, including the US, UK, EU, and China. If any objections raise within those regions, they are to be interrogated. Today, Google, Microsoft, and Qualcomm have objected that NVIDIA's Arm acquisition is hurting the market and are urging antitrust officials to intervene. Mentioned companies believe that NVIDIA's move is hurting the market and the company could limit its competitors from accessing the IP, thus breaking Arm's neutral position as an IP provider. NVIDIA has made statements that Arm will remain in such a position, however, the skepticism of the mentioned companies is slowing the merger. Now all that remains is to see how the conflicted companies solve their worries.

Apple Patents Multi-Level Hybrid Memory Subsystem

Apple has today patented a new approach to how it uses memory in the System-on-Chip (SoC) subsystem. With the announcement of the M1 processor, Apple has switched away from the traditional Intel-supplied chips and transitioned into a fully custom SoC design called Apple Silicon. The new designs have to integrate every component like the Arm CPU and a custom GPU. Both of these processors need good memory access, and Apple has figured out a solution to the problem of having both the CPU and the GPU accessing the same pool of memory. The so-called UMA (unified memory access) represents a bottleneck because both processors share the bandwidth and the total memory capacity, which would leave one processor starving in some scenarios.

Apple has patented a design that aims to solve this problem by combining high-bandwidth cache DRAM as well as high-capacity main DRAM. "With two types of DRAM forming the memory system, one of which may be optimized for bandwidth and the other of which may be optimized for capacity, the goals of bandwidth increase and capacity increase may both be realized, in some embodiments," says the patent, " to implement energy efficiency improvements, which may provide a highly energy-efficient memory solution that is also high performance and high bandwidth." The patent got filed way back in 2016 and it means that we could start seeing this technology in the future Apple Silicon designs, following the M1 chip.

Update 21:14 UTC: We have been reached out by Mr. Kerry Creeron, an attorney with the firm of Banner & Witcoff, who provided us with additional insights about the patent. Mr. Creeron has provided us with his personal commentary about it, and you can find Mr. Creeron's quote below.

MediaTek Launches 6nm Dimensity 1200 Premium 5G SoC

MediaTek today unveiled its new Dimensity 1200 and Dimensity 1100 5G smartphone chipsets with unrivaled AI, camera and multimedia features for powerful 5G experiences. The addition of the 6 nm Dimensity 1200 and 1100 chipsets to MediaTek's 5G portfolio gives device makers a growing suite of options to design highly capable 5G smartphones with top of the line camera features, graphics, connectivity enhancements and more.

"MediaTek continues to expand its 5G portfolio with highly integrated solutions for a range of devices from the high-end to the mid-tier," said JC Hsu, Corporate Vice President and General Manager of MediaTek's Wireless Communications Business Unit. "Our new Dimensity 1200 stands out with its impressive 200MP camera support and advanced AI capabilities, in addition to its innovative connectivity, display, audio and gaming enhancements."

Pat Gelsinger: "Intel Has to be Better at Making CPUs Than That Lifestyle Company"

Intel's future CEO Pat Gelsinger, who supersedes current CEO Bob Swan come February 15th, has reportedly compared Intel with Apple's efforts, in wake of that company's decision to leave the Intel ecosystem in favor of in-house designed ARM CPUs. As Apple M1-powered devices hit reviewers' tables, the opinions mostly went one-sided in favor of Apple's decision, clamoring for that particular CPU design to be only lightly short of a computing miracle, considering the amount of computing power provided at that chip's TDP, and running circles around Apple's previous Intel implementations.

According to The Oregonian, a local newspaper from (you guessed it) Oregon where Intel has a strong branch presence, Intel held an all-hands meeting of its Oregon workforce, attended by future Intel CEO Pat Gelsinger, who is quoted as having remarked that "We [Intel] have to deliver better products to the PC ecosystem than any possible thing that a lifestyle company in Cupertino makes. We have to be that good, in the future." Considering how Apple's M1 has raised the world's attention to the ARM architecture as a competitor with strong enough arguments to face the x86 ecosystem (as if ARM powering the world's current fastest supercomputer wasn't a strong enough argument), that seems like a strong yet adequate statement. We'll see how Intel fares with its Alder lake CPUs, which essentially bring ARM's design philosophy of an heterogeneous CPU with both high-performance and high-efficiency cores to the x86 table.

Samsung Unveils Their Flagship Exynos 2100 Mobile Processor

Samsung Electronics, a world leader in advanced semiconductor technology, today announced the Exynos 2100 through its first virtual event, Exynos On 2021. The new mobile processor is the company's first premium 5G-integrated mobile processor built on the most advanced 5-nanometer (nm) extreme ultra-violet (EUV) process node.

The chip's computation and graphic processing performance have been improved and refined to surpass the power user's performance expectations. As Samsung's first 5G-integrated flagship mobile processor, the Exynos 2100 is built on an advanced 5 nm EUV process technology that allows up to 20-percent lower power consumption or 10-percent higher overall performance than the 7 nm predecessor. For further enhancement, the chip offers improved cache memory utilization and a stronger scheduler. The octa-core CPU comes in an improved tri-cluster structure made up of a single powerful Arm Cortex -X1 core that runs at up to 2.9 GHz, three high-performing Cortex-A78 cores and four power-efficient Cortex-A55 cores delivering more than 30-percent enhancement in multi-core performance than the predecessor.

NVIDIA Acquisition of Arm to be Investigated by UK Regulator

NVIDIA's planned acquisition of Arm was one of 2020's defining moments for the tech industry, and many articles have already been written on the possible industry-wide consequences of this acquisition. However, the resulting NVIDIA company could raise some questions as to business practices and competition - critics, technologists, and lobbyists have already been working hard in calling the deal's attention to regulating authorities. And that seems to be paying off, as UK's Competition and Markets Authority announced Wednesday that it plans to investigate NVIDIA's proposed acquisition of British chip designer Arm.

This effort by the CMA will take place in a staggered way, where the regulator is for now asking for third party input on the deal and its consequences for British competition and the tech industry at large, before launching its official probe later this year. As is always the case with these sort of deals, some in the field expect the deal to be blocked, including Arm co-founder Hermann Hauser; others, however, speak to its eventual success. NVIDIA's share price has kept dropping ever since the announcement, from a high of $536.31 to $506.21 at time of writing.

Microsoft is Engineering Custom Processors for Servers and Surface PCs

Designing a custom processor can be a rewarding thing. You can control your ecosystem surrounding it and get massive rewards in terms of application-specific performance uplift, or lower total cost of ownership. It seems like cloud providers have figured out that at their scale, designing a custom processor can get all of the above with the right amount of effort put into it. If you remember, in 2018, Amazon has announced its Graviton processor based on Arm instruction set architecture. Today, the company has almost 10% of its AWS instances based on the Graviton 1 or 2 processors, which is a massive win for a custom design.

Following Amazon's example, the next company to join the custom server processor race is going to be Microsoft. The Redmond based giant is looking to build a custom lineup of processors that are meant to satisfy Microsoft's most demanding sector - server space. The company's Azure arm is an important part where it has big and increasing revenue. By building a custom processor, it could satisfy the market needs better while delivering higher value. The sources of Bloomberg say that Microsoft is planning to use Arm ISA, and start building independence from the x86 vendors like Intel and AMD. Just like we saw with AWS, the industry cloud giants are starting to get silicon-independent and with their scale, they can drive the ecosystem surrounding the new processors forward rapidly. The sources are also speculating that the company is building custom processors for Surface PCs, and with Windows-on-Arm (WoA) project, Microsoft has laid the groundwork in that field as well.

AWS Arm-based Graviton Processors Sees the Biggest Growth in Instance Share

Amazon Web Services (AWS), the world's largest cloud services provider, has launched its Graviton series of custom processors some time ago. With Graviton, AWS had a plan to bring down the costs of offering some cloud services both for the customer and for the company. By doing that, the company planned to attract new customers offering greater value, and that plan seems to be working out well. When AWS launched its first-generation Graviton processor, the company took everyone by surprise and showed that it is capable of designing and operating its custom processors. The Graviton series of processors is based on the Arm Instruction Set Architecture (ISA) and the latest Graviton 2 series uses Arm Neoverse N1 cores as the base.

Today, thanks to the data from Liftr Insights, we get to see just how many total AWS instances are Graviton based. The data is showing some rather impressive numbers for the period from June 2019, to August 2020. In that timeframe, Intel with its Xeon offerings has seen its presence decrease from 88% to 70%, while AMD has grown from 11% to 20% presence. And perhaps the greatest silent winner here is the Graviton processor, which had massive growth. In the same period, AWS increased Graviton instance number from making up only 1% of all instances, to make up 10% of all instances available. This is a 10-fold increase which is not a small feat, given that data center providers are very difficult when it comes to changing platforms.

AWS and Arm Demonstrate Production-Scale Electronic Design Automation in the Cloud

Today, Amazon Web Services, Inc. (AWS), an Amazon.com, Inc. company, announced that Arm, a global leader in semiconductor design and silicon intellectual property development and licensing, will leverage AWS for its cloud use, including the vast majority of its electronic design automation (EDA) workloads. Arm is migrating EDA workloads to AWS, leveraging AWS Graviton2-based instances (powered by Arm Neoverse cores), and leading the way for transformation of the semiconductor industry, which has traditionally used on-premises data centers for the computationally intensive work of verifying semiconductor designs.

To carry out verification more efficiently, Arm uses the cloud to run simulations of real-world compute scenarios, taking advantage of AWS's virtually unlimited storage and high-performance computing infrastructure to scale the number of simulations it can run in parallel. Since beginning its AWS cloud migration, Arm has realized a 6x improvement in performance time for EDA workflows on AWS. In addition, by running telemetry (the collection and integration of data from remote sources) and analysis on AWS, Arm is generating more powerful engineering, business, and operational insights that help increase workflow efficiency and optimize costs and resources across the company. Arm ultimately plans to reduce its global datacenter footprint by at least 45% and its on-premises compute by 80% as it completes its migration to AWS.

Arm Based Fugaku Supercomputer Retains #1 Top500 Spot

Fugaku—the Arm technology-based supercomputer jointly developed by RIKEN and Fujitsu—was awarded the number one spot on the Top500 list for the second time in a row. This achievement further highlights the rapidly evolving demands of high-performance computing (HPC) that Arm technology uniquely addresses through the unmatched combination of power efficiency, performance, and scalability.

In addition to the great work RIKEN and Fujitsu have done, we're seeing more adoption for Arm-based solutions across our ecosystem. ETRI, the national computing institute of the Republic of Korea, recently announced plans to adopt the upcoming Neoverse V1 (formerly code-named Zeus) CPU design, which feature Arm Scalable Vector Extensions (SVE), for its K-AB21 system. ETRI has set a goal of 16 teraflops per CPU and 1600 teraflops per rack for AB 21 (which stands for 'Artificial Brain 21') while reducing power consumption by 60% compared to its target.
Return to Keyword Browsing