News Posts matching #Alder Lake-S

Return to Keyword Browsing

Intel Core i9-12900K Allegedly Beats AMD Ryzen 9 5950X at Cinebench R20

With qualification samples of the upcoming Intel Core i9-12900K "Alder Lake-S" processors and companion Socket LGA1700 motherboards hitting the black-market, expect a deluge of benchmarks on social media. One such that stands out makes a fascinating claim that the i9-12900K beats AMD's current flagship Ryzen 9 5950X processor at Cinebench R20, which has been AMD's favorite multi-threaded benchmark. At stock speeds, with liquid cooling, the i9-12900K allegedly scores 810 points in the single-threaded test, and 11600 points in multi-threaded.

To put these numbers into perspective, a retail Ryzen 9 5950X scores 641 points in the single-threaded test, and 10234 points in multi-threaded, in our own testing. The i9-12900K is technically a 16-core processor, just like the 5950X, but half its cores are low-power "Gracemont." The "Alder Lake-S" chip appears to be making up ground on the single-threaded performance of the "Golden Cove" P-core, that's a whopping 25% higher than the "Zen 3" core on the 5950X. This is aided not just by higher IPC, but also the max boost frequency of 5.30 GHz for 1~2 cores, and 5.00 GHz "all-core" boost (for the P-cores).

Intel Core i9-12900K Qualification Samples Black-marketed for Roughly $1100

Qualification samples (QS) of Intel's upcoming Core i9-12900K "Alder Lake-S" desktop processors just hit the black market for the equivalent of roughly USD $1,064 to $1,157 (6,500 to 7,500 RMB), in China. The processor maxes out the 10 nm silicon, offering 8 "Golden Cove" P-cores, and 8 "Gracemont" E-cores, along with 30 MB of L3 cache, a dual-channel DDR5 memory interface, in a hybrid processor setup. You can bag yourself this QS, but you'll need to find a compatible motherboard. "Alder Lake-S" debuts the new LGA1700 socket, Intel's first major change in the physical dimensions of its mainstream-desktop CPU socket since 2009, mandating a cooler update.

Specs of Top Intel 12th Gen Core "Alder Lake-S" Processors Surface

Intel will debut its 12th Gen Core "Alder Lake-S" desktop processors either toward the end of 2021, or early 2022, introducing the LGA1700 socket, 600-series chipset, and more importantly, hybrid CPU core architecture to the desktop space. The 10 nm "Alder Lake-S" silicon features up to eight "Golden Cove" performance cores (P-cores), and up to eight "Gracemont" efficiency cores (E-cores), in a heterogenous CPU core setup rivaling Arm big.LITTLE. Specifications of the top Core i9, fairly-top Core i7, and mid-tier Core i5 parts were leaked to the web on Chinese social media.

The 12th Gen Core lineup will be led, predictably, by the Core i9-12900K, which succeeds the i9-11900K with a maxed out 8+8 (P+E) configuration, unlocked multipliers, the most cache, and the highest clock speeds. The P-cores ("Golden Cove" cores) are clocked up to 5.30 GHz (1-2 cores boost), and up to 5.00 GHz all-core / 8 cores; while the E-cores ("Gracemont" cores), are clocked up to 3.90 GHz (1-4 cores boost), with 3.70 GHz all-core / 8 cores boost. The total L3 cache on the silicon is 30 MB. The i9-12900K has a TDP of 125 W (PL1), with 228 W PL2. Intel will introduce several new overclocking features, including multiple memory gear ratios.

Intel Core i9-12900K Qualification Sample Reportedly Beats AMD Ryzen 9 5950X

The Intel Core i9-12900K is the companies upcoming flagship 12th Generation Alder Lake-S processor featuring a hybrid design with 8 high-performance cores and 8 high-efficiency cores. The qualification sample for the processor reportedly features a base clock of 3.9 GHz and a boost clock of 5.3 GHz which is less than initial rumors which claimed boost speeds could reach 5.5 GHz. The processor achieved a multi-core score of 11300 points in Cinebench R20 which is 800 points higher than AMD's flagship Ryzen 9 5950X. Intel's 12th Generation Alder Lake-S processors will be manufactured on the 10 nm Enhanced SuperFin node and will include support for PCIe 5.0 and DDR5. Intel is expected to announce the processors in Q3 2021 for a Q4 2021 release which will position them against AMD's upcoming V-Cache technology expected to arrive in early 2022.

AMD Socket AM5 Motherboards Arriving in 2022, Paves Way for Zen3 + 3DV Cache on AM4

AMD Socket AM5 motherboards are set to arrive in Q2-2022, according to PJ, the editor of Uniko's Hardware. This would mean that the Zen 3 + 3D Vertical Cache chiplet AMD CEO Dr Lisa Su showed off in her Computex keynote, could very well be built in the Socket AM4 package, compatible with existing motherboards. The prototype Dr Su showed off appeared Socket AM4, too. AMD claims that the 3D Vertical Cache feature, when paired with a "Zen 3" chiplet, improves gaming performance by a significant 15 percent, helping AMD catch up with Intel's "Rocket Lake-S" processor at gaming. Elsewhere across the landscape, PJ predicts that the Z690 chipset, which goes with "Alder Lake-S" processors in the LGA1700 package, will arrive by Q4 2021, with cost-effective chipsets such as the B660 and H610 in Q1-2022.

Intel "Raptor Lake" is a 24-core (8 Big + 16 Little) Processor

Intel's strategy toward increasing CPU core counts could be to dial up the counts of smaller low-power CPU cores, according to a "Moore's Law is Dead" leak about the next-generation "Raptor Lake" mainstream processor. The chip is said to have 8 larger high-performance cores, and a whopping 16 low-power cores. The eight bigger performance cores will be "Raptor Cove," the successor to "Golden Cove," featuring higher IPC and more instruction sets, although the report only references this as an enhancement to "Golden Cove." The sixteen smaller low-power cores, however, are expected to remain "Gracemont," carried over from "Alder Lake-S." The "Raptor Lake-S" processor is slated for a Holiday 2022 release, and being touted as a competitor to AMD's "Zen 4" based desktop processor.

Intel 12th Gen Core Alder Lake to Launch Alongside Next-Gen Windows This Halloween

Intel is likely targeting a Halloween (October 2021) launch for its 12th Generation Core "Alder Lake-S" desktop processors, along the sidelines of the next-generation Windows PC operating system, which is being referred to in the press as "Windows 11," according to "Moore's Law is Dead," a reliable source of tech leaks. This launch timing is key, as the next-gen operating system is said to feature significant changes to its scheduler, to make the most of hybrid processors (processors with two kinds of CPU cores).

The two CPU core types on "Alder Lake-S," the performance "Golden Cove," and the low-power "Gracemont" ones, operate in two entirely different performance/Watt bands, and come with different ISA feature-sets. The OS needs to be aware of these, so it knows exactly when to wake up performance cores, or what kind of processing traffic to send to which kind of core. Microsoft is expected to unveil this new-gen Windows OS on June 24, with RTX (retail) availability expected in Q4-2021.

Intel "Alder Lake-P" Mobile Processor PL Values Revealed

Intel is preparing its 12th Gen Core "Alder Lake" processors to target not just desktop, but also notebook. The "Alder Lake-P" mobile processor will be Intel's second to implement a hybrid CPU core design (after "Lakefield"). Coelacanth Dream revealed the power level (PL) values of the three key variants of the "Alder Lake-P" silicon. Intel will create broadly three categories of mobile chips targeting specific notebook form-factors—15 W, 28 W, and 45 W. The "Alder Lake-U" 15 W chips are expected to have a PL1 value (interchangeable with the TDP marked on the tin), of 15 W, but its PL2 value, which enables the highest Turbo frequency, can be as high as 55 W.

The next category, the "Alder Lake-U" 28 W chips, have a PL2 value of 64 W. Lastly, the "Alder Lake-H" 45 W chip, which will go into notebooks of conventional thickness, is expected to have a PL2 value of a scorching 115 W. Unless we're mistaken, "Alder Lake-P" is a hybrid processor with up to 6 "Golden Cove" performance CPU cores, and up to 8 "Gracemont" low-power cores. The performance cores feature HyperThreading, and are AVX-512 capable. Unlike the desktop "Alder Lake-S," Intel is investing in a larger iGPU. Based on the Gen12 Xe LP graphics architecture, the iGPU of the "Alder Lake-P" could feature 96 execution units, compared to just 48 on the "Alder Lake-S."

Intel LGA Socket 1700: Lower Height, New Hole Pattern Render Existing Cooling Solutions Incompatible

A few details have been let out on Intel's next socket, LGA 1700, which will be the one to accept next-gen Alder Lake CPUs. Apparently, Intel's LGA 1700 - which replaces the current LGA 1200 socket) will feature a lower height (by a full [1] millimeter, helping to further reduce socket load) as well as new mounting holes positions for cooling solutions. This would effectively render existing cooling solutions incompatible with Intel's next-gen CPUs - it will be up to your cooling solution provider to offer a new cooler bracket that's compatible with the new LGA 1700 socket. If the manufacturer doesn't, it's likely you'll have to get a newer cooling solution that actually ships with the required adapter.

It has also come to light that Intel's next-gen Alder Lake-S will eschew Intel's quadrangular design for their CPUs, and instead introduce a rectangular design that's 35.5×45.0 mm. An interesting approach that places these CPUs closer in design to Intel's HEDT platforms, but likely a necessary change due to the expected new Big-Little core design in Alder Lake-S. Current information out in the wild says that Intel will keep on offering boxed cooling solutions for < 65 W TDP CPUs, while higher-performance parts will still ship absent of it. Leaks place Intel as being working on developing a new Peltier-based cooling solution for socket LGA 1700 parts as well, after they partnered with Cooler Master for the MasterLiquid ML360 Sub-Zero cooler.

Intel "Sapphire Rapids" Xeon Processors Use "Golden Cove" CPU Cores, Company Clarifies in Linux Kernel Dev E-Mail Chain

Intel's upcoming Xeon "Sapphire Rapids" processors which debut in the second half of 2021, will feature up to 80 "Golden Cove" CPU cores, and not the previously rumored "Willow Cove." This was clarified by an Intel developer in a Linux Kernel code e-mail chain. "Golden Cove" CPU cores are more advanced than the "Willow Cove" cores found in current-generation Intel products, such as the client "Tiger Lake" processors. Intel stated that "Golden Cove" introduces an IPC gain over "Willow Cove" (expressed as "ST perf"), increased AI inference performance from an updated GNI component, "network and 5G perf," which is possibly some form of network stack acceleration, and additional security features.

Over in the client segment, the 12th Gen Core "Alder Lake" processor debuts a client variant of "Golden Cove." The "Alder Lake-S" silicon features eight "Golden Cove" cores serving as the "big" performance cores, next to eight "little" low-power "Gracemont" cores. The client- and server implementations of "Golden Cove" could differ mainly in the ISA, with the client chip receiving a slightly skimmed AVX-512 and DLBoost instruction-sets, with only client-relevant instructions. The server variant, in addition being optimized for a high core-count multi-core topology; could feature a more substantial AVX-512 and DLBoost implementation relevant for HPC use-cases.

Intel Encourages Adoption of ATX12VO Standard on Alder Lake-S Motherboards

The ATX12VO power standard is a new specification for desktop power supplies which boasts greatly increased efficiency over regular desktop power supplies. The new standard requires a compatible motherboard with a 10-pin power connector along with a compatible power supply which only features 12 V rails. The standard requires that any voltage conversion above or below 12 V must be performed directly on the motherboard which increases the complexity and cost for motherboard manufacturers. Intel is interested in promoting the standard with their upcoming 600-series motherboards for Alder Lake-S however most enthusiast boards are unlikely to feature the standard. The standard may find higher adoption with entry-level motherboards for system integrators and pre-built suppliers who need to meet strict government power efficiency regulations.

CORSAIR Teases DDR5-6400 Memory Coming Later This Year

The fifth iteration of DDR technology, called DDR5, is set to arrive later this year. Many makers of DDR4 technology are announcing their plans to switch to the new standard, and CORSAIR is no exception. Known as the maker of high-quality products, CORSAIR has today posted a blog post teasing company's upcoming DDR5 products, and what they will be bringing to the table. For starters, the company has posted data about DDR5 modules that run at 6400 MHz speed, which is assumed to be the speed of the CORSAIR DDR5 modules when they arrive. At such speed, the memory can achieve a bandwidth of 51 GB/s, which is almost double the 26 GB/s that DDR4-3200 MHz memory achieves.

Another point CORSAIR wrote about is the capacity of a single DIMM. With DDR4, the company has made DIMMs that are only up to 32 GB in capacity. However, with DDR5, CORSAIR plans to quadruple that and build a single DDR5 DIMM that has up to 128 GB of memory on it. Another big point was the power required to run the new technology. The DDR4 standard required 1.2 Volts for operation, while the JEDEC specification says that DDR5 needs just 1.1 Volts to run. This will result in a cooler operation of memory modules.

Intel Alder Lake-S Engineering Sample Spotted with DDR5-4800 Memory Running DOTA 2

Intel's upcoming Alder Lake-S processors are going to be the company's first attempt at delivering heterogeneous core solutions, combining low-power and high-performance IPs in a single chip. Another important milestone that these processors will reach is DDR5 memory adoption, the first of its kind on consumer platforms. Today, thanks to CapFrameX, a monitoring tool that also hosts a database of benchmark runs, we have a piece of recorded information coming from a test system equipped with an Intel Alder Lake-S processor. The tested system spotted an engineering sample of the Alder Lake-S lineup, clocked at just 2.2 GHz. The core count and core configuration remained unknown.

Alongside the upcoming CPU, the system is composed of NVIDIA's GeForce RTX 3080 GPU and DDR5 memory running at 4800 MHz. There were four sticks present, each having 8 GB capacity. The leaked system was running the DOTA 2 game at an average of 119.98 FPS, which doesn't mean much, given that we don't know which settings were applied and what was the resolution. There is a chart showing the gaming frame rate and frame time, which could be interesting to look at. However, the only new information we have come to know is that the Alder Lake-S is already capable of playing games and the ecosystem support should be very good at launch.

Intel Core "Alder Lake-S" to Launch in November 2021

Intel's 11th Gen Core "Rocket Lake-S" could have a brief stint as the tip of Intel's desktop spear. Wccftech reports that its successor, the 12th Gen Core "Alder Lake-S," could launch by November 2021. The processor debuts on the new LGA1700 socket, and will introduce many firsts to the platform. The biggest change will be the heterogenous CPU core architecture. The top-spec "Alder Lake-S" is believed to be a 16-core/24-thread processor. From these, 8 will be larger high-performance cores, featuring HyperThreading, while the other 8 will be smaller high-efficiency cores. The chip is expected to be built on the 10 nm SuperFin process, and hence Intel is expected to significantly lower power draw of desktops when the machine is idling or handling lighter desktop loads.

Besides the major update to the CPU cores, "Alder Lake-S" is expected to continue featuring a Xe LP based integrated graphics solution. Significant changes with the I/O are expected, including DDR5 memory support with backwards compatibility for DDR4, and PCI-Express Gen 5.0. The LGA1700 socket is significantly different from the various LGA115x/LGA1200 sockets Intel has been pulling for its mainstream desktop platforms since 2009. It could trigger the need for new CPU coolers that support the socket.

GALAX Readies HOF-branded DDR5 Overclocking Memory

GALAX on Facebook announced that it is developing its next generation of DDR5 memory modules targeted at overclockers. The modules are possibly made under the HOF (Hall of Fame) brand, as the announcement comes from the company's OC Lab handle that markets its HOF series products. The announcement also comes with pictures of trays of DDR5 DRAM chips made by Micron Technology. With major DIY gaming/overclocking memory brands announcing development of DDR5 memory products, one wonders where the platforms for these memory modules are. It's rumored that Intel's upcoming 12th Gen Core "Alder Lake-S" processor in the LGA1700 package could feature a DDR5 memory interface. AMD's first client-desktop platform with DDR5 would see the transition to the new AM5 socket.

Intel 12th Generation Alder Lake Platform Reportedly Brings 20% Single-Threaded Performance Uplift

Intel only just announced their 11th generation Rocket Lake-S desktop processors last week but we are already receiving information about the next generation Alder Lake-S platform which will finally make the jump to 10 nm. Intel slides for the upcoming family of processors have been leaked and they reveal some interesting information including a claimed 20% single-threaded performance increases from the new Golden Cove core design and 10 nm SuperFin node. The processors will feature Intel Hybrid Technology with a mix of small low-performance cores and large high-performance cores with a maximum of eight each for sixteen total cores. The processors will also include the latest connectivity with both PCIe 4.0 and PCIe 5.0 support along with DDR4 and DDR5 4800 MHz compatibility.

Intel will also be launching a new socket type called LGA1700 with a new package size which will render existing cooling solutions for LGA115X and LGA1200 sockets incompatible. The processors will also come with the launch of a new 600 Series chipset with PCIe 3.0 and PCIe 4.0 support along with the usual complement of USB, SATA, and networking. The entry-level 600-series motherboards will only support DDR4 memory at up to 3200 MHz while high-end Z690 motherboards will include DDR5 support. Intel has confirmed that they intend to launch Alder Lake later this year but it is yet to be known if they are referring to the desktop or mobile series.

DDR5-6400 RAM Benchmarked on Intel Alder Lake Platform, Shows Major Improvement Over DDR4

As the industry is preparing for a shift to the new DDR standard, companies are trying to adopt the new technology and many companies are manufacturing the latest DDR5 memory modules. One of them is Shenzhen Longsys Electronics Co. Ltd, a Chinese manufacturer of memory chips, which has today demonstrated the power of DDR5 technology. Starting with this year, client platforms are expected to make a transition to the new standard, with the data center/server platform following. Using Intel's yet unreleased Alder Lake-S client platform, Longsys has been able to test its DDR5 DIMMs running at an amazing 6400 MHz speed and the company got some very interesting results.

Longsys has demoed a DDR5 module with 32 GB capacity, CAS Latency (CL) of 40 CL, operating voltage of 1.1 V, and memory modules clocked at 6400 MHz. With this being an impressive memory module, this is not the peak of DDR5. According to JEDEC specification, DDR5 will come with up to 8400 MHz speeds and capacities that are up to 128 GB per DIMM. Longsys has run some benchmarks, using an 8-core Alder Lake CPU, in AIDA64 and Ludashi. The company then proceeded to compare these results with DDR4-3200 MHz CL22 memory, which Longsys also manufactures. And the results? In AIDA64 tests, the new DDR5 module is faster anywhere from 12-36%, with the only regression seen in latency, where DDR5 is doubling it. In synthetic Ludashi Master Lu benchmark, the new DDR5 was spotted running 112% faster. Of course, these benchmarks, which you can check out here, are provided by the manufacturer, so you must take them with a grain of salt.

Intel Alder Lake Processor Tested, Big Cores Ramp Up to 3 GHz

Intel "Alder Lake" is the first processor generation coming from the company to feature the hybrid big.LITTLE type core arrangement and we are wondering how the configurations look like and just how powerful the next-generation processors are going to be. Today, a Geekbench submission has appeared that gave us a little more information about one out of twelve Alder Lake-S configurations. This time, we are getting an 8-core, 16-threaded design with all big cores and no smaller cores present. Such design with no little cores in place is exclusive to the Alder Lake-S desktop platform, and will not come to the Alder Lake-P processors designed for mobile platforms.

Based on the socket LGA1700, the processor was spotted running all of its eight cores at 2.99 GHz frequency. Please note that this is only an engineering sample and the clock speeds of the final product should be higher. It was paired with the latest DDR5 memory and NVIDIA GeForce RTX 2080 GPU. The OpenCL score this CPU ran has shown that it has provided the GPU with more than enough performance. Typically, the RTX 2080 GPU scores about 106101 points in Geekbench OpenCL tests. Paired with the Alder Lake-S CPU, the GPU has managed to score as much as 108068 points, showing the power of the new generation of cores. While there is still a lot of mystery surrounding the Alder Lake-S series, we have come to know that the big cores used are supposed to be very powerful.

Intel "Alder Lake-S" Due for September 2021

2021 is shaping up to be a big year for Intel in the DIY desktop space, with the company preparing to launch not one, but two generations of desktop processors. Having announced them in January, the 11th Gen Core "Rocket Lake-S" desktop processors in the LGA1200 package, will release to market in March, with the company claiming a restoration in gaming performance leadership away from AMD's Ryzen 5000 series. Sources tell Uniko's Hardware that the company will announce its 12th Gen successor, the Core "Alder Lake-S" in September 2021.

"Alder Lake-S" will be Intel's first mainstream desktop processor built on its new 10 nm SuperFin silicon fabrication process. The chip is expected to be a "hybrid" processor, combining an equal number of larger "Golden Cove" cores, and smaller "Gracemont" cores, to offer significantly improved energy efficiency. Built in the new Socket LGA1700 package, "Alder Lake-S" is expected to feature more general-purpose SoC connectivity than LGA1200 chips. It will also herald new platform standards, such as DDR5 memory and possibly even mainstreaming of ATX12VO. The processor will launch alongside new Intel 600-series chipset. AMD's response is expected to be the "Zen 4" microarchitecture, a new silicon built on the 5 nm process, and the new AM5 socket that introduces DDR5 memory support.

16-Core Intel Alder Lake-S Processor Appears with DDR5 Memory

Intel has just launched its Rocket Lake-S desktop lineup of processors during this year's CES 2021 virtual event. However, the company is under constant pressure from the competition and it seems like it will not stop with that launch for this year. Today, thanks to the popular leaker @momomo_us on Twitter, we have the first SiSoftware entries made from the anonymous Alder Lake-S system. Dubbed a heterogeneous architecture, Alder Lake is supposed to be Intel's first desktop attempt at making big.LITTLE style of processors for general consumers. It is supposed to feature Intel 10 nm Golden Cove CPU "big" cores & Gracemont "small" CPU cores.

The SiSoftware database entry showcases a prototype system that has 16 cores and 32 threads running at the base frequency of 1.8 GHz and a boost speed of 4 GHz. There is 12.5 MB of L2 cache (split into 10 pairs of 1.25 MB) and 30 MB of level-three (L3) cache present on the processor. There is also an Alder Lake-S mobile graphics controller that runs at 1.5 GHz. Intel Xe gen 12.2 graphics is responsible for the video output. When it comes to memory, Alder Lake-S is finally bringing the newest DDR5 standard with a new motherboard chipset and socket called LGA 1700.

Intel Alder Lake-S Processor Pictured

Intel has just recently announced its next-generation Rocket Lake-S processor specifications designed to bring improved performance and newer platform technologies like PCIe 4.0. However, we are yet to see the first 10 nm CPU for desktop users. Today, thanks to the sources over at VideoCardz, we have the first look at Intel's next-next-generation processor called Alder Lake. The Alder Lake-S is a platform that brings many of the "firsts" for Intel. It will be the first architecture being built on the company's 10 nm SuperFin architecture. Alongside the new node, the platform will transition to the next-generation of technologies. Rumored are the transitions to PCIe 5.0 and perhaps, most importantly - DDR5.

Another new approach will be Intel's adaptation of Arm's big.LITTLE heterogeneous core structure. The processor will feature a few of the "little" cores for light tasks, and fire up the "big" cores for heavy computing. All of that will require a new socket to house the processor, which is the LGA1700. You can see the new processor below, compared to LGA1200 CPU from the previous generation.

Intel Alder Lake-S CPU Has Been Pictured

Intel has been preparing the launch of its 10 nm processors for desktop users for some time now, and today we are getting the first pictures of the Alder Lake-S CPU backside. Featuring a package with a size of 37.5×45 mm, the Alder Lake CPU uses more of its area for a pin count increase. Going up from 1200 pins in the LGA1200 socket, the new Alder Lake-S CPU uses 1700 CPU pins, which slots in the LGA1700 socket. In the picture below, there is an engineering sample of the Alder Lake-S CPU, which we see for the first time. While there is no much information about the processor, we know that it will use Intel's 10 nm SuperFin design, paired with hybrid core technology. That means that there will be big (Golden Cove) and little (Gracemont) cores in the design. Other features such as PCIe 5.0 and DDR5 should be present as well. The new CPU generation and LGA1700 motherboards are scheduled to arrive in second half of 2021.

Intel Alder Lake-S Processor with 16c/32t (Hybrid) Spotted on SANDRA Database

Intel's upcoming Core "Alder Lake-S" desktop processor, which is shaping up to be the first Hybrid desktop processor, surfaced on the SiSoft SANDRA benchmark database, as dug up by TUM_APISAK. The chip is reported by SANDRA to be 16-core/32-thread, although this is expected to be a combination of eight "big" high-performance cores, and eight "small" high-efficiency cores, in a multi-core topology similar to Arm big.LITTLE. Other specs read by SANDRA include clock speeds around "1.40 GHz," ten 1.25 MB L2 caches (possibly 8x 1.25 MB for the big "Golden Cove" cores, 2x 1.25 MB for the two groups of small "Gracemont" cores), and 30 MB of L3 cache. The Hybrid processor architecture is expected to introduce several platform-level innovations to the modern desktop, taking advantage of the extremely low power draw of the "Gracemont" cores when the machine isn't grinding serious workloads.

Coreboot Code Hints at Intel "Alder Lake" Core Configurations

Intel's 12th Gen Core EVO "Alder Lake" processors in the LGA1700 package could introduce the company's hybrid core technology to the desktop platform. Coreboot code leaked to the web by Coelacanth's Dream sheds fascinating insights to the way Intel is segmenting these chips. The 10 nm chip will see Intel combine high-performance "Golden Cove" CPU cores with energy-efficient "Gracemont" CPU cores, and up to three tiers of the company's Gen12 Xe integrated graphics. The "Alder Lake" desktop processor has up to eight big cores, up to eight small ones, and up to three tiers of the iGPU (GT0 being disabled iGPU, GT1 being the lower tier, and GT2 being the higher tier).

Segmentation between the various brand extensions appears to be primarily determined by the number of big cores. The topmost SKU has all 8 big and 8 small cores enabled, along with GT1 (lower) tier of the iGPU (possibly to free up power headroom for those many cores). The slightly lower SKU has 8 big cores, 6 small cores, and GT1 graphics. Next up, is 8 big cores, 4 small cores, and GT1 graphics. Then 8+2+GT1, and lastly, 8+0+GT1. The next brand extension is based around 6 big cores, being led by 6+8+GT2, and progressively lower number of small cores and their various iGPU tiers. The lower brand extension is based around 4 big cores with similar segmentation of small cores, and the entry-level parts have 2 big cores, and up to 8 small cores.
Return to Keyword Browsing
Copyright © 2004-2021 www.techpowerup.com. All rights reserved.
All trademarks used are properties of their respective owners.