News Posts matching #BGA

Return to Keyword Browsing

Greenliant Launches NVMe NANDrive BGA Single-chip SSDs

Greenliant is now sampling its new NVMe NANDrive ball grid array (BGA) solid state drives (SSDs) to customers requiring reliable, high performance data storage for embedded systems used in high stress, extreme environments. Operating between -40 and +95 degrees Celsius, NVMe NANDrive SSDs support the PCIe Gen3x4 interface and are built in an industry standard M.2 1620 (16 x 20 mm, 291-ball) package. See NVMe NANDrive information at https://bit.ly/NVMe-BGA-SSD.

"Building on our proven track record with PATA, SATA and eMMC NANDrive, Greenliant delivers another outstanding high reliability BGA SSD, now with the high speed PCIe NVMe interface, and features that meet the requirements of the most demanding applications," said Arthur Kroyan, vice president, business development and marketing, Greenliant."

Silicon Motion Unveils High-Performance Single Chip PCIe Gen4.0 BGA Ferri SSD with i-temp for Industrial and Automotive Applications

Silicon Motion Technology Corporation ("Silicon Motion"), a global leader in designing and marketing NAND flash controllers for solid-state storage devices, today introduced the new generation FerriSSD NVMe PCIe Gen 4 x4 BGA SSD. This latest solution features support for i-temp and integrates advanced IntelligentSeries technology, delivering robust data integrity in extreme temperature environments that meet the rigorous demands of industrial embedded systems and automotive applications.

The latest FerriSSD BGA SSD supports PCIe Gen 4 x4 and uses high density 3D NAND within a compact 16 mm x 20 mm BGA chip-scale package. With storage capacities up to 1 TB, these high-performance embedded SSDs utilize Silicon Motion's latest innovations to achieve high sequential read speeds exceeding 6 GB/s and sequential write speeds exceeding 4 GB/s. Equipped with Silicon Motion's proprietary IntelligentSeries data protection technology that enhances reliability and performance through the use of encryption, data caching, data scanning and protect features, as well as supporting the i-temp requirements of operating in extreme temperatures from -40°C to + 85°C. This latest FerriSSD offers a high performance and highly reliable embedded storage solution for a broad range of applications and operating environments including in-car computing, thin client computing, point-of-sale terminals, multifunction printers, telecommunications equipment, factory automation tools, and a wide range of server applications.

Western Digital Achieves ASPICE CL3 Certification to Meet Dynamic Needs of the Automotive Industry

More than mere modes of transportation, today's software-defined vehicles are a result of the ongoing transformation of the automobile from a product that is mainly hardware-based to a software-centric device on wheels. Premium vehicles today can have up to 150 million lines of software code, distributed among hundreds of electronic control units (ECUs), sensors, cameras, Lidar and more.

It is critical for automotive OEMs to ensure the quality and reliability of these software-intensive systems. Automotive SPICE (Software Process Improvement and Capability dEtermination) is an industry-standard guideline for evaluating the automotive embedded software development process. This ISO/IEC 15504 standard proves the software and development capabilities of automotive suppliers and manufacturers meet OEM requirements and incorporate best practices throughout the automotive software development cycle.

MINISFORUM Outs a Desktop M-ITX Motherboard with Core i9-13900HX Hardwired Processor

MINISFORUM released the AR900i, an MoDT (mobile on desktop) motherboard in the Mini-ITX form factor that comes with a hardwired Intel Core i9-13900HX mobile processor and a pre-installed cooling solution. The board is priced at $560 on Amazon, with a limited-period $70-off coupon. This is good value, considering that the i9-13900HX is a maxed-out "Raptor Lake" based mobile processor that features all 8 P-cores, all 16 E-cores, and all 36 MB of shared L3 cache physically present on the "Raptor Lake" silicon. The P-cores boost up to 5.40 GHz, and the E-cores up to 3.90 GHz. The only catch with this processor compared to something like a desktop i9-13900, is its power specs that were originally designed for the power constraints of notebooks, with 55 W base power, and 157 W of maximum turbo power, compared to 225 W of the socketed i9-13900.

Since the Core i9-13900HX is a mobile BGA1964 package that remains hardwired to the board, it is not upgradable. MINISFORUM has designed a cooling solution specific to the processor, which uses a large aluminium fin-stack heatsink that relies on an 80 mm case fan for ventilation. There's a secondary fan-heatsink that provides cooling to two M.2-2280 slots north of the processor. Each of these two M.2 slots has a PCI-Express 5.0 x4 wiring, and using either of them subtracts 8 PCIe lanes from the board's sole expansion slot, a PCI-Express 5.0 x16. The board features an M.2 E-key slot that you can pair with your own WLAN card, it comes with provision for dual-MIMO ready antennas. The processor is wired to two DDR5 SO-DIMM slots supporting up to 96 GB of memory. The board draws power from a 24-pin ATX and a single 8-pin EPS, which should prove sufficient for this processor.

Intel Core "Meteor Lake" Confirmed NOT Coming to Desktops, Only AIOs and Mini PCs

Intel's next generation Core "Meteor Lake" processor was confirmed by ComputerBase.de to not release on the desktop platform. The processor will not make it to a socketed desktop package such as the upcoming LGA1851. It will see a mobile-only (notebook and tablets only) launch, with select processor models based on the mobile BGA package being made available to PC OEMs to build all-in-one desktops and mini PCs as non-socketed processors.

The desktop platform presence of "Meteor Lake" has been surrounded by some controversy, owing mainly to its maximum CPU core count of 6P+16E, which is bound to fall short of the current 8P+16E, and AMD's 16P. A slide released by Intel added to the confusion, which indicated that "Meteor Lake" has a thermal range of 5 W to 125 W, with the latter being typically associated with the processor base power values of desktop Core K-series processors.

Intel Lists Testing Interposers for Arrow Lake-HX, Lunar Lake-M, and Battlemage

Intel recently updated its website to highlight interposers used for testing upcoming chips before their actual product integration. A specific webpage now showcases components used by various tools, notably the "Gen5 VR," which stands for CPU Voltage Regulator in this context. The highlight of the update reveals at least four yet-to-be-announced products: Battlemage (BMG), Arrow Lake (ARL), and Lunar Lake (LNL), slated for launch in 2024. Particularly interesting are the two Battlemage interposers: BGA2362-BMG-X2 and BGA2727-BMG-X3. This hints that a Battlemage GPU could have more pins than Intel's current top-tier GPU from the Alchemist series, known as DG2, which features 2660 pins (BGA2660-DG2-512EU).

This unveiling could indicate Intel's plans to introduce two GPUs in its new series or potentially two different package sizes. Manufacturers often use consistent package sizes for multiple GPUs, granting flexibility to interchange processors with similar specifications and presenting a feasible production strategy. Another notable mention is the Arrow Lake-HX, intended for premium desktop/laptop hybrids.. While there was some buzz about the ARL-HX series before, this update provides clear confirmation from Intel. Lastly, the reveal includes an interposer for the Lunar Lake-M series (LNL-M), which is expected to be Intel's most energy-efficient line. Drawing parallels from the Alder Lake series, such chips were designed for tablets with power consumption between 5 to 7 watts.

Intel Arrow Lake-HX Interposer Appears Online

The Intel Design tools webpage has this week once again provided an early preview of upcoming processors - following on from an LGA1851-MTL-S CPU interposer appearing on the site late last month - indicating that a Meteor Lake-S desktop CPU range was due at some point later in 2023. Intel's latest webpage entry features the "BGA2114-ARL-HX Interposer for the Gen 5 VR Test Tool" with an SKU code that reads: "Q6B2114ARLHX."

The BGA 2114 design points to a mobile processor platform, and industry analysts are fairly certain that Intel is preparing next generation high-end laptop CPUs in the form of its rumored Arrow Lake-HX lineup. This range is set to succeed the 13th generation Core-HX Raptor Lake family of mobile processors. The new BGA package looks to be slightly larger than the closest predecessor, possibly accommodating Intel's new "disaggregated" tile-based (tile is their term for chiplet) internal layout.

Chinese OEMs Re-purpose "Alder Lake-H" Mobile Processors on Convenient Desktop Motherboards

Chinese OEM ERYING designed a lineup of Micro-ATX and Mini-ITX desktop motherboards with 12th Gen Intel Core H-segment mobile processors. These are processors originally meant for the mobile platform, but which have been hardwired on these motherboards. Since the processor packages are bare-die BGAs, ERYING is using thick copper heatspreaders that protect the processor underneath, but most importantly, provide cooler compatibility for all aftermarket CPU coolers capable of handling Socket LGA1700 processors. This is a clever way of giving customers choice of aftermarket coolers by simply tossing in a slab of metal that serves as a heatspreader; than using a custom-design fan-heatsink with no upgradability.

Among the mobile processors these boards come with, are the Core i7-12700H (6P+8E), Core i5-12650H (4P+8E), i5-12500H (4P+8E), and i5-12450H (4P+4E). These boards come with conventional 24-pin ATX + 8-pin EPS power inputs, stock Intel clock speeds and power limits; and full-size memory slots, besides PCI-Express Gen 3 x16 and x1 slots, and a plethora of desktop-relevant I/O. Prices range between the equivalent of $286 to $356, depending on the processor used. An interesting feature with these boards is the ability to override the 45 W PL1 of the processors, and unlock PL1 and PL2 up to 95 W, to improve performance.

DNP Develops TGV Glass Core Substrate for Semiconductor Packages

Dai Nippon Printing Co., Ltd. (DNP) has developed a Glass Core Substrate (GCS) targeting next-generation semiconductor packages. The new product replaces conventional resin substrates (ex. FC-BGA: Flip Chip-Ball Grid Array) with a glass substrate. Through the use of high-density Through Glass Via (TGV), it is now possible to provide a higher performance semiconductor package than that based on currently available technology. In addition, by adapting our panel manufacturing process, the new product can also support demands for high efficiency and large-scale substrate.

Features
Fine pitch and high reliability
The newly developed GCS includes a TGV necessary for electrically connecting the fine metal wiring configured on the front and back of the glass. It is a Conformal Type glass substrate in which a metal layer is adhered to the side walls of the via. Our new proprietary manufacturing method enhances the adhesion between glass and metal, which was difficult to achieve with conventional technology, to realize fine pitch and high reliability.

AMD Launches Ryzen Embedded V3000 Series Processors

AMD today introduced the Ryzen Embedded V3000 Series processors, adding the high-performance "Zen 3" core to the V-Series portfolio to deliver reliable, scalable processing performance for a wide range of storage and networking system applications. With greater CPU performance, DRAM memory transfer rate, CPU core count and I/O connectivity when compared to the AMD Ryzen Embedded V1000 series, the new AMD Ryzen Embedded V3000 Series processors deliver the performance and low-power options required for some of the most demanding 24x7 operating environments and workloads.

Now shipping to leading embedded ODMs and OEMs, AMD Ryzen Embedded V3000 processors address the growing demands of enterprise and cloud storage, as well as data center network routing, switching and firewall security features. AMD Ryzen Embedded V3000 processors can power a variety of diverse use-cases ranging from virtual hyper-converged infrastructure to advanced systems at the edge.

KIOXIA Introduces Industrial Grade BiCS FLASH 3D Flash Memory

KIOXIA America, Inc. has introduced new Industrial Grade flash memory devices. This new lineup utilizes the latest generation KIOXIA BiCS FLASH 3D flash memory with 3-bit-per-cell (triple-level cell, TLC) technology, and is available in a 132-BGA package. Densities range from 512 gigabits (64 gigabytes) to 4 terabits (512 gigabytes) to support the unique requirements of industrial applications - including telecommunication, networking, embedded computing and much more.

The storage requirements for many industrial applications stand in stark contrast to those of SSDs designed to be housed in climate-controlled data centers - including the need for extended temperature ranges and the ability to maintain high reliability and performance in rugged operating conditions. Designed with these needs in mind, the new KIOXIA devices support a wide temperature range (-40°C to +85°C) and offer suitable products for the industrial market.

AMD TSMC's Second Largest Customer for 5nm, More Resilient Than Intel to Face Downturns in the PC Industry: Report

AMD is now TSMC's second largest customer for its 5 nanometer N5 silicon fabrication node, according to a DigiTimes report. The Taiwan-based semiconductor industry observer also reports that AMD is more resilient than Intel in facing any downturns in the PC industry, in the coming few months. PC sales are expected to slump by as much as 15 percent in the near future, but the lower market-share compared to Intel; and the flexibility for AMD to move its CPU chips over to enterprise product to feed the growth in server processor segment, means that the company can ride over a bumpy road in the near future. The lower market-share translates to "lesser pain" from a slump compared to Intel. The report also says that embracing TSMC for processors "just in time" means that AMD has a front-row seat with product performance, time-to-market, yields, and delivery.

AMD is on the anvil of two major product launches on 5 nm, the Ryzen 7000 series "Raphael" desktop processors on August 30 (according to the report), and EPYC "Genoa" server processors in November 2022. The company is planning to refresh its notebook processor lineup in the first half of 2023, with "Dragon Range," and "Phoenix Point" targeting distinct market segments among notebooks. "Dragon Range" is essentially "Raphael" (5 nm chiplet + 6 nm cIOD) on a mobile-optimized BGA package, letting AMD cram up to 16 "Zen 4" cores, and take on Intel's high core-count mobile processors. The iGPU of "Dragon Range" will be basic, since designs based on this chip are expected to use discrete GPUs. "Phoenix Point" is a purpose-built mobile processor with up to 8 "Zen 4" cores, and a powerful iGPU based the RDNA3 architecture.

Winbond's LPDDR4/4X 100BGA achieves JEDEC standard for improved energy conservation and carbon reduction in a smaller package size

Winbond Electronics Corporation, a leading global supplier of semiconductor memory solutions, today announced that its new package 100BGA LPDDR4/4X had achieved the JEDEC JED209-4 standard to ensure energy conservation and carbon reduction. The LPDDR4/4X is now available in a space-saving 100BGA package measuring only 7.5X10mm2. The device is ideal for IoT applications requiring higher throughput in a small package to allow designers to reduce the PCB size for more compact IoT designs.

Winbond's LPDDR4/4X memory is available in density of 1Gb and 2Gb, supporting speeds of up to 4267 Mbps. It is available in both Single-Die-Package (SDP) with a 2Gb density and Dual-Die-Package (DDP) with a 4Gb density. The higher speed of LPDDR4 1CH x16 4267 Mbps offers improved performance over previous DDR4 x16 3200 Mbps devices, which is especially useful for consumer applications.

ATP Announces High-Endurance 3D TLC-based eMMC Devices

ATP Electronics, the global leader in specialized storage and memory solutions, has introduced its latest line of e.MMC devices built on 3D triple level cell (TLC) NAND. Using a new die package, the E750Pi/Pc and E650Si/Sc Series offer long-life performance, optimized power consumption and customizable configuration options. ATP's new E750Pi/Pc Series e.MMC offerings are built with 3D TLC NAND flash but are configured as pseudo SLC (pSLC) to offer endurance on par with SLC NAND, while E650Si/Sc Series in native TLC has near-MLC endurance.

The E750Pi and E650Si Series are industrial temperature-operable (-40°C to 85°C), making them ideal for deployment in scenarios with extreme thermal challenges and harsh environments, while E750Pc and E650Sc support -25°C to 85°C operating temperatures for applications with non-critical thermal requirements.

Fujitsu Launches New 8Mbit FRAM Guaranteeing Writing Endurance up to 100 Trillion Times

Fujitsu Semiconductor Memory Solution Limited has launched new 8 Mbit FRAM MB85R8M2TA with parallel interface, which is the first product to guarantee 100 trillion read/write cycle times in Fujitsu's FRAM product family. Evaluation samples are currently available. The new product achieves both high-speed operations, approximately 30% faster access speed, and low power consumption, 10% less operating current, compared to Fujitsu's conventional products. This memory IC is an ideal replacement of SRAM in the industrial machines that require high-speed operation.

FRAM is a non-volatile memory product with superior features of high read/write endurance, fast writing speed operation and low power consumption, and it has been mass-produced for over 20 years. Fujitsu has been providing 8 Mbit FRAM MB85R8M2T with parallel interface since June 2018. While promoting the product, the company heard voices of customer requirements such as guaranteed writing endurance of more than 10 trillion times, operation as fast as SRAM and TSOP package compatibility to SRAM. Fujitsu is now pleased to introduce its new 8 Mbit FRAM product satisfying these requirements, maintaining FRAM's unique feature of lower power consumption.

Longsys Launches FORESEE DDR4 DRAM Chips

With the rapid development of advanced technologies, such as 5G, the Internet of Things (IoT), Artificial Intelligence (AI), and 8K, people are placing more stringent requirements on the convenience, intelligence, and functional integration of their electronics. This has given rise to new development opportunities in the storage industry. As we progress further into the digital revolution, intelligent electronics will require small-capacity storage products which feature an increased level of reliability and stability. High-temperature tolerance in storage products will be vital for customers in the intelligent and small-sized consumer electronics market.

Longsys recently launched the FORESEE DDR4, which utilizes 96-ball thin fine ball grid array (TFBGA) encapsulation. The product's manufacturing process, transmission speed, power consumption, and high-temperature reliability all perform at an industry-leading level.

SkyHigh Memory expands its single-level cell (SLC) NAND Flash Memory family on 1xnm process technology, one of the industry's most advanced technology

SkyHigh Memory Limited., a global leader in embedded storage solutions, is introducing 3.0 V 1 Gb - 4 Gb densities 4 KB page and 2 KB page ML-3 products to its family of NAND Flash memories. The new 1 Gb - 4 Gb ML-3 SLC NAND Flash product family devices are designed on 1xnm, the industry's most advanced technology node for SLC NAND products. Available with different interfaces, SkyHigh Memory first-generation Serial (SPI) SLC NAND and third-generation Parallel SLC NAND complete the third generation ML-3 4 Gb - 16 Gb parallel SLC NAND product family already in production.

The new 1 Gb - 4 Gb devices will be offered to support high-reliability systems that store critical data and operate at extended temperatures, up to +105°C. Thanks to its internal ECC engine, the ML-3 product family can support chipsets with as low as a 1-bit ECC engine to accommodate legacy chipsets and modern chipsets with higher ECC engines.

AMD Ryzen Embedded V3000 SoCs Based on 6nm Node, Zen 3 Microarchitecture

AMD's next generation Ryzen Embedded V3000 system-on-chips aren't simply "Cezanne" dies sitting on BGA packages, but rather based on a brand new silicon, according to Patrick Schur, a reliable source with leaks. The die will be built on the more advanced 6 nm silicon fabrication node, whilst still being based on the current "Zen 3" microarchitecture. There are several things that set it apart from the APU silicon of the current-generation, making it more relevant for the applications the Ryzen Embedded processor family is originally built for.

Built in the FP7r2 BGA package, the V3000 silicon features an 8-core/16-thread CPU based on the "Zen 3" microarchitecture. There are also an integrated GPU based on the RDNA2 graphics architecture, with up to 12 CUs, a dual-channel DDR5 memory interface, a 20-lane PCI-Express 4.0 root complex, with up to 8 lanes put out for PEG; two USB4 ports, and two 10 GbE PHYs. AMD could design at least three SKUs based on this silicon, spanning TDP bands of 15-30 W and 35-54 W.

Intel NUC 11 Extreme "Beast Canyon" to Feature KB CPUs - Desktop Power, Mobile Socket

Intel's NUC 11 Extreme, codenamed Beast Canyon, is a revisit - and in some terms, reimagining - of the Extreme performance NUC range by Intel. The new Beast Canyon NUCs will now support full-length discrete graphics cards as well Intel's compute element in a single, 8L compact case. The compute element, which we have already pictured before, has now been photographed up close, manifesting one of Intel's latest additions to its ARK database - the NUC features a Core i9-11900KB CPU.

Intel has registered four B-line CPUs on its Ark: the i9-11900KB (unlocked, mobile socket, NUC-bound); i7-11700B; i5-11500B; and i3-11100B. All of these CPUs are meant for the NUC form-factor, are part of Intel's Next Unit of Computing design, and will ship in an add-in card form factor which already includes the socketed, mobile CPU (likely in BGA packaging), the RAM sticks, storage subsystem, and I/O complex. It remains to be seen whether this new form-factor convinces those interested in such a system - the added capability to add full-length PCIe graphics cards may add some flexibility, but it does come at the expense of physical footprint for the new generation NUC.

Intel Xe-HPG DG2 GPU Specifications Leak, First GPUs are Coming in H2 2021 in Alder Lake-P Laptops

Yesterday, we got information that Intel's upcoming DG2 discrete graphics card is "right around the corner". That means that we are inching closer to the launch of Intel's discrete GPU offerings, and we are going to get another major player in the current GPU market duopoly. Today, however, we are in luck because Igor from Igor's LAB has managed to get ahold of the specifications of Intel's Xe-HPG DG2 graphics card. For starters, it is important to note that DG2 GPU will first come to laptops later this year. More precisely, laptops powered by Alder Lake-P processors will get paired with DG2 discrete GPU in the second half of 2021. The CPU and GPU will connect using the PCIe 4.0 x12 link as shown in the diagram below, where the GPU is paired with the Tiger Lake-H processor. The GPU has its subsystem that handles the IO as well.

ATP Launches PCIe Gen3 x4 NVMe SSDs in M.2 Type 1620 HSBGA Package

ATP Electronics, the global leader in specialized storage and memory solutions, has announced the launch of its tiniest NVMe flash storage offering: the N700 Series PCIe Gen3 x4 NVMe solid state drives (SSDs, which are available as M.2 Type 1620 heatsink ball-grid array (HSBGA) package. Complying with M.2 specifications, the M.2 Type 1620 HSBGA measures just 16 (L) x 20 (W) x 1.6 (H) mm, supporting high-speed PCIe 3.0 interface x4 lanes and NVMe protocol to deliver up to 32 Gb/s bandwidth at 8 Gb/s per lane. The soldered-down design makes them vibration-proof, while the 291-ball packaging takes up minimal space within tightly confined systems.

For customers who prefer a removable and field-replaceable design, ATP can accommodate the HSBGA onto an M.2 2230 module with the same firmware and NAND configuration. Both variants are suitable for thin and light systems in embedded, industrial and mobile applications. N700 Series SSDs are built with 3D triple-level cell (TLC) configured as pseudo single-level cell (pSLC) NAND flash. By storing only one bit per cell, they increase the reliability and endurance of the NAND flash memory, while benefiting from the lower cost compared with native SLC, due to the higher cell density.

Greenliant Ultra High Endurance Storage Solutions Enable High Reliability Systems

Greenliant has secured major design wins with its EnduroSLC solid state drives (SSDs) in a wide range of demanding, extreme environment applications for customers that need best-in-class reliability and product longevity. Greenliant's proprietary EnduroSLC Technology substantially enhances data retention and extends the write endurance of 1-bit-per-cell SSDs with advanced hardware ECC capabilities and NAND flash management algorithms. EnduroSLC SSDs not only offer superior data retention capabilities under complex temperature conditions, but also support 50K, 100K and industry-leading, ultra high 250K+ program-erase (P/E) cycles, which are at least a 5x improvement over pseudo-SLC (pSLC) SSDs and a 50x improvement over MLC NAND-based products.

For systems that are in remote locations and costly to maintain-from satellite to subsea communications-customers recognize the value of EnduroSLC SSDs; they can reliably operate and retain data for long periods of time in harsh conditions. Long-life, write-intensive products, such as transportation black box recorders and industrial data loggers, have also benefitted from the enhanced features of EnduroSLC SSDs. EnduroSLC storage products are designed with Greenliant's advanced SATA, NVMe PCIe and eMMC controllers, operate at industrial temperatures (-40 to +85 degrees Celsius) and are backed by the company's Long-Term Availability program (http://bit.ly/SSD-LTA-program), providing an extra level of support.

Intel Confirms Development of 8-core Tiger Lake-H Processors

Intel's Corporate Vice President of Client Computing Group Boyd Phelps posted an article on medium where he confirms development of 8-core Tiger Lake-based CPU solutions, to be released during the year 2021. This was confirmed by Boyd saying that 8-core Tiger Lake CPUs would have access to 24 MB of LLC cache (adequately doubling the 12 MB available for 4-core Tiger Lake-U parts that we already know about); Boyd then simply added in parentheticals "more detail on 8-core products at a later date".

The 8-core processors will be part of the Tiger Lake-H product stack, which, according to a leaker on PTT Shopping, would scale between the 35 W-45 W TDPs with various core and GPU Execution Unit counts. The 45 W high-performance parts can feature between 4, 6, and 8-cores - but additional space taken up by the CPU cores is thus unavailable for GPU resources, which top out at 32 Intel Xe EUs (and will make use of a BGA1787 socket). The 35 W variants, on the other hand, will be installed in the same socket as Tiger Lake-U - BGA 1449 - and reportedly only offer a 4-core design with 96 EUs.

Penguin Computing Packs 7616 Intel Xeon Platinum Cores in one Server Rack

In data centers of hyperscalers like Amazon, Google, Facebook, and ones alike, there is a massive need for more computing power. Being that data centers are space-limited facilities, it is beneficial if there is a system that can pack as much computing power as possible, in a smaller form factor. Penguin Computing has thought exactly about this problem and has decided to launch a TundraAP platform, designed specifically as a high-density CPU system. Using an Intel Xeon Platinum 9200 processor, the company utilizes Intel's processor with the highest core count - 56 cores spread on two dies, brought together by a single BGA package.

The Penguin Computing TundraAP system relies on Intel's S9200WK server system. In a 1U server, Penguin Computing puts two of those in one system, with a twist. The company implements a power disaggregation system, which is designed to handle and remove the heat coming from those 400 W TPD monster processors. This means that the PSU is moved from the server itself and moved on a special rack, so the heat from the CPUs wouldn't affect PSUs. The company uses Open Compute Project standards and says it improves efficiency by 15%. To cool those chips, Penguin Computing uses a direct-to-chip liquid cooling system. And if you are wondering how much cores the company can fit in a rack, look no further as it is possible to have as much as 7616 Xeon Platinum cores in just one rack. This is a huge achievement as the density is quite big. The custom cooling and power delivery system that the company built enabled this, by only allowing compute elements to be present in the system.

AMD and Industry Partners to Develop New Blockchain-based Gaming Platforms

AMD today announced that it has joined the Blockchain Game Alliance (BGA) and forged partnerships with leading technology providers to help promote the development and proliferation of new blockchain-powered gaming platforms.

The Blockchain Game Alliance is committed to driving awareness and adoption of blockchain technologies within the game industry, providing an open forum for individuals and companies to share knowledge and collaborate, create common standards, establish best practices, and network. As the first major hardware manufacturer to join the BGA, AMD plans to enable alliance members with efficient and high-performance computing technologies for next-generation blockchain-based gaming platforms that could potentially transform the way games are created, published, purchased and played.
Return to Keyword Browsing
Apr 24th, 2024 04:00 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts