News Posts matching "Raven Ridge"

Return to Keyword Browsing

AMD Ryzen 2000H Series APUs for Mainstream Notebooks Spark TDP Debate Again

AMD introduced the Ryzen 2000H series APUs for mainstream notebooks. These chips are physically identical to the Ryzen 2000U series designed for ultraportable notebooks and convertibles; but come with higher CPU and iGPU clock speeds, and hence a higher TDP. The lineup includes two models for now, the Ryzen 7 2800H, and the Ryzen 5 2600H, both of which are based on the same 14 nm "Raven Ridge" silicon as the Ryzen 2000U series.

The 2800H features a 4-core/8-thread "Zen" CPU, with 512 KB L2 cache per core, and 4 MB of shared L3 cache; with clock speeds of 3.30 GHz, with 3.80 GHz maximum boost. The iGPU is a Radeon Vega 11, with 704 stream processors, and engine clocks of up to 1.30 GHz. If you'll recall, the Ryzen 7 2700U has very similar specifications, but only differs with a lower CPU nominal clock speed of 2.20 GHz (but same boost clocks), and one of the 11 Vega NGCUs being disabled. The difference in TDP between the two chips is enormous - 45W default TDP with configurable TDP as low as 35W for the 2800H; while the 2700U is just 15W default TDP, with configurable TDP as low as 12W.

AMD Athlon Pro 200GE Detailed: An Extremely Cut-down "Raven Ridge" at $55

AMD is giving finishing touches to its Athlon Pro 200GE socket AM4 SoC, which it could position against Intel's $50-ish Celeron LGA1151 SKUs. Leaked slides by PCEva reveals that it's a heavily cut-down 14 nm "Raven Ridge" die. For starters, unlike previous-generation Athlon-branded products on platforms such as FM2, the Athlon 200GE won't lack integrated graphics. Only 3 out of 11 Vega NGCUs will be enabled, translating to 192 stream processors, which should be enough for desktop, 2D, and video acceleration, but not serious gaming, even at low resolutions.

The CPU config is 2-core/4-thread, with 512 KB L2 cache per core, and 4 MB shared L3 cache. The CPU is clocked at 3.20 GHz, with no Precision Boost features. You still get GuardMI commercial-grade hardware security features. There is a big catch with one of its uncore components. The PCIe root-complex only supports PCI-Express 3.0 x4 out of your motherboard's topmost x16 slot, not even x8. Ryzen "Raven Ridge" APUs already offer a crippled x8 connectivity through this slot. AMD claims that the Athlon 200GE will be "up to 19 percent faster" than Intel Pentium G4560 at productivity work. When it launches on 6th September with market availability from 18th September, the Athlon Pro 200GE will be priced at USD $55.

ASRock Intros X370 Pro BTC+ Motherboard

Cryptocurrency mining rig motherboards have, until now, mostly been based on the Intel platform because Intel chipsets put out more PCIe lanes than AMD ones, and because Intel's sub-$100 Pentium/Celeron chips don't have narrower PCIe connectivity from the CPU. ASRock apparently has a lot of unsold AMD X370 chipset inventory, and with the possible introduction of sub-$100 Ryzen chips that have 28 PCIe lanes from the CPU, a use-case has emerged for a mining motherboard based on this platform. We hence have the X370 Pro BTC+. The board features an AM4 socket, with out of the box support for "Pinnacle Ridge" processors. The socket is wired to just one DDR4 DIMM slot, but all eight PCI-Express 3.0 x16 slots.

The topmost x16 slot runs at electrical gen 3.0 x4, while the remaining seven slots are gen 3.0 x1, taking advantage of PCIe segmentation of the X370 platform. The board draws power from three 24-pin ATX, 8+4 pin EPS, and a number of Molex outputs, although most of these power connectors are optional. A point to note here is that the D-sub/HDMI display outputs only work if an A-series "Bristol Ridge" or Ryzen "Raven Ridge" APU is used (which have fewer PCIe lanes), so you're bound to take display output from one of the 8 graphics cards. A 1 GbE interface and two USB 3.0 ports make for the rest of it.

AMD "Picasso" APU Graphics Surfaces on UserBenchmark Database

AMD appears to have begun testing of its third APU for the socket AM4 platform, codenamed "Picasso." The code-name saw first light some 10 months ago, when it was described as AMD's APU product for 2019. The integrated graphics core of "Picasso" made its way to UserBenchmark database under the device ID "15D8." There are no benchmark results associated with this chip, yet. OIder slides described "Picasso" as being a slightly improved variant of "Raven Ridge," with improvements to out of the box performance and performance/Watt. It's likely that the chip is essentially "Raven Ridge" fabricated on the 12 nm node, with tweaks to the chip's on-die software. 2019 will also see AMD introduce its first chips based on the "Zen 2" architecture.

Sapphire Intros FS-FP5V SFF Motherboard Based on Ryzen Embedded

Sapphire introduced the FS-FP5V, a mini-ITX (147.3 mm x 139.7 mm) SFF motherboard designed for AIO desktops, digital signage boxes, and compact desktops. At the heart of this board is an AMD Ryzen Embedded V1000 series FP5 SoC based on the 14 nm "Raven Ridge" silicon. Since this SoC also integrates a southbridge, the board is practically chipset-less. The Ryzen Embedded V1000 chip is configured with a 4-core/8-thread "Zen" CPU clocked at 2.00 GHz with 3.35 GHz boost, and 4 MB L3 cache. The iGPU is a Radeon Vega 11, which may look overkill, but is required to pull the four DisplayPort 1.4 outputs of this board (handy for digital-signage applications).

The Ryzen Embedded V1000 is wired to two DDR4 SO-DIMM slots, supporting up to 32 GB of dual-channel DDR4-2933 memory. Storage connectivity includes an M.2-2280 slot with PCI-Express 3.0 x4 wiring, an M.2 E-key slot with x1 wiring for WLAN cards; and a SATA 6 Gbps port. Networking options include two 1 GbE interfaces. USB connectivity includes two USB 3.1 gen 1 ports at the rear-panel, and two USB 3.1 gen 1 ports (direct ports) at the front side of the board, one each of type-A and type-C. Stereo HD audio makes for the rest of it. The board draws power from either 2-pin DC (external) or 4-pin ATX.

AMD Raven Ridge APUs Not Getting Beta Drivers, 3-Month WHQL Only

AMD's latest Radeon Software Adrenalin Edition 18.6.1 Beta, which is available now, lacks Raven Ridge APU support. Driver support for the APUs are limited to WHQL releases only, as noted by an AMD representative on the Overclockers UK forum. Currently AMD is set to use a three month release cycle for APU drivers. Understandably, this has caused some concern with the latest driver to offer support for the Raven Ridge APUs being the Adrenalin Edition 18.5.1 driver released in May. The only good news here is the limited driver releases allow AMD to further optimize their costs in regards to testing and qualification.

Limited or outdated drivers, with such a long period between releases, means games could perform sub-optimally on AMD's latest and greatest APUs. Worse yet, consumers could be stuck waiting three months for an updated driver. Even then, if a problem arises and is a fringe issue, fixes could take even longer. Essentially Raven Ridge owners are being left out in the cold to some extent in regards to hot-fixes and performance improvements. This makes AMD's Raven Ridge APUs with built in VEGA graphics for both desktops and mobile systems a bit less appealing. This issue is further exacerbated by the fact Intel's Kaby Lake G series which also features AMD's VEGA graphics has seen a new driver released that is based on the 18.6.1 driver.

AMD "Vega" Outsells "Previous Generation" by Over 10 Times

At its Computex presser, leading up to its 7 nm Radeon Vega series unveil, AMD touched upon the massive proliferation of the Vega graphics architecture, which is found not only in discrete GPUs, but also APUs, and semi-custom SoCs of the latest generation 4K-capable game consoles. One such slide that created quite some flutter reads that "Vega" shipments are over 10 times greater than those of the "previous generation."

Normally you'd assume the previous-generation of "Vega" to be "Polaris," since we're talking about the architecture, and not an implementation of it (eg: "Vega 10" or "Raven Ridge," etc.). AMD later, at its post event round-table, clarified that it was referring to "Fiji," or the chip that went into building the Radeon R9 Fury X, R9 Nano, etc., and comparing its sales with that of products based on the "Vega 10" silicon. Growth in shipments of "Vega" based graphics cards is triggered by the crypto-mining industry, and for all intents and purposes, AMD considers the "Vega 10" silicon to be a commercial success.

AMD Readies Athlon 200GE and Athlon Pro 200GE: First Athlon Branded "Zen"

AMD is giving finishing touches to the Athlon 200GE (YD200GC6M2OFB) and Athlon Pro 200GE (YD200GC6M20FB) socket AM4 APUs, which will likely be a part of the company's answer to Intel's Pentium Gold series. The "E" brand extension denotes energy-efficiency, and both chips have a rated TDP of just 35W. The two are based on AMD's 14 nm "Raven Ridge" silicon, and pack a 2-core/4-thread CPU based on the "Zen" microarchitecture, clocked at 3.20 GHz.

Unlike previous few generations of Athlon-branded parts, which were essentially socket FM2(+) APUs devoid of integrated graphics, the Athlon 200GE and Athlon Pro 200GE do feature the Radeon Vega integrated graphics solution, but we expect it to be watered down compared to the Ryzen 2000G series chips. What sets the Athlon Pro part apart from its non-Pro sibling is the same feature that set Ryzen Pro apart, such as SEV. The two chips surfaced on the updated CPU compatibility lists of ASUS Crosshair VII Hero X470.

AMD Releases Radeon Software Adrenalin 18.5.1 WHQL Drivers

AMD today released Radeon Software Adrenalin 18.5.1 WHQL drivers. These are the first WHQL-certified drivers from the company for Windows 10 April 2018 Update, complying with WDDM 2.4, and support not just AMD Radeon discrete GPUs, but also Ryzen "Raven Ridge" APUs with integrated Radeon Vega graphics. The drivers support Microsoft PlayReady 3.0 DRM on "Polaris" GPUs.

Besides these features, Radeon Software Adrenalin 18.5.1 WHQL comes with optimization for "Ancestors Legacy," with up to 6 percent higher frame-rates at 1080p, measured with an RX Vega 56, and up to 13 percent higher frame rates on an RX 580 (8 GB) at 1080p. The update fixes HBCC not resetting to default value when "Restore Factory Defaults" option is used in Radeon Settings. It also addresses ReLive streaming to Facebook intermittently failing; Netflix users experiencing display corruption on "Polaris" multi-GPU systems, abnormally high game load times in "Destiny 2," and fixes for screen tearing observed on FreeSync displays with performance metrics enabled.
DOWNLOAD: AMD Radeon Software Adrenalin 18.5.1 WHQL

The change-log follows.

AMD Readies Ryzen Threadripper SKUs based on "Pinnacle Ridge" Dies

Hot on the heels of this morning's big AMD Ryzen 2000-series slide dump, comes a new roadmap slide that gives a larger overview of how AMD is addressing various client processor market segments. It begins with the mention of a 2nd generation Ryzen Threadripper series launch within 2018. These chips presumably, are multi-chip modules of the company's new 12 nm "Pinnacle Ridge" silicon, and will be compatible with existing AMD X399 chipset motherboards through BIOS updates. The "Pinnacle Ridge" silicon supports higher clock-speeds, has several microarchitecture refinements, and a few new overclocker-centric features.

The better news is that company seems to be updating its HEDT processor lineup every year; and that the current Threadripper series isn't a one-off halo product like its Athlon64 FX "QuadFX" 2P platform. With "Pinnacle Ridge" based Threadripper 2000-series MCMs slated for 2018; 2019 will see the launch of the new "Castle Peak" HEDT processor. It's not known if this is an MCM. The spiritual successor to "Pinnacle Ridge" is "Matisse." This is Zen 2 based, and will have significant changes to the core design, presenting AMD with an opportunity to review the way it arranges cores. "Picasso" succeeds "Raven Ridge" as the company's Zen 2-based APUs. "Picasso," along with "Matisse" and "Castle Peak" could see AMD implement GlobalFoundries' new 7 nm silicon fabrication process, given its 2019 timeline. 2020 will see their refined avatars - an unnamed "Next-Gen HEDT" chip, "Vermeer," and "Renoir," respectively.

BIOSTAR X370, B350, A320 Chipset Motherboards are AMD Raven Ridge APUs Ready

BIOSTAR announces compatibility with the all-new AMD Raven Ridge APUs for its existing X370, B350 and A320 chipset-based motherboards. Current owners of these BIOSTAR motherboards can download their BIOS with a new update from BIOSTAR website. Mainstream users such as gamers and content creators will be able to take advantage of the new upgrades from AMD.

GIGABYTE Adds Support for AMD "Raven Ridge" to AM4 Motherboards

GIGABYTE TECHNOLOGY Co. Ltd, a leading manufacturer of motherboards and graphics cards, has released new BIOS for the GIGABYTE AM4 motherboards based on the AMD X370, B350, A320 chipsets. With the latest BIOS update, the AM4 motherboards support the newest AMD Ryzen Desktop Processors with Radeon Vega Graphics, which fuse both CPU and GPU functions together through new architecture. Not only does this synergy allow for solid processor performance, it also produces impressive graphics performance even without the addition of dedicated graphics cards. By upgrading their firmware with the newest BIOS updates available on the GIGABYTE official website, users can bring out the full potential of these AM4 motherboards with exclusive Smart Fan 5 Technology for effective cooling and Ultra-Durable PCIe armor for added durability.

Various AMD Ryzen "Raven Ridge" Models Put Through 3DMark

Ahead of its February 12 launch, various models of AMD Ryzen "Raven Ridge" APUs, in both their notebook and desktop iterations, were put through 3DMark, which is perhaps the best way to put AMD's combination of its latest CPU and GPU architectures, to the test. Pictures also surfaced on Reddit, of the PIB boxes of the Ryzen 3 2200G and Ryzen 5 2400G, highlighting their "silver band" demarcation from the rest of the Ryzen processor lineup. This silver band features prominent Radeon Vega graphics branding, indicating that the model is a "Raven Ridge" APU.

Armed with 704 "Vega" stream processors spread across 11 NGCUs, the Radeon Vega 11 integrated graphics core of the Ryzen 5 2400G is AMD's fastest integrated graphics solution by far. It's also the fastest integrated graphics solution fully integrated with the CPU silicon (unlike, for example, the Core i7-8705G being a multi-chip module). The entire Ryzen "Raven Ridge" APU lineup was put through 3DMark 11 "Performance" preset, by someone with access to all of them. The 2400G leads the pack with 5,162 points, and a graphics score of 5,042 points. The 2200G, which features 512 stream processors, and lacks SMT, manages 4,151 points, with 3,950 points graphics score. The 2400G scores somewhere between the desktop RX 550 and the RX 560, which makes it possible for you to run "Player Unknown's Battlegrounds" at 900p or even 1080p with some details dialed down.

AMD Ryzen 5 2400G Smokes Core i5-8400 at iGPU Performance

AMD is pinning a lot of hopes on its upcoming Ryzen 2000G "Raven Ridge" desktop APU family, which combine a quad-core "Zen" CPU with a larger-than-expected integrated GPU based on the latest "Vega" architecture. While Intel's iGPU design focus for its "Coffee Lake-S" processors continues to be hardware-accelerated 4K video playback, and non-gaming tasks; AMD promises a more wholesome solution. The integrated Radeon Vega 11 graphics of the Ryzen 5 2400G features 11 "Vega" NGCUs (next-generation compute units), which translates to 704 stream processors, 44 TMUs (@ 4 TMUs per NGCU), 8 or 16 ROPs, and a bandwidth-rich pathway to the APU's dual-channel DDR4-2933 capable IMC, thanks to AMD's new Infinity Fabric interconnect.

In its pre-launch press-deck for the Ryzen 3 2200G and Ryzen 5 2400G, AMD did the obvious - comparing a similarly priced Intel Core i5-8400 six-core processor (MSRP: $189) with its faster Ryzen 5 2400G (MSRP: $169.99) at gaming, highlighting its products key promise - enabling 1080p gaming with many of the newer AAA titles. In AMD's testing, the Radeon Vega 11 iGPU keeps frame-rates well above 30 fps at 1080p. In key popular titles such as "Battlefield 1," the frame-rates cross 50 fps, titles like "Overwatch" and "Rocket League" are almost that fast. "Skyrim" approaches 96 fps, while "The Witcher 3" stays barely above 30 fps. The i5-8400 with its UHD 620 graphics barely touches the 30 fps mark in any of the games, at 1080p. Even taking into account AMD's marketing hyperbole, the Radeon Vega 11 seems capable of running most eSports titles at resolutions above 1600 x 900, which should particularly interest iCafes and gamers on a shoestring budget.

AMD Ryzen 3 and Ryzen 5 "Raven Ridge" PIB Packages Pictured

Here are the first pictures of AMD Ryzen 3 2200G and Ryzen 5 2400G "Raven Ridge" desktop APU retail PIB (processor in box) packages. The PIB package includes the APU itself, an AMD Wraith Stealth cooling solution, a case-badge, and some documentation. These packages are visually distinguishable from Ryzen 3 and Ryzen 5 "Summit Ridge" CPU PIB packages, with a chrome silver band heading the front face, which has prominent AMD Radeon Vega Graphics branding. It keeps up with the APUs' full retail names: "AMD Ryzen 3 2200G with Radeon Vega 8 graphics" and "AMD Ryzen 5 2400G with Radeon Vega 11 graphics." The Ryzen 3 2200G is expected to be priced (MSRP) at USD $99.99, and the Ryzen 5 2400G at $169.99; both parts launch in the retail channel on the 12th of February. The two have been extensively detailed in our older article.

AMD Reveals Specs of Ryzen 2000G "Raven Ridge" APUs

AMD today revealed specifications of its first desktop socket AM4 APUs based on the "Zen" CPU micro-architecture, the Ryzen 2000G "Raven Ridge" series. The chips combine a quad-core "Zen" CPU with an integrated graphics core based on the "Vega" graphics architecture, with up to 11 NGCUs, amounting to 704 stream processors. The company is initially launching two SKUs, the Ryzen 3 2200G, and the Ryzen 5 2400G. Besides clock speeds, the two are differentiated with the Ryzen 5 featuring CPU SMT, and more iGPU stream processsors. The Ryzen 5 2400G is priced at USD $169, while the Ryzen 3 2200G goes for $99. Both parts will be available on the 12th of February, 2018.

The Ryzen 5 2400 features an 4-core/8-thread CPU clocked at 3.60 GHz, with a boost frequency of 3.90 GHz; 2 MB of L2 cache (512 KB per core), and 4 MB of shared L3 cache; and Radeon Vega 11 graphics (with the 11 denoting NGCU count), featuring 704 stream processors. The iGPU engine clock is set at 1250 MHz. The dual-channel DDR4 integrated memory controller supports up to 64 GB of dual-channel DDR4-2933 MHz memory. The Ryzen 3 2200G is a slightly cut down part. Lacking SMT, its 4-core/4-thread CPU ticks at 3.50 GHz, with 3.70 GHz boost. Its CPU cache hierarchy is unchanged; the iGPU features only 8 out of 11 NGCUs, which translate to 512 stream processors. The iGPU engine clock is set at 1100 MHz. Both parts feature unlocked CPU base-clock multipliers; and have their TDP rated at 65W, and include AMD Wraith Stealth cooling solutions.

More Pictures of GIGABYTE Aorus X470 Gaming 7, Because Moar

We headed to the GIGABYTE Aorus booth at the 2018 International CES to check out the only motherboard based on AMD's upcoming 400-series chipset visible in the entire show, the Aorus X470 Gaming 7. We snapped a lot of pictures. The first thing that caught our attention is the board's updated styling, which resembles the one GIGABYTE introduced with its Intel Z370-series motherboards. The second thing of course, was two 32 Gb/s M.2 slots, confirming that AMD has indeed addressed 300-series chipset's greatest shortcoming - lack of PCIe gen 3.0 general purpose lanes. Since the AM4 SoC puts out 4 gen 3.0 general purpose lanes of its own, which wired to one 32 Gb/s M.2 slot on 300-series motherboards, the new 400-series boards will have at least two of these slots, one wired to the AM4 SoC, and another to the chipset.

The Aorus X470 Gaming 7 could become the company's flagship socket AM4 product based on AMD X470 chipset. It's been designed as such. Built in the ATX form-factor, the board draws power from a combination of 24-pin ATX, 8-pin EPS, and 4-pin ATX power connectors. A 12-phase VRM supplies power to the AM4 SoC. It's interesting to note that GIGABYTE chose some very high-current chokes for the chip's main voltage domains. The VRM heatsinks, too, are elaborate aluminium fin-stack types, with the two heatsinks spreading heat over a heat pipe. Is this a telltale sign that certain Ryzen 2 parts could have >95W TDP? The CPU socket is wired to four DDR4 DIMM slots, two PCI-Express 3.0 x16 slots (x8/x8 when both are populated), and one of the two M.2 slots (we're guessing the top M.2-22110 slot). Both it, and the bottom M.2-2280 slots have included heatsinks. Other expansion slots include an x16 (electrical x4) slot wired to the chipset, and two x1 slots, which are all gen 3.0.

GIGABYTE Aorus X470 Gaming 7 Motherboard Pictured

Here are some of the first pictures of GIGABYTE Aorus X470 Gaming 7 WiFi, one of the first socket AM4 motherboards based on the upcoming AMD X470 chipset, which will launch with out of the box support for 2nd generation Ryzen "Pinnacle Ridge" and Ryzen "Raven Ridge" APUs, in addition to current-gen Ryzen chips, when it launches early-Q2 (April). The presence of more than one 32 Gbps M.2 slot bodes well, as it confirms that the chipset features PCI-Express gen 3.0 general purpose lanes (current AMD 300-series chipset have gen 2.0). One can also spy three x16 slots, from which two will be wired to the CPU, with SLI support; and the board's overall design scheme matching that of the company's Intel 300-series chipset motherboards.

AMD Ryzen "Pinnacle Ridge" Processors Launch in March

There is more clarity on when AMD plans to launch its 2nd generation Ryzen "Pinnacle Ridge" processors, along with companion 400-series chipsets. Retailers in Japan, citing upstream suppliers, expect AMD to launch Ryzen # 2000-series (or "Ryzen 2") processors in March 2018, along with two motherboard chipset models, the top-tier AMD X470, and the mid-range AMD B450. An older report pegged this launch at February. The two chipsets are differentiated from their current-generation 300-series counterparts in featuring PCI-Express gen 3.0 general purpose lanes. The "Pinnacle Ridge" processors, on the other hand, are expected to be optical-shrinks of current Ryzen "Summit Ridge" silicon to the new 12 nm silicon fabrication process, which will allow AMD to increase clock speeds with minimal impact on power-draw.

AMD Ryzen 2 "Pinnacle Ridge" processors will be built in the existing socket AM4 package, and are expected to be compatible with existing socket AM4 motherboards, subject to BIOS updates by motherboard manufacturers. AMD plans to nurture the socket AM4 ecosystem till 2020. Future motherboards based on AMD 400-series chipsets could also feature compatibility with existing "Summit Ridge" Ryzen processors. These motherboards will come with out of the box support for Ryzen "Raven Ridge" APUs, something that requires BIOS updates on current 300-series chipset motherboards.

AMD Confirms 2nd Generation Ryzen Processors to Debut in Q1-2018

At a press event, AMD confirmed that its 2nd generation Ryzen desktop processors will debut in Q1-2018 (before April). It also clarified that "2nd Generation" does not equal "Zen2" (a micro-architecture that succeeds "Zen"). 2nd Generation Ryzen processors are based on two silicons, the 12 nm "Pinnacle Ridge," which is a GPU-devoid silicon with up to eight CPU cores; and "Raven Ridge," which is an APU combining up to 4 CPU cores with an iGPU based on the "Vega" graphics architecture. The core CPU micro-architecture is still "Zen." The "Pinnacle Ridge" silicon takes advantage of the optical shrink to 12 nm to increase clock speeds, with minimal impact on power-draw.

AMD is also launching a new generation of chipset, under the AMD 400-series. There's not much known about these chipsets. Hopefully they feature PCIe gen 3.0 general purpose lanes. The second-generation Ryzen processors and APUs will carry the 2000-series model numbering, with clear differentiation between chips with iGPU and those without. Both product lines will work on socket AM4 motherboards, including existing ones based on AMD 300-series chipset (requiring a BIOS update). AMD is reserving "Zen2," the IPC-increasing successor of "Zen" for 2019. The "Mattise" silicon will drive the multi-core CPU product-line, while the "Picasso" silicon will drive the APU line. Both these chips will run on existing AM4 motherboards, as AMD plans to keep AM4 as its mainstream-desktop socket till 2020.

AMD Confirms Raven Ridge APUs Boast of Mobile XFR Technology

It's been confirmed by AMD that the company's XFR (eXtended Frequency Range) tech that has made its way to the company's desktop Ryzen CPUs has seen its way i to the company's APUs as well, in the form of mXFR. This much was to be expected - mobile form factors arguably represent the best platform for dynamic frequency changes, marrying best performance and power consumption whenever one or the other is required. Speaking to TechReport, an AMD representative confirmed that Raven Ridge chips will feature mXFR capabilities depending on the platform they're implemented in, and spoke in particular of the Ryzen 5 2500U + HP ENVY x360 capabilities on that particular front.

"Not all notebooks with the AMD Ryzen mobile APU will offer the necessary thermal solution to enable the performance upside of mXFR," the AMD representative said, "but the HP ENVY x360 featuring the AMD Ryzen Processor with Radeon Vega Graphics is the first solution to do so. Users will look for "amplified mXFR performance" in the marketplace should they desire a laptop that offers this capability." This means that while typical TDP for Raven Ridge solutions should stand at the 15 W value, power consumption of the CPU + GPU combo can increase its TDP up to 25 W given particular workload, battery state and temperature conditions, which should increase performance in detriment of battery life.

AMD Second-generation Ryzen "Pinnacle Ridge" Confirmed to Support AM4

AMD, in an interview with Overclockers UK (OCUK), confirmed that its second-generation Ryzen desktop processors will support the existing AM4 socket, so current Ryzen platform users can seamlessly upgrade to the new processors, with a BIOS update. Most current AM4 socket motherboards will require BIOS updates to support Ryzen "Raven Ridge" desktop APUs, and Ryzen "Pinnacle Ridge" CPUs, as the two require an update to the latest AGESA 1.0.0.7 version. In the interview, AMD representative James Prior confirmed that the company plans to keep AM4 its mainstream-desktop processor socket all the way up to 2020, which means at least another two to three generations of processors for it.

The next generation is "Pinnacle Ridge," which is rumored to be an optical-shrink of the "Summit Ridge" silicon to the 12 nm process, enabling higher clock speeds. The decision to keep AM4 doesn't mean the company's 300-series chipset will be made to stretch over 3 years. The company could release newer chipsets, particularly to address 300-series chipset's main shortcoming, just 6-8 older PCI-Express gen 2.0 general purpose lanes (while Intel chipsets put out up to 24 gen 3.0 lanes).

ASUS BIOS Change-log Reveals New Ryzen Processors Incoming

ASUS recently released BIOS updates for its socket AM4 motherboards based on AMD X370 and B350 chipsets, which implement AGESA 1.0.0.7, which as you'll recall, paves the way for implementing support for upcoming processors, based on AMD's Vega-infused "Raven Ridge" APU silicon, and the 12 nm refreshed Ryzen "Pinnacle Ridge" silicon due for February 2018. ASUS published, and later withdrew the BIOS updates as the media got whiff of them.

The next parts for AMD's mainstream-desktop socket AM4 platform will be Ryzen "Raven Ridge" APUs, which let you finally use the HDMI and DisplayPorts on your motherboards. "Raven Ridge" combines a quad-core "Zen" CPU with a 640-stream processor integrated graphics based on the "Vega" graphics architecture. The "late-2017 or early-2018" time-line for these chips still appears to stand. RedGamingTech suggests that AMD's answer to Intel "Coffee Lake" processors, the 12 nm Ryzen "Pinnacle Ridge" processors, could be out by as early (or late) as February 2018. These chips could be previewed or teased at the company's events held on the sidelines of the 2018 International CES.

AMD "Raven Ridge" Silicon Detailed

The "Zen" CPU micro-architecture seems to be turning AMD's fortunes as it reported its first black quarter in years. The 14 nm "Zeppelin" or "Summit Ridge" die is at the heart of this change. This 8-core CPU die is implemented on everything from performance mobile packages, to single-die mainstream-desktop socket AM4 under the Ryzen 3, Ryzen 5, and Ryzen 7-series, 2-die high-end desktop (HEDT) multi-chip modules under Ryzen Threadripper, and the 4-die enterprise multi-chip modules under the EPYC brand. The next logical step for AMD with its new "Zen" CPU IP was to fuse it with the "Vega" graphics architecture, and give its APU lineup a much needed overhaul. At the heart of this move is the new 14 nm "Raven Ridge" silicon.

While "Summit Ridge" is the combination of two "Zen" CCX (quad-core CPU complex) units making up an 8-core CPU die that lacks integrated graphics, the "Raven Ridge" silicon combines one "Zen" CCX with an integrated graphics core based on the "Vega" architecture. AMD's new Infinity Fabric interconnect ferries data between the CCX and the iGPU, and not an internal PCIe link. The CCX houses four "Zen" CPU cores with 64 KB of L1I cache, 32 KB of L1D cache, 512 KB of dedicated L2 cache, and 4 MB of L3 cache shared between the four cores.

HP ENVY x360 15-bq101na Could be First "Raven Ridge" Implementation

HP posted the datasheet of its upcoming 2-in-1 notebook PC, the ENVY x360 15-bq101na, which could be the world's first implementation of AMD's upcoming 14 nm "Raven Ridge" APU. The silicon combines a quad-core "Zen" CPU with an integrated graphics core based on the "Vega" GPU architecture. The datasheet speaks of an "AMD Ryzen 5 2500U" processor powering the machine.

The Ryzen 5 2500U is being described as featuring a quad-core CPU clocked at 2.00 GHz with 3.60 GHz boost frequency, and 6 MB of cache. This could very well be total-cache, since that's how AMD likes OEMs to advertise cache on its chips, which works out to 512 KB of L2 cache per core, and 4 MB of shared L3 cache. The graphics core features the branding "AMD Radeon Vega M," confirming that this chip is indeed a derivation of "Raven Ridge."
Return to Keyword Browsing