News Posts matching #Research

Return to Keyword Browsing

"Sinkclose" Vulnerability Affects Every AMD CPU Dating Back to 2006

A critical security flaw known as "Sinkclose" (CVE-2023-31315) has been identified in all AMD processors dating back to 2006, potentially affecting hundreds of millions of devices worldwide. This vulnerability allows malicious actors to exploit the chip architecture, leading to unauthorized access to sensitive data. Researchers Enrique Nissim and Krzysztof Okupski, researchers from the security firm IOActive, have revealed that the vulnerability can be exploited through various methods, enabling attackers to extract confidential information from affected systems, including passwords and personal data. The issue is especially concerning, given that it is present in all AMD CPUs made in the last 18 years and their widespread use in both consumer and enterprise environments. However, to exploit this vulnerability, an attacker must possess access to system's kernel. Downloading of malware-infused files can trigger it, so general safety measures are recommended.

The Sinkclose method exploits a little-known capability in AMD processors called TClose. This name is a blend of "TClose" and "Sinkhole," with the latter referring to a previous vulnerability found in Intel's System Management Mode in 2015. AMD chips employ a protective mechanism named TSeg, which blocks operating systems from accessing a specific memory area reserved for System Management Mode (SMM), known as System Management Random Access Memory (SMRAM). However, the TClose feature is designed to maintain backward compatibility with older hardware that might use the same memory addresses as SMRAM. It does this by remapping memory when activated. The security experts discovered that they could manipulate this TClose remapping function using only standard operating system permissions. By doing so, they could deceive the SMM into retrieving altered data, enabling them to redirect the processor and run their own instructions with the high-level privileges of SMM. This technique essentially allows attackers to bypass standard security measures and execute malicious code at one of the most privileged levels of the processor, potentially compromising the entire system.

Fraunhofer IAF Researchers Work on AlYN, an Energy-Efficient Semiconductor Material

Researchers at Fraunhofer IAF have made a significant advance in semiconductor materials by successfully fabricating aluminum yttrium nitride (AlYN) using metal-organic chemical vapor deposition (MOCVD). AlYN, known for its outstanding properties and compatibility with gallium nitride (GaN), shows great potential for energy-efficient, high-frequency electronics. Previously, AlYN could only be deposited via magnetron sputtering, but this new method opens the door to diverse applications. Dr. Stefano Leone from Fraunhofer IAF highlights AlYN's ability to enhance performance while reducing energy consumption, making it vital for future electronics.

In 2023, the team achieved a 600 nm thick AlYN layer with a record 30% yttrium concentration. They have since developed AlYN/GaN heterostructures with high structural quality and promising electrical properties, particularly for high-frequency applications. These structures demonstrate optimal two-dimensional electron gas (2DEG) properties and are highly suitable for high electron mobility transistors (HEMTs).

AMD Gains Data Center Market Share in Q2 2024, Drops Share in Desktop Segment

In a recent report by Mercury Research, AMD has shown significant progress in the CPU market during Q2 2024, particularly in the data center and laptop segments. AMD's most notable achievement comes in the server CPU space, where it now holds 24.1% of the market, a 5.6% increase year-over-year, and a 0.5% increase from the previous quarter. This growth is particularly impressive in terms of revenue, with AMD capturing 33.7% of server CPU revenue despite its lower unit share. This suggests that AMD's high-end EPYC processors carry premium prices in the data center market and are most of the unit volume. AMD has also made advancements in the laptop CPU segment, reaching a 20.3% market share. This represents a 1% increase from the previous quarter and a 3.8% rise year-over-year. The company's success in laptops can be attributed to solid demand for its existing products, propelled by Intel's reported supply issues with Meteor Lake processors.

However, AMD experienced a slight setback in the desktop CPU market, losing a 1% share to Intel quarter-over-quarter. AMD now controls 23% of this segment, compared to Intel's 77%. This dip may be due to AMD's preparation for the launch of its new Zen 5-based CPUs in August. Despite AMD's gains, Intel maintains its overall dominance in the CPU market. In the total client PC space, Intel holds a 78.9% market share, with AMD at 21.1%. Intel still holds the majority of revenue and market share on all fronts. However, AMD is executing well, and Intel's financial troubles could be a setback for team blue. More competition at every front is great to see, and we are curious to look at the data from upcoming quarters and analyze how well both of companies perform.

European Researchers Develop New 3D Metamaterial for Data Storage

Researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), TU Chemnitz, TU Dresden and Forschungszentrum Jülich have been the first to demonstrate that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports in the journal Advanced Electronic Materials, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.

"A cylindrical domain, which we physicists also call a bubble domain, is a tiny, cylindrical area in a thin magnetic layer. Its spins, the electrons' intrinsic angular momentum that generates the magnetic moment in the material, point in a specific direction. This creates a magnetization that differs from the rest of the environment. Imagine a small, cylinder-shaped magnetic bubble floating in a sea of opposite magnetization," says Prof. Olav Hellwig from HZDR's Institute of Ion Beam Physics and Materials Research, describing the subject of his research. He and his team are confident that such magnetic structures possess a great potential for spintronic applications.

South Korean Research Team Develops Method to Grow Sub-Nanometer Transistors

A research team from the South Korean Institute for Basic Science (IBS) has developed a new method for growing 1D metallic materials less than 1 nm wide. They applied this technique to create a new structure for 2D semiconductor logic circuits, using the 1D metals as gate electrodes in very small transistors. However, creating very small transistors that can control electron movement within a few nanometers has been challenging. The size of semiconductor devices depends on the width and efficiency of the gate electrode. Current manufacturing processes can't make gate lengths below a few nanometers due to limitations in lithography. To address this, the team used the mirror twin boundary (MTB) of molybdenum disulfide, which is a 1D metal only 0.4 nm wide, as a gate electrode. The IBS team achieved the 1D MTB metallic phase by altering the crystal structure of a 2D semiconductor at the atomic level.

The International Roadmap for Devices and Systems (IRDS) predicts semiconductor technology to reach about 0.5 nm by 2037, with transistor gate lengths of 12 nm. The research team's transistor demonstrated a channel width as small as 3.9 nm, surpassing this prediction. The 1D MTB-based transistor also offers advantages in circuit performance. Unlike some current technologies (FinFETs or GAA) that face issues with parasitic capacitance in highly integrated circuits, this new transistor can minimize such problems due to its simple structure and narrow gate width.

"Indirector" is Intel's Latest Branch Predictor Vulnerability, But Patch is Already Out

Researchers from the University of California, San Diego, have unveiled a significant security vulnerability affecting Intel Raptor Lake and Alder Lake processors. The newly discovered flaw, dubbed "Indirector," exposes weaknesses in the Indirect Branch Predictor (IBP) and Branch Target Buffer (BTB), potentially allowing attackers to execute precise Branch Target Injection (BTI) attacks. The published study provides a detailed look into the intricate structures of the IBP and BTB within recent Intel processors, showcasing Spectre-style attach. For the first time, researchers have mapped out the size, structure, and precise functions governing index and tag hashing in these critical components. Particularly concerning is the discovery of previously unknown gaps in Intel's hardware defenses, including IBPB, IBRS, and STIBP. These findings suggest that even the latest security measures may be insufficient to protect against sophisticated attacks.

The research team developed a tool called "iBranch Locator," which can efficiently identify and manipulate specific branches within the IBP. This tool enables highly precise BTI attacks, potentially compromising security across various scenarios, including cross-process and cross-privilege environments. One of the most alarming implications of this vulnerability is its ability to bypass Address Space Layout Randomization (ASLR), a crucial security feature in modern operating systems. By exploiting the IBP and BTB, attackers could potentially break ASLR protections, exposing systems to a wide range of security threats. Experts recommend several mitigation strategies, including more aggressive use of Intel's IBPB (Indirect Branch Prediction Barrier) feature. However, the performance impact of this solution—up to 50% in some cases—makes it impractical for frequent domain transitions, such as those in browsers and sandboxes. In a statement for Tom's Hardware, Intel noted the following: "Intel reviewed the report submitted by academic researchers and determined previous mitigation guidance provided for issues such as IBRS, eIBRS and BHI are effective against this new research and no new mitigations or guidance is required."

GPU and CPU Markets See Q1 Gains, but Outlook Remains Mixed

According to Jon Peddie Research latest report, the global GPU and CPU markets ended Q1 2024 on growth. GPU shipments reached 70 million units, while PC CPU shipments increased by 33% year-over-year, the second consecutive yearly increase in over two decades. Over the next five years, discrete GPUs are projected to achieve 22% penetration in the PC market as the overall GPU installed approaches 3 billion units by 2026. Among major GPU vendors, AMD's market share dipped 0.7% from last quarter, while Intel gained 0.3% and Nvidia rose 0.4%. However, overall GPU shipments declined 9.9% quarter-over-quarter. The total GPU attach rate for PCs was 113%, slightly down from the prior quarter. Desktop graphics add-in board shipments also decreased 14.8%.

While Q1 is typically flat or down versus Q4, Jon Peddie Research's president suggests this quarter's performance could signal a return to normal seasonality. With Microsoft, AMD and Intel promoting AI PCs, and forecasts pointing to growth in Q2, there are optimistic signs - although semiconductor suppliers are guiding 7.9% down on average for next quarter.
Report GPU shipment vs. rate

AMD Hits Highest-Ever x86 CPU Market Share in Q1 2024 Across Desktop and Server

AMD has reached a significant milestone, capturing a record-high share of the X86 CPU market in the first quarter of 2024, according to the latest report from Mercury Research. This achievement marks a significant step forward for the chipmaker in its long battle against rival Intel's dominance in the crucial computer processor space. The surge was fueled by strong demand for AMD's Ryzen and EPYC processors across consumer and enterprise markets. The Ryzen lineup's compelling price-to-performance ratio has struck a chord with gamers, content creators, and businesses seeking cost-effective computing power without sacrificing capabilities. It secured AMD's 23.9% share, an increase from the previous Q4 of 2023, which has seen a 19.8% market share.

The company has also made major inroads on the data center front with its EPYC server CPUs. AMD's ability to supply capable yet affordable processors has enabled cloud providers and enterprises to scale operations on AMD's platform. Several leading tech giants have embraced EPYC, contributing to AMD's surging server market footprint. Now, it is at 23.6%, a significant increase over the past few years, whereas AMD was just above 10% four years ago in 2020. AMD lost some share to Intel on the mobile PC front due to the Meteor Lake ramp, but it managed to gain a small percentage of the market share of client PCs. As AMD rides the momentum into the second half of 2024, all eyes will be on whether the chipmaker can sustain this trajectory and potentially claim an even larger slice of the x86 CPU pie from Intel in the coming quarters.
Below, you can see additional graphs of mobile PC and client PC market share.

PC Market Returns to Growth in Q1 2024 with AI PCs to Drive Further 2024 Expansion

Global PC shipments grew around 3% YoY in Q1 2024 after eight consecutive quarters of declines due to demand slowdown and inventory correction, according to the latest data from Counterpoint Research. The shipment growth in Q1 2024 came on a relatively low base in Q1 2023. The coming quarters of 2024 will see sequential shipment growth, resulting in 3% YoY growth for the full year, largely driven by AI PC momentum, shipment recovery across different sectors, and a fresh replacement cycle.

Lenovo's PC shipments were up 8% in Q1 2024 off an easy comparison from last year. The brand managed to reclaim its 24% share in the market, compared to 23% in Q1 2023. HP and Dell, with market shares of 21% and 16% respectively, remained flattish, waiting for North America to drive shipment growth in the coming quarters. Apple's shipment performance was also resilient, with the 2% growth mainly supported by M3 base models.

X-Silicon Startup Wants to Combine RISC-V CPU, GPU, and NPU in a Single Processor

While we are all used to having a system with a CPU, GPU, and, recently, NPU—X-Silicon Inc. (XSi), a startup founded by former Silicon Valley veterans—has unveiled an interesting RISC-V processor that can simultaneously handle CPU, GPU, and NPU workloads in a chip. This innovative chip architecture, which will be open-source, aims to provide a flexible and efficient solution for a wide range of applications, including artificial intelligence, virtual reality, automotive systems, and IoT devices. The new microprocessor combines a RISC-V CPU core with vector capabilities and GPU acceleration into a single chip, creating a versatile all-in-one processor. By integrating the functionality of a CPU and GPU into a single core, X-Silicon's design offers several advantages over traditional architectures. The chip utilizes the open-source RISC-V instruction set architecture (ISA) for both CPU and GPU operations, running a single instruction stream. This approach promises lower memory footprint execution and improved efficiency, as there is no need to copy data between separate CPU and GPU memory spaces.

Called the C-GPU architecture, X-Silicon uses RISC-V Vector Core, which has 16 32-bit FPUs and a Scaler ALU for processing regular integers as well as floating point instructions. A unified instruction decoder feeds the cores, which are connected to a thread scheduler, texture unit, rasterizer, clipping engine, neural engine, and pixel processors. All is fed into a frame buffer, which feeds the video engine for video output. The setup of the cores allows the users to program each core individually for HPC, AI, video, or graphics workloads. Without software, there is no usable chip, which prompts X-Silicon to work on OpenGL ES, Vulkan, Mesa, and OpenCL APIs. Additionally, the company plans to release a hardware abstraction layer (HAL) for direct chip programming. According to Jon Peddie Research (JPR), the industry has been seeking an open-standard GPU that is flexible and scalable enough to support various markets. X-Silicon's CPU/GPU hybrid chip aims to address this need by providing manufacturers with a single, open-chip design that can handle any desired workload. The XSi gave no timeline, but it has plans to distribute the IP to OEMs and hyperscalers, so the first silicon is still away.

Chinese Research Institute Utilizing "Banned" NVIDIA H100 AI GPUs

NVIDIA's freshly unveiled "Blackwell" B200 and GB200 AI GPUs will be getting plenty of coverage this year, but many organizations will be sticking with current or prior generation hardware. Team Green is in the process of shipping out compromised "Hopper" designs to customers in China, but the region's appetite for powerful AI-crunching hardware is growing. Last year's China-specific H800 design, and the older "Ampere" A800 chip were deemed too potent—new regulations prevented further sales. Recently, AMD's Instinct MI309 AI accelerator was considered "too powerful to gain unconditional approval from the US Department of Commerce." Natively-developed solutions are catching up with Western designs, but some institutions are not prepared to queue up for emerging technologies.

NVIDIA's new H20 AI GPU as well as Ada Lovelace-based L20 PCIe and L2 PCIe models are weakened enough to get a thumbs up from trade regulators, but likely not compelling enough for discerning clients. The Telegraph believes that NVIDIA's uncompromised H100 AI GPU is currently in use at several Chinese establishments—the report cites information presented within four academic papers published on ArXiv, an open access science website. The Telegraph's news piece highlights one of the studies—it was: "co-authored by a researcher at 4paradigm, an AI company that was last year placed on an export control list by the US Commerce Department for attempting to acquire US technology to support China's military." Additionally, the Chinese Academy of Sciences appears to have conducted several AI-accelerated experiments, involving the solving of complex mathematical and logical problems. The article suggests that this research organization has acquired a very small batch of NVIDIA H100 GPUs (up to eight units). A "thriving black market" for high-end NVIDIA processors has emerged in the region—last Autumn, the Center for a New American Security (CNAS) published an in-depth article about ongoing smuggling activities.

Arizona State University and Deca Technologies to Pioneer North America's First R&D Center for Advanced Fan-Out Wafer-Level Packaging

Arizona State University (ASU) and Deca Technologies (Deca), a premier provider of advanced wafer- and panel-level packaging technology, today announced a groundbreaking collaboration to create North America's first fan-out wafer-level packaging (FOWLP) research and development center.

The new Center for Advanced Wafer-Level Packaging Applications and Development is set to catalyze innovation in the United States, expanding domestic semiconductor manufacturing capabilities and driving advancements in cutting-edge fields such as artificial intelligence, machine learning, automotive electronics and high-performance computing.

Extropic Intends to Accelerate AI through Thermodynamic Computing

Extropic, a pioneer in physics-based computing, this week emerged from stealth mode and announced the release of its Litepaper, which outlines the company's revolutionary approach to AI acceleration through thermodynamic computing. Founded in 2022 by Guillaume Verdon, Extropic has been developing novel chips and algorithms that leverage the natural properties of out-of-equilibrium thermodynamic systems to perform probabilistic computations for generative AI applications in a highly efficient manner. The Litepaper delves into Extropic's groundbreaking computational paradigm, which aims to address the limitations of current digital hardware in handling the complex probability distributions required for generative AI.

Today's algorithms spend around 25% of their time moving numbers around in memory, limiting the speedup achievable by accelerating specific operations. In contrast, Extropic's chips natively accelerate a broad class of probabilistic algorithms by running them physically as a rapid and energy-efficient, physics-based process in their entirety, unlocking a new regime of AI acceleration well beyond what was previously thought achievable. In coming out of stealth, the company has announced the fabrication of a superconducting prototype processor and developments surrounding room-temperature semiconductor-based devices for the broader market, with the goal of revolutionizing the field of AI acceleration and enabling new possibilities in generative AI.

The SEA Projects Prepare Europe for Exascale Supercomputing

The HPC research projects DEEP-SEA, IO-SEA and RED-SEA are wrapping up this month after a three-year project term. The three projects worked together to develop key technologies for European Exascale supercomputers, based on the Modular Supercomputing Architecture (MSA), a blueprint architecture for highly efficient and scalable heterogeneous Exascale HPC systems. To achieve this, the three projects collaborated on system software and programming environments, data management and storage, as well as interconnects adapted to this architecture. The results of their joint work will be presented at a co-design workshop and poster session at the EuroHPC Summit (Antwerp, 18-21 March, www.eurohpcsummit.eu).

SK Hynix To Invest $1 Billion into Advanced Chip Packaging Facilities

Lee Kang-Wook, Vice President of Research and Development at SK Hynix, has discussed the increased importance of advanced chip packaging with Bloomberg News. In an interview with the media company's business section, Lee referred to a tradition of prioritizing the design and fabrication of chips: "the first 50 years of the semiconductor industry has been about the front-end." He believes that the latter half of production processes will take precedence in the future: "...but the next 50 years is going to be all about the back-end." He outlined a "more than $1 billion" investment into South Korean facilities—his department is hoping to "improve the final steps" of chip manufacturing.

SK Hynix's Head of Packaging Development pioneered a novel method of packaging the third generation of high bandwidth technology (HBM2E)—that innovation secured NVIDIA as a high-profile and long term customer. Demand for Team Green's AI GPUs has boosted the significance of HBM technologies—Micron and Samsung are attempting to play catch up with new designs. South Korea's leading memory supplier is hoping to stay ahead in the next-gen HBM contest—supposedly 12-layer fifth generation samples have been submitted to NVIDIA for approval. SK Hynix's Vice President recently revealed that HBM production volumes for 2024 have sold out—currently company leadership is considering the next steps for market dominance in 2025. The majority of the firm's newly announced $1 billion budget will be spent on the advancement of MR-MUF and TSV technologies, according to their R&D chief.

Helldivers 2 Warbond System Previewed Ahead of March 14 Launch

Helldivers, get the Cutting Edge advantage on the battlefield! Greetings, fearless heroes of galactic democracy! Steel yourself for the next big push against the disgraceful enemies of freedom with our brand-new Warbond—Cutting Edge! Packed with high-voltage vibes, Cutting Edge gives you the chance to enhance your loadout of liberty with ultra-futuristic armour, guns that spit lightning, super stylish capes and epic emotes.

Super Earth R&D Experiments
Helldivers… we need your help. The brainiacs in Super Earth Research & Development have some cool experimental armour ready to be field-tested. This is where you come in, you're just the right people for the job.

IBM Intros AI-enhanced Data Resilience Solution - a Cyberattack Countermeasure

Cyberattacks are an existential risk, with 89% of organizations ranking ransomware as one of the top five threats to their viability, according to a November 2023 report from TechTarget's Enterprise Strategy Group, a leading analyst firm. And this is just one of many risks to corporate data—insider threats, data exfiltration, hardware failures, and natural disasters also pose significant danger. Moreover, as the just-released 2024 IBM X-Force Threat Intelligence Index states, as the generative AI market becomes more established, it could trigger the maturity of AI as an attack surface, mobilizing even further investment in new tools from cybercriminals. The report notes that enterprises should also recognize that their existing underlying infrastructure is a gateway to their AI models that doesn't require novel tactics from attackers to target.

To help clients counter these threats with earlier and more accurate detection, we're announcing new AI-enhanced versions of the IBM FlashCore Module technology available inside new IBM Storage FlashSystem products and a new version of IBM Storage Defender software to help organizations improve their ability to detect and respond to ransomware and other cyberattacks that threaten their data. The newly available fourth generation of FlashCore Module (FCM) technology enables artificial intelligence capabilities within the IBM Storage FlashSystem family. FCM works with Storage Defender to provide end-to-end data resilience across primary and secondary workloads with AI-powered sensors designed for earlier notification of cyber threats to help enterprises recover faster.

Qualcomm AI Hub Introduced at MWC 2024

Qualcomm Technologies, Inc. unveiled its latest advancements in artificial intelligence (AI) at Mobile World Congress (MWC) Barcelona. From the new Qualcomm AI Hub, to cutting-edge research breakthroughs and a display of commercial AI-enabled devices, Qualcomm Technologies is empowering developers and revolutionizing user experiences across a wide range of devices powered by Snapdragon and Qualcomm platforms.

"With Snapdragon 8 Gen 3 for smartphones and Snapdragon X Elite for PCs, we sparked commercialization of on-device AI at scale. Now with the Qualcomm AI Hub, we will empower developers to fully harness the potential of these cutting-edge technologies and create captivating AI-enabled apps," said Durga Malladi, senior vice president and general manager, technology planning and edge solutions, Qualcomm Technologies, Inc. "The Qualcomm AI Hub provides developers with a comprehensive AI model library to quickly and easily integrate pre-optimized AI models into their applications, leading to faster, more reliable and private user experiences."

3D Nanoscale Petabit Capacity Optical Disk Format Proposed by Chinese R&D Teams

The University of Shanghai for Science and Technology (USST), Peking University and the Shanghai Institute of Optics and Fine Mechanics (SIOM) are collaborating on new Optical Data Storage (ODS) technologies—a recently published paper reveals that scientists are attempting to create 3D nanoscale optical disk memory that breaks into petabit capacities. Society (as a whole) has an ever-growing data demand—this requires the development of improved high-capacity storage technologies—the R&D teams believe that ODS presents a viable alternative route to traditional present day solutions: "data centers based on major storage technologies such as semiconductor flash devices and hard disk drives have high energy burdens, high operation costs and short lifespans."

The proposed ODS format could be a "promising solution for cost-effective long-term archival data storage." The researchers note that current (e.g Blu-ray) and previous generation ODS technologies have been: "limited by low capacities and the challenge of increasing areal density." In order to get ODS up to petabit capacity levels, several innovations are required—the Nature.com abstract stated: "extending the planar recording architecture to three dimensions with hundreds of layers, meanwhile breaking the optical diffraction limit barrier of the recorded spots. We develop an optical recording medium based on a photoresist film doped with aggregation-induced emission dye, which can be optically stimulated by femtosecond laser beams. This film is highly transparent and uniform, and the aggregation-induced emission phenomenon provides the storage mechanism. It can also be inhibited by another deactivating beam, resulting in a recording spot with a super-resolution scale." The novel optical storage medium relies on dye-doped photoresist (DDPR) with aggregation-induced emission luminogens (AIE-DDPR)—a 515 nm femtosecond Gaussian laser beam takes care of optical writing tasks, while a doughnut-shaped 639 nm continuous wave laser beam is tasked with retrieval. A 480 nm pulsed laser and a 592 nm continuous wave laser work in tandem to read data.

GlobalFoundries and Biden-Harris Administration Announce CHIPS and Science Act Funding for Essential Chip Manufacturing

The U.S. Department of Commerce today announced $1.5 billion in planned direct funding for GlobalFoundries (Nasdaq: GFS) (GF) as part of the U.S. CHIPS and Science Act. This investment will enable GF to expand and create new manufacturing capacity and capabilities to securely produce more essential chips for automotive, IoT, aerospace, defense, and other vital markets.

New York-headquartered GF, celebrating its 15th year of operations, is the only U.S.-based pure play foundry with a global manufacturing footprint including facilities in the U.S., Europe, and Singapore. GF is the first semiconductor pure play foundry to receive a major award (over $1.5 billion) from the CHIPS and Science Act, designed to strengthen American semiconductor manufacturing, supply chains and national security. The proposed funding will support three GF projects:

NVIDIA Joins US Artificial Intelligence Safety Institute Consortium

NVIDIA has joined the National Institute of Standards and Technology's new U.S. Artificial Intelligence Safety Institute Consortium as part of the company's effort to advance safe, secure and trustworthy AI. AISIC will work to create tools, methodologies and standards to promote the safe and trustworthy development and deployment of AI. As a member, NVIDIA will work with NIST—an agency of the U.S. Department of Commerce—and fellow consortium members to advance the consortium's mandate. NVIDIA's participation builds on a record of working with governments, researchers and industries of all sizes to help ensure AI is developed and deployed safely and responsibly.

Through a broad range of development initiatives, including NeMo Guardrails, open-source software for ensuring large language model responses are accurate, appropriate, on topic and secure, NVIDIA actively works to make AI safety a reality. In 2023, NVIDIA endorsed the Biden Administration's voluntary AI safety commitments. Last month, the company announced a $30 million contribution to the U.S. National Science Foundation's National Artificial Intelligence Research Resource pilot program, which aims to broaden access to the tools needed to power responsible AI discovery and innovation.

NUDT MT-3000 Hybrid CPU Reportedly Utilized by Tianhe-3 Supercomputer

China's National Supercomputer Center (NUDT) introduced their Tianhe-3 system as a prototype back in early 2019—at the time it had been tested by thirty local organizations. Notable assessors included the Chinese Academy of Sciences and the China Aerodynamics Research and Development Center. The (previous generation) Tianhe-2 system currently sits in a number seven position of world-ranked Supercomputers—offering a measured performance of 33.86 petaFLOPS/s. The internal makeup of its fully formed successor has remained a mystery...until now. The Next Platform believes that the "Xingyi" monikered third generation supercomputer houses the Guangzhou-based lab's MT-3000 processor design. Author, Timothy Prickett Morgan, boasted about acquiring exclusive inside knowledge ahead of international intelligence agencies—many will be keeping an eye on the NUDT, since it is administered by the National University of Defence Technology (itself owned by the Chinese government).

The Next Platform has a track record of outing intimate details relating to Chinese-developed scientific breakthroughs—the semi-related "Oceanlight" system installed at their National Supercomputer Center (Wuxi) was "figured out" two years ago. Tianhe-3 and Oceanlight face significant competition in the form of "El Capitan"—this is the USA's prime: "supercomputer being built right now at Lawrence Livermore National Laboratory by Hewlett Packard Enterprise in conjunction with compute engine supplier AMD. We need to know because we want to understand the very different—and yet, in some ways similar—architectural path that China seems to have taken with the Xingyi architecture to break through the exascale barrier."

Hafnia Material Breakthrough Paves Way for Ferroelectric Computer Memory

Scientists and engineers have been experimenting with hafnium oxide over the past decade—many believe that this "elusive ferroelectric material" is best leveraged in next generation computing memory (due to its non-volatile properties), although this requires a major scientific breakthrough to get working in a practical manner. Hafnia's natural state is inherently non-ferroelectric, so it takes some effort to get it into a suitable state—a SciTechDaily article explores past efforts: "Scientists could only get hafnia to its metastable ferroelectric state when straining it as a thin, two-dimensional film of nanometer thickness." Research teams at the University of Rochester, New York and University of Tennessee, Knoxville have presented evidence of an exciting landmark development. Sobhit Singh, assistant professor at UoR's Department of Mechanical Engineering, believes that the joint effort has created a lane for the creation of bulk ferroelectric and antiferroelectric hafnia.

His "Proceedings of the National Academy of Sciences" study proposes an alternative material path: "Hafnia is a very exciting material because of its practical applications in computer technology, especially for data storage. Currently, to store data we use magnetic forms of memory that are slow, require a lot of energy to operate, and are not very efficient. Ferroelectric forms of memory are robust, ultra-fast, cheaper to produce, and more energy-efficient." Professor Janice Musfeldt's team at the University of Tennessee have managed to produce a ferroelectric form of hafnia—through an experimental high pressure process, based on Singh's exact calculations. The material remained in a metastable phase post-experiment, even in a pressure-relieved state. Musfeldt commented on the pleasing results: "This is as an excellent example of experimental-theoretical collaboration." Memory manufacturers are likely keeping an eye on Hafnia's breakthrough potential, but material costs are dampening expectations—Tom's Hardware cites shortages (going back to early 2023): "Hafnium (the key component in Hafnia) has seen a nearly fivefold price increase due to increased demand since 2021, raising its cost from about $1,000 per kilogram to about $5,000. Even at $1000 a kilogram, though, hafnium is by far more expensive than silicon, which measures in the tens of dollars per kilogram."

U.S. CHIPS Act Outlines $500 Million Fund for Research Institutes & Packaging Tech Development

Yesterday, the U.S. Department of Commerce publicly announced two new notices of intent—as reported by Tom's Hardware, this involves the latest distributions from the CHIPS Act's $11 billion R&D budget: "$300 million is to be made available across multiple awards of up to $100 million (not including voluntary co-investment) for research on advanced packaging, while another $200 million (or more) is set aside to create the CHIPS Manufacturing USA Institute. Companies will have to compete for the funds by filing an application." The Act's primary $39 billion tranche is designated to new construction endeavors, e.g. the founding of manufacturing facilities.

A grand total of $52 billion was set aside for the CHIPS Act in 2022, which immediately attracted the attention of several semiconductor industry giants. Companies with headquarters outside of North America were allowed to send in applications. Last year, Intel CEO Pat Gelsinger, made some controversial statements regarding his company's worthiness of government funding. In his opinion, Team Blue is due the "lion's share" due to his operation being a USA firm—the likes of TSMC and Samsung are far less deserving of subsidies.

Microsoft Announces Participation in National AI Research Resource Pilot

We are delighted to announce our support for the National AI Research Resource (NAIRR) pilot, a vital initiative highlighted in the President's Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. This initiative aligns with our commitment to broaden AI research and spur innovation by providing greater computing resources to AI researchers and engineers in academia and non-profit sectors. We look forward to contributing to the pilot and sharing insights that can help inform the envisioned full-scale NAIRR.

The NAIRR's objective is to democratize access to the computational tools essential for advancing AI in critical areas such as safety, reliability, security, privacy, environmental challenges, infrastructure, health care, and education. Advocating for such a resource has been a longstanding goal of ours, one that promises to equalize the field of AI research and stimulate innovation across diverse sectors. As a commissioner on the National Security Commission on AI (NSCAI), I worked with colleagues on the committee to propose an early conception of the NAIRR, underlining our nation's need for this resource as detailed in the NSCAI Final Report. Concurrently, we enthusiastically supported a university-led initiative pursuing a national computing resource. It's rewarding to see these early ideas and endeavors now materialize into a tangible entity.
Return to Keyword Browsing
Sep 8th, 2024 18:45 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts