News Posts matching #Supercomputer

Return to Keyword Browsing

Microsoft Builds a Supercomputer for AI

Microsoft has held a Build 2020 conference for developers from all over the world, and they live-streamed it online. Among some of the announcements, Microsoft has announced a new supercomputer dedicated to the OpenAI company, which works on building Artificial General Intelligence (AGI). The new supercomputer is a part of Microsoft's Azure cloud infrastructure and it will allow OpenAI developers to train very large scale machine learning models in the cloud. The supercomputer is said to be the fifth most powerful supercomputer in the world with specifications of "more than 285,000 CPU cores, 10,000 GPUs and 400 gigabits per second of network connectivity for each GPU server."

Specific information wasn't announced and we don't know what CPUs and GPUs go into this machine, but we can speculate that the latest Nvidia A100 "Ampere" GPU could be used. The company hasn't yet submitted its entry to the Top500 website, so we can't keep track of the FLOPs count and see what power it holds.
Microsoft Azure Data Center

Fujitsu Completes Delivery of Fugaku Supercomputer

Fujitsu has today officially completed the delivery of the Fugaku supercomputer to the Riken scientific research institute of Japan. This is a big accomplishment as the current COVID-19 pandemic has delayed many happenings in the industry. However, Fujitsu managed to play around that and deliver the supercomputer on time. The last of 400 racks needed for the Fugaku supercomputer was delivered today, on May 13th, as it was originally planned. The supercomputer is supposed to be fully operational starting on the physical year of 2021, where the installation and setup will be done before.

As a reminder, the Fugaku is an Arm-based supercomputer consisting out of 150 thousand A64FX CPUs. These CPUs are custom made processors by Fujitsu based on Arm v8.2 ISA, and they feature 48 cores built on TSMC 7 nm node and running above 2 GHz. Packing 8.786 billion transistors, this monster chips use HBM2 memory instead of a regular DDR memory interface. Recently, a prototype of the Fugaku supercomputer was submitted to the Top500 supercomputer list and it came on top for being the most energy-efficient of all, meaning that it will be as energy efficient as it will be fast. Speculations are that it will have around 400 PetaFlops of general compute power for Dual-Precision workloads, however, for the specific artificial intelligence applications, it should achieve ExaFLOP performance target.
K SuperComputer

Folding@Home Now More Powerful Than World's Seven Top Supercomputers Combined - Join TPU!

This one here is another shot in the arm when it comes to faith in humanity. Folding@Home, the distributed computing project where users can donate their spare CPU and GPU cycles for a given cause, has hit an absolute bonkers milestone. According to Greg Bowman, Director of Folding@home, the network has reached a peak compute power amounting to some 470 petaFLOPS - more than double that of the world's current supercomputing record holder, the Summit supercomputer, which dishes out 200 peak petaFLOPS. Folding@Home's 470 Petaflops means users donating their spare cycles are delivering more computing power than that which is available in the world's top 7 supercomputers combined.

After some slight service outages where users weren't getting any work units due to the increased number of donors over the last few days, the computing service now seems to be running at full steam ahead. Remember that you can select the causes for which you are donating your computing power: whether cancer, Alzheimer's, Huntington, or Parkinson's disease, as well as some other non-selectable projects.

AMD Gets Design Win in Cray Shasta Supercomputer for US Navy DSRC With 290,304 EPYC Cores

AMD has scored yet another design win for usage of its high-performance EPYC processors in the Cray Shasta supercomputer. The Cray Shasta will be deployed in the US Navy's Department of Defense Supercomputing Resource Center (DSRC) as part of the High Performance Computing Modernization Program. The peak theoretical computing capability of 12.8 PetaFLOPS, or 12.8 quadrillion floating point operations per second supercomputer will be built with 290,304 AMD EPYC (Rome) processor cores and 112 NVIDIA Volta V100 General-Purpose Graphics Processing Units (GPGPUs). The system will also feature 590 total terabytes (TB) of memory and 14 petabytes (PB) of usable storage, including 1 PB of NVMe-based solid state storage. Cray's Slingshot network will make sure all those components talk to each other at a rate of 200 Gigabits per second.

Navy DSRC supercomputers support climate, weather, and ocean modeling by NMOC, which assists U.S. Navy meteorologists and oceanographers in predicting environmental conditions that may affect the Navy fleet. Among other scientific endeavors, the new supercomputer will be used to enhance weather forecasting models; ultimately, this improves the accuracy of hurricane intensity and track forecasts. The system is expected to be online by early fiscal year 2021.

UK Prepares $1.6 Billion for the Most Powerful Weather Forecasting Supercomputer

The UK government has set aside a budget of 1.2 billion GBP, which is roughly around 1.56 billion US Dollars. With this budget, the UK government plans to install the world's most powerful supercomputer used for weather forecasting in the year 2022. Previously, the UK government used three Cray XC40 supercomputers that are capable of achieving a maximum of 14 PetaFLOPs at its peak performance. The future system plans to take that number and make it look tiny. With plans to make it 20 times more powerful than the current machine, we can estimate that the future supercomputer will have above 200 PetaFLOPs of computing performance.

The supercomputer deployment will follow a series of cycles, where one is happening in 2022 and that supercomputer will be six times more powerful than the current solution. To get to that 20 times improvement, the supercomputer will get an upgrade over the next five years' time. While we do not know what will power the new machine, it will almost definitely be a CPU plus multi-GPU node configuration, as GPUs have gained a lot of traction in weather prediction models lately.

Without Silicon, Intel Scores First Exascale Computer Design Win for Xe Graphics - AURORA Supercomputer

This here is an interesting piece of tech news for sure, in that Intel has already scored a pretty massive design win for not one, but two upcoming products. Intel's "Future Xeon Scalable Processors" and the company's "Xe Compute Architecture" have been tapped by the U.S. Department of Energy for incorporation into the new AURORA Supercomputer - one that will deliver exascale performance. AURORA is to be developed in a partnership between Intel and Cray, using the later's Shasta systems and its "Slingshot" networking fabric. But these are not the only Intel elements in the supercomputer design: Intel's DC Optane persistent memory will also be employed (in an as-of-yet-unavailable version of it as well), making this a full win across the prow for Intel.

Stuttgart-based HLRS to Build a Supercomputer with 10,000 64-core Zen 2 Processors

Höchstleistungsrechenzentrum (HLRS, or High-Performance Computing Center), based in Stuttgart Germany, is building a new cluster supercomputer powered by 10,000 AMD Zen 2 "Rome" 64-core processors, making up 640,000 cores. Called "Hawk," the supercomputer will be HLRS' flagship product, and will open its doors to business in 2019. The slide-deck for Hawk makes a fascinating disclosure about the processors it's based on.

Apparently, each of the 64-core "Rome" EPYC processors has a guaranteed clock-speed of 2.35 GHz. This would mean at maximum load (with all cores loaded 100%), the processor can manage to run at 2.35 GHz. This is important, because the supercomputer's advertised throughput is calculated on this basis, and clients draw up SLAs on throughput. The advertised peak throughput for the whole system is 24.06 petaFLOP/s, although the company is yet to put out nominal/guaranteed performance numbers (which it will only after first-hand testing). The system features 665 TB of RAM, and 26,000 TB of storage.

Fujitsu-Developed "ABCI" Supercomputer Takes 5th Place in TOP500 Ranking

Fujitsu today announces that its AI Bridging Cloud Infrastructure (ABCI) system has placed 5th in the world, and 1st in Japan, in the TOP500 international performance ranking of supercomputers. ABCI has also taken 8th place in the world in Green500, which ranks outstanding energy saving performance. Fujitsu developed ABCI, Japan's fastest open AI infrastructure featuring a large-scale, power-saving cloud platform geared toward AI processing, based on a tender issued by the National Institute of Advanced Industrial Science and Technology (AIST).

These rankings were announced on June 25 (Japan time) at ISC 2018, an international conference on high performance computing (HPC) held in Germany. TOP500 evaluates and ranks the top 500 computer systems in the world by computational processing speed. Green500 ranks the TOP500-listed supercomputers to offer excellent examples of power consumption performance.

With Summit, US Regains Leadership from China in TOP500 Supercomputers Listing

We previously covered in more depth the fact that the US was gearing up to overtake China's Sunway TaihuLight, then the world's fastest supercomputer, with its Summit machine, built in collaboration between IBM (with its water-cooled Power Systems AC922 nodes with 24-core processors and 96 processing threads) and NVIDIA (GV100 GPUs).

Now, this US dream has finally come to pass, and in a big way - the Summit delivers more than double the performance of China's posterchild, coming in at 200 PetaFLOPs of computing power. Summit boasts of 27,648 Volta Tensor Core GPUs and 9,216 CPUs within its 5,600 square feet. The Summit supercomputer consumes 15 MW of power (the site where it's deployed is able to deliver up to 20 MW), which is on-par with China's Sunway - but remember, it more than doubles the peak PetaFlops from 93 to 200. A good step in the battle for supercomputer supremacy, but China still has an increasing foothold in the number of systems it has employed and registered with the TOP500.

Cray Debuts AMD EPYC Processors in Supercomputer Product Line

Global supercomputer leader Cray Inc. today announced it has added AMD EPYC processors to its Cray CS500 product line. To meet the growing needs of high-performance computing (HPC), the combination of AMD EPYC 7000 processors with the Cray CS500 cluster systems offers Cray customers a flexible, high-density system tuned for their demanding environments. The powerful platform lets organizations tackle a broad range of HPC workloads without the need to rebuild and recompile their x86 applications.

"Cray's decision to offer the AMD EPYC processors in the Cray CS500 product line expands its market opportunities by offering buyers an important new choice," said Steve Conway, senior vice president of research at Hyperion Research. "The AMD EPYC processors are expressly designed to provide highly scalable, energy- and cost-efficient performance in large and midrange clusters."

Italian Multinational Gas, Oil Company Fires Off HPC4 Supercomputer

Eni has launched its new HPC4 supercomputer, at its Green Data Center in Ferrera Erbognone, 60 km away from Milan. HPC4 quadruples the Company's computing power and makes it the world's most powerful industrial system. HPC4 has a peak performance of 18.6 Petaflops which, combined with the supercomputing system already in operation (HPC3), increases Eni's computational peak capacity to 22.4 Petaflops.

According to the latest official Top 500 supercomputers list published last November (the next list is due to be published in June 2018), Eni's HPC4 is the only non-governmental and non-institutional system ranking among the top ten most powerful systems in the world. Eni's Green Data Center has been designed as a single IT Infrastructure to host all of HPC's architecture and all the other Business applications.

"Summit" Supercomputer to Propel US Back to Number 1 in Top 500 by 2018

China has been increasingly - and steadily - gaining relevance in the supercomputing world, with most of the top-500 entries being controlled by that country. In fact, China can boast of having the number one supercomputer in the world, the Sunway TaihuLight, which can deliver 93 PetaFLOPS of computing power - just 3x more computational power than the second most powerful machine, China's own Tianhe-2). However, supercomputing, and the amount of money that's earned by selling processing slices of these supercomputers for private or state contractors, i a very attractive pull - especially considering the increasingly more expensive computational needs of the modern world.

The Summit is to be the United State's call to fame in that regard, bringing the country back to number one in raw, top-of-the-line single-machine supercomputing power. Summit is promising to more than double the PetaFLOPS of China's TaihuLight, to over 200 PetaFLOPs. That amounts to around 11x more processing grunt than its predecessor, the Titan, in a much smaller footprint - the Titan's 18,688 processing nodes will be condensed to just ~4,600 nodes on the Summit, with each node achieving around 40 TeraFLOPS of computing power. The hardware? IBM and NVIDIA, married in water-cooled nodes with the powerful GV100 accelerator that's still eluding us enthusiasts - but that's a question for another day.

NVIDIA Announces SaturnV AI Supercomputer Powered by "Volta"

NVIDIA at the Supercomputing 2017 conference announced a major upgrade of its new SaturnV AI supercomputer, which when complete, the company claims, will be not just one of the world's top-10 AI supercomputers in terms of raw compute power; but will also the world's most energy-efficient. The SaturnV will be a cluster supercomputer with 660 NVIDIA DGX-1 nodes. Each such node packs eight NVIDIA GV100 GPUs, which takes the machine's total GPU count to a staggering 5,280 (that's GPUs, not CUDA cores). They add up to an FP16 performance that's scraping the ExaFLOP (1,000-petaFLOP or 10^18 FLOP/s) barrier; while its FP64 (double-precision) compute performance nears 40 petaFLOP/s (40,000 TFLOP/s).

SaturnV should beat Summit, a supercomputer being co-developed by NVIDIA and IBM, which in turn should unseat Sunway TaihuLight, that's currently the world's fastest supercomputer. This feat gains prominence as NVIDIA SaturnV and NVIDIA+IBM Summit are both machines built by the American private-sector, which are trying to beat a supercomputing leader backed by the mighty Chinese exchequer. The other claim to fame of SaturnV is its energy-efficiency. Before its upgrade, SaturnV achieved an energy-efficiency of a staggering 15.1 GFLOP/s per Watt, which was already the fourth "greenest." NVIDIA expects the upgraded SaturnV to take the number-one spot.

China Pulls Ahead of U.S. in Latest TOP500 List

The fiftieth TOP500 list of the fastest supercomputers in the world has China overtaking the US in the total number of ranked systems by a margin of 202 to 143. It is the largest number of supercomputers China has ever claimed on the TOP500 ranking, with the US presence shrinking to its lowest level since the list's inception 25 years ago.

Just six months ago, the US led with 169 systems, with China coming in at 160. Despite the reversal of fortunes, the 143 systems claimed by the US gives them a solid second place finish, with Japan in third place with 35, followed by Germany with 20, France with 18, and the UK with 15.

U.S.A. Loses 3rd Place in TOP500 Supercomputer Standings... To Switzerland?

The United States has been being pushed down in the TOP500 standings for some time courtesy China, whom has taken the 1st and 2nd place seats from the US with their Sunway TaihuLight and Tianhe-2 Supercomputers (at a Linpack performance of 93 and 33.9 Petaflops, respectively). It seemed though the crown was stolen from America, 3rd place was relatively safe for the former champs. Not so. America has been pushed right off the podium in the latest TOP500 refresh... not by China though, but Switzerland?

Exascale Supercomputer Technology Buoyed by $258M Grant by US Dept. of Energy

Developing supercomputers isn't for the faint of heart. Much less it is for those that are looking for fast development and deployment time-frames. And as such, even as the world's supercomputers are getting increasingly faster and exorbitantly expensive to develop and deploy, players who want to stay ahead have to think ahead as well. To this end, the US Department of Energy has awarded a total of $258M in research contracts to six of the US's foremost tech companies to accelerate the development of Exascale Supercomputer technologies (AMD, Cray, Hewlett Packard Enterprise, IBM, Intel, and NVIDIA.) These companies will be working over a three year contract period, and will have to support at least 40% of the project cost - to help develop the technologies needed to build an exascale computer for 2021. It isn't strange that the companies accepted the grant and jumped at the opportunity: 60% savings in research and development they'd have to do for themselves is nothing to scoff at.

Supercomputers birthed from the project are expected to be in the exaFLOPS scale of computing performance, which is around 50 times more processing power than the generation of supercomputers being installed now. Since traditional supercomputing knowledge and materials are known to falter at the objective level of exaFLOPS performance, the PathForward program - which looks to ensure achievement of such systems in a timely fashion to ensure US leadership in the field of supercomputing - will need to see spurred research and development, which the $258M grant is looking out to do.

NVIDIA Launches World's First Deep Learning Supercomputer

NVIDIA today unveiled the NVIDIA DGX-1, the world's first deep learning supercomputer to meet the unlimited computing demands of artificial intelligence. The NVIDIA DGX-1 is the first system designed specifically for deep learning -- it comes fully integrated with hardware, deep learning software and development tools for quick, easy deployment. It is a turnkey system that contains a new generation of GPU accelerators, delivering the equivalent throughput of 250 x86 servers.

The DGX-1 deep learning system enables researchers and data scientists to easily harness the power of GPU-accelerated computing to create a new class of intelligent machines that learn, see and perceive the world as humans do. It delivers unprecedented levels of computing power to drive next-generation AI applications, allowing researchers to dramatically reduce the time to train larger, more sophisticated deep neural networks.

AMD FirePro S9300 x2 Server GPU Helps Create Largest Map of the Universe

AMD today announced that researchers at the Canadian Hydrogen Intensity Mapping Experiment (CHIME) will harness the AMD FirePro S9300 x2 Server GPU, the world's fastest single-precision GPU accelerator, to analyze extraordinary amounts of data to help create a new, very detailed 3D map of the largest volume of the Universe ever observed. Rather than using traditional dish-shaped telescopes, CHIME consists of four 100-metre-long cylindrical reflectors which cover an area larger than five professional hockey rinks and gathers signals for the critical computational analyses supplied by the AMD FirePro S9300 x2 GPU cluster.

The CHIME project was created to investigate the discovery that the expansion of the Universe is speeding up rather than slowing down. Using consumer technologies similar to those found in common radio receivers, the telescope collects radio waves that have travelled through space for up to 11 billion years and feeds them into a massive supercomputer powered by a series of AMD FirePro S9300 x2 GPUs. The intense number crunching required to map the Universe's expansion in this way was previously cost-prohibitive, but is now being enabled by AMD FirePro GPUs. The anticipated results will help create a highly-detailed map showing the intensity of the hydrogen radiation from billions of galaxies, which will help scientists understand the accelerating expansion of the Universe.

NVIDIA Announces Drive PX 2 Mobile Supercomputer

NVIDIA announced the Drive PX 2, the first in-car AI deep-learning device. This lunchbox sized "mobile supercomputer" embeds up to twelve CPU cores, a "Pascal" GPU built on the 16 nm FinFET process, 6 TFLOP/s of raw compute power, and 24 deep-learning TOps of compute power usable for deep-learning applications; the chips are liquid-cooled, draw 250W in all, and give the car a very powerful deep-learning device for self-driving cars. The device itself will be offered to car manufacturers to redesign and co-develop self-driving cars with.
The press-release follows.

AMD Announces FirePro S9170 32GB GPU Compute Card

AMD today announced the new AMD FirePro S9170 server GPU, the world's first and fastest 32GB single-GPU server card for DGEMM heavy double-precision workloads, with support for OpenCL 2.0. Based on the second-generation AMD Graphics Core Next (GCN) GPU architecture, this new addition to the AMD FirePro server GPU family is capable of delivering up to 5.24 TFLOPS of peak single precision compute performance while enabling full throughput double precision performance, providing up to 2.62 TFLOPS of peak double precision performance. Designed with compute-intensive workflows in mind, the AMD FirePro S9170 server GPU is ideal for data center managers who oversee clusters within academic or government bodies, oil and gas industries, or deep neural network compute cluster development.

"AMD is recognized as an HPC industry innovator as the graphics provider with the top spot on the November 2014 Green500 List. Today the best GPU for compute just got better with the introduction of the AMD FirePro S9170 server GPU to complement AMD's impressive array of server graphics offerings for high performance compute environments," said Sean Burke, corporate vice president and general manager, AMD Professional Graphics group. "The AMD FirePro S9170 server GPU can accelerate complex workloads in scientific computing, data analytics, or seismic processing, wielding an industry-leading 32GB of memory. We designed the new offering for supercomputers to achieve massive compute performance while maximizing available power budgets."

AMD and Dell Support Bioinformatics Studies at University of Warsaw in Poland

AMD today unveiled innovation in heterogeneous high performance computing (HPC) by delivering more than 1.5 petaFLOPS of AMD FirePro S9150 server GPU performance for the Next Generation Sequencing Centre (NGSC) at the Centre of New Technologies, University of Warsaw in support of bioinformatics research related to next generation sequencing (NGS) studies. The new ORION cluster features 150 Dell PowerEdge R730 servers with two AMD FirePro S9150 server GPUs, for a total GPU peak of 1.52 petaFLOPS single precision and 0.76 petaFLOPS double precision performance. The energy-efficient cluster enables high speed and efficient calculations for genomic data, applicable to a range of genomics and bioinformatics studies, using a fast and power efficient OpenCL implementation for research applications.

"We're committed to building our HPC leadership position in the industry as a foremost provider of computing applications, tools and technologies," said Sean Burke, corporate vice-president and general manager, AMD Professional Graphics. "This installation reaffirms AMD's leading role in HPC with the implementation of the AMD FirePro S9150 server GPUs in this 1.5 petaFLOPS supercomputer cluster. AMD and Dell are enabling OpenCL applications for critical science research usage for this cluster. AMD is proud to collaborate with Dell and NGSC to support such important life science and computer science research."

IBM, NVIDIA and Mellanox Launch Design Center for Big Data and HPC

IBM, in collaboration with NVIDIA and Mellanox, today announced the establishment of a POWER Acceleration and Design Center in Montpellier, France to advance the development of data-intensive research, industrial, and commercial applications. Born out of the collaborative spirit fostered by the OpenPOWER Foundation - a community co-founded in part by IBM, NVIDIA and Mellanox supporting open development on top of the POWER architecture - the new Center provides commercial and open-source software developers with technical assistance to enable them to develop high performance computing (HPC) applications.

Technical experts from IBM, NVIDIA and Mellanox will help developers take advantage of OpenPOWER systems leveraging IBM's open and licensable POWER architecture with the NVIDIA Tesla Accelerated Computing Platform and Mellanox InfiniBand networking solutions. These are the class of systems developed collaboratively with the U.S. Department of Energy for the next generation Sierra and Summit supercomputers and to be used by the United Kingdom's Science and Technology Facilities Council's Hartree Centre for big data research.

AMD Awarded $32 Million for 'Extreme Scale' High-Performance Computing Research

AMD (NYSE: AMD) today announced that for the third straight year it was awarded research grants for development of critical technologies needed for extreme-scale computing in conjunction with projects associated with the U.S. Department of Energy (DOE) Extreme-Scale Computing Research and Development Program, known as "FastForward 2."

The two DOE awards, totaling more than $32 million, will fund research focused on exascale applications for AMD Accelerated Processing Units (APUs) based on the open-standard Heterogeneous System Architecture (HSA), as well as future memory systems to power a generation of exascale supercomputers capable of delivering 30-60 times more performance than today's fastest supercomputers.

TSMC 16FinFET Plus Process Achieves Risk Production Milestone

TSMC today announced its 16-nanometer FinFET Plus (16FF+) process is now in risk production. This enhanced version of TSMC's 16FF process operates 40% faster than the company's planar 20-nanometer system-on-chip (20SoC) process, or consumes 50% less power at the same speed. It offers customers a new level of performance and power optimization targeted at the next generation of high-end mobile, computing, networking, and consumer applications.

TSMC's 16nm process offers an extended scaling of advanced SoC designs and is verified to reach speeds of 2.3GHz with ARM's "big" Cortex-A57 in high-speed applications while consuming as little as 75mW with the "LITTLE" Cortex-A53 in low-power applications. It is making excellent progress in yield learning, and has achieved the best technology maturity at the same corresponding stage as compared to all TSMC's previous nodes.

Cray Launches New High Density Cluster Packed With NVIDIA GPU Accelerators

Global supercomputer leader Cray Inc. today announced the launch of the Cray CS-Storm -- a high-density accelerator compute system based on the Cray CS300 cluster supercomputer. Featuring up to eight NVIDIA Tesla GPU accelerators and a peak performance of more than 11 teraflops per node, the Cray CS-Storm system is one of the most powerful single-node cluster architectures available today.

Designed to support highly scalable applications in areas such as energy, life sciences, financial services, and geospatial intelligence, the Cray CS-Storm provides exceptional performance, energy efficiency and reliability within a small footprint. The system leverages the supercomputing architecture of the air-cooled Cray CS300 system, and includes the Cray Advanced Cluster Engine cluster management software, the complete Cray Programming Environment on CS, and NVIDIA Tesla K40 GPU accelerators. The Cray CS-Storm system includes Intel Xeon E5 2600 v2 processors.
Return to Keyword Browsing