News Posts matching #TSMC

Return to Keyword Browsing

TSMC Begins Construction of 2 nm Manufacturing Facility

TSMC, the leading semiconductor foundry in the world, has reportedly begun construction of its 2 nm manufacturing facility. According to a DigiTimes report, translated by @chiakokhua on Twitter, besides the construction of 2 nm R&D center, TSMC has also started the construction of the manufacturing facility for that node, so it will be ready in time. Please do note that the node name doesn't represent the size of the transistor, so it will not actually be 2 nm wide. The new facilities will be located near TSMC's headquarters in Hsinchu Science Park, Taiwan. The report also confirms the first details about the node, specifically that it will use Gate-All-Around (GAA) technology. And there is also another interesting piece of information regarding even smaller node, the planning for 1 nm node has begun according to the source.

Besides advanced nodes, TSMC also laid out clear plans to accelerate the push of advanced packaging technology. That includes SoIC, InFO, CoWoS, and WoW. All of these technologies are classified as "3D Fabric" by the company, even though some are 2.5D. These technologies will be mass-produced at "ZhuNan" and "NanKe" facilities starting in the second half of 2021, and are expected to significantly contribute to the company's profits. It is also reported that the competing foundry, Samsung, has a 3D packaging technology of its own called X-cube, however, it is attracting customers a lot slower than TSMC due to the high costs of the new technology.

Intel 14 nm Node Compared to TSMC's 7 nm Node Using Scanning Electron Microscope

Currently, Intel's best silicon manufacturing process available to desktop users is their 14 nm node, specifically the 14 nm+++ variant, which features several enhancements so it can achieve a higher frequencies and allow for faster gate switching. Compare that to AMD's best, a Ryzen 3000 series processor based on Zen 2 architecture, which is built on TSMC's 7 nm node, and you would think AMD is in clear advantage there. Well, it only sort of is. German hardware overclocker and hacker, der8auer, has decided to see how one production level silicon compares to another, and he put it to the test. He decided to use Intel's Core i9-10900K processor and compare it to AMD's Ryzen 9 3950X under a scanning electron microscope (SEM).

First, der8auer took both chips and detached them from their packages; then he proceeded to grind them as much as possible so SEM could do its job of imaging the chips sans the substrate and protective barrier. This was followed by securing the chips to a sample holder using an electrically conductive adhesive to improve penetration of the high energy electrons from the SEM electron gun. To get as fair a comparison as possible, he used the L2 cache component of both processors as they are usually the best representatives of a node. This happens because the logic portion of the chip differs according to architecture; hence, level two cache is used to get a fair comparison - it's design is much more standardized.

TSMC 5 nm Node Supply Fully Booked, Apple the Biggest Customer

TSMC has hit a jackpot with its newer nodes like 7 nm and now 5 nm, as the company is working with quite good yields. To boast, TSMC has seen all of its capacity of 7 nm being fully booked by customers like AMD, Apple, and NVIDIA. However, it seems like the company's next-generation 5 nm node is also getting high demand. According to the latest report from DigiTimes, TSMC's N5 5 nm node is fully booked to the end of 2020. And the biggest reason for that is the biggest company in the world - Apple. Since Apple plans to launch the next-generation iPhone, iPad, and Arm-based MacBook, the company has reportedly booked most of the 5 nm capacity for 2020, meaning that there are lots of chips that Apple will consume. TSMC can't be dependent only on one company like Apple, so the smaller portion of capacity went to other customers as well.

Alleged Prices of TSMC Silicon Wafers Appear

TSMC, one of the biggest silicon manufacturers in the world, usually doesn't disclose company pricing of the silicon it manufactures and only shares that with its customers. It appears that RetiredEngineer (@chiakokhua on Twitter) got a hold of the pricing of TSMCs wafers on every manufacturing node starting from 90 nm down to 5 nm. That includes a wide portfolio of 65, 40, 28, 20, 16/12, 10, and 7 nm nodes as well. The table shown below includes information dating to April 2020, so it is possible that some things are now different and they surely are. There are a few quite interesting notes from the image, namely the price increase as the node shrinks.

From 90 nm to 20 nm, the price of the wafer didn't increase as much, however, starting from 16/12 nm node(s), TSMC has seen costs per wafer, and other costs increase exponentially. For example, just compare the 10 nm wafer price of $5992 with the price of a 5 nm wafer which costs an amazing $16988. This is more than a 180% price increase in just three years, however, the cost per transistor is down as you get around 229% higher density in that period, making TSMC actually in line with Moore's Law. That is comparing Transistor density (MTr / mm²) of 52.51 million transistors for the 10 nm node and 173 million transistors per mm² of the 5 nm node .

PlayStation 5 Launch Supply Reduced due to AMD CPU/GPU SoC Yield Issues

Today we have found out that Sony has reportedly cut PlayStation 5 launch supply due to bad yields of the SoC powering the console. Previously, we reported that Sony has doubled production of the new console amid high demand, where the company expected to sell 10 million units in the fiscal year. The original plan was to have around 15 million units of the new console available by March 31st, 2021. Sony has been spending a lot of resources to get as many units out to consumers, however, the bad SoC yields have held the company back significantly.

It is reported by Bloomberg that instead of the original 15 million units Sony plans to supply, there will be only 11 million of them. That represents a massive reduction of 4 million units. And you are wondering how bad the yields of the new SoC are to have that big reduction. According to the source, TSMC and Sony are seeing only 50% yields on the production run. It is reported that the yields are gradually improving but have not yet reached the level needed to have a stable supply. This represents a big problem for the company and we don't know who is to blame. TSMC has been very good at manufacturing 7 nm silicon, however, it could be bad design from AMD and Sony that is making the production difficult. We are waiting for more information.

Rambus Advances HBM2E Performance to 4.0 Gbps for AI/ML Training Applications

Rambus Inc. (NASDAQ: RMBS), a premier silicon IP and chip provider making data faster and safer, today announced it has achieved a record 4 Gbps performance with the Rambus HBM2E memory interface solution consisting of a fully-integrated PHY and controller. Paired with the industry's fastest HBM2E DRAM from SK hynix operating at 3.6 Gbps, the solution can deliver 460 GB/s of bandwidth from a single HBM2E device. This performance meets the terabyte-scale bandwidth needs of accelerators targeting the most demanding AI/ML training and high-performance computing (HPC) applications.

"With this achievement by Rambus, designers of AI and HPC systems can now implement systems using the world's fastest HBM2E DRAM running at 3.6 Gbps from SK hynix," said Uksong Kang, vice president of product planning at SK hynix. "In July, we announced full-scale mass-production of HBM2E for state-of-the-art computing applications demanding the highest bandwidth available."

Apple's Custom GPU is Reportedly Faster than Intel iGPU

When Apple announced their transition form Intel processors to Apple Silicon, we were left wondering how the silicon will perform and what characteristics will it bring with it. According to the latest report from The China Times, the Apple custom GPU found inside the new Apple Silicon will bring better performance and energy efficiency compared to Intel iGPU it replaces. The 5 nm GPU manufactured on TSMC's N5 semiconductor manufacturing node is supposedly codenamed "Lifuka" and it brings Apple's best to the table. Planned to power a 12-inch MacBook, the GPU will be paired with a custom CPU based on Arm ISA as well. The same chips powering iPhone and iPad devices will go into MacBook devices, with the TDP increased as MacBook will probably have much higher cooling capacity. The first Apple Silicon MacBook will come in H2 of 2021.
Here is the copy of a full report from The China Times below:

NVIDIA GeForce RTX 3090 and 3080 Specifications Leaked

Just ahead of the September launch, specifications of NVIDIA's upcoming RTX Ampere lineup have been leaked by industry sources over at VideoCardz. According to the website, three alleged GeForce SKUs are being launched in September - RTX 3090, RTX 3080, and RTX 3070. The new lineup features major improvements: 2nd generation ray-tracing cores and 3rd generation tensor cores made for AI and ML. When it comes to connectivity and I/O, the new cards use the PCIe 4.0 interface and have support for the latest display outputs like HDMI 2.1 and DisplayPort 1.4a.

The GeForce RTX 3090 comes with 24 GB of GDDR6X memory running on a 384-bit bus at 19.5 Gbps. This gives a memory bandwidth capacity of 936 GB/s. The card features the GA102-300 GPU with 5,248 CUDA cores running at 1695 MHz, and is rated for 350 W TGP (board power). While the Founders Edition cards will use NVIDIA's new 12-pin power connector, non-Founders Edition cards, from board partners like ASUS, MSI and Gigabyte, will be powered by two 8-pin connectors. Next up is specs for the GeForce RTX 3080, a GA102-200 based card that has 4,352 CUDA cores running at 1710 MHz, paired with 10 GB of GDDR6X memory running at 19 Gbps. The memory is connected with a 320-bit bus that achieves 760 GB/s bandwidth. The board is rated at 320 W and the card is designed to be powered by dual 8-pin connectors. And finally, there is the GeForce RTX 3070, which is built around the GA104-300 GPU with a yet unknown number of CUDA cores. We only know that it has the older non-X GDDR6 memory that runs at 16 Gbps speed on a 256-bit bus. The GPUs are supposedly manufactured on TSMC's 7 nm process, possibly the EUV variant.

TSMC Owns 50% of All EUV Machines and Has 60% of All EUV Wafer Capacity

TSMC had been working super hard in the past few years and has been investing in lots of new technologies to drive the innovation forward. At TSMC's Technology Symposium held this week was, the company has presented various things like the update on its 12 nm node, as well as future plans for node development. One of the most interesting announcements made this week was TSMC's state and ownership of Extreme Ultra-Violet (EUV) machines. ASML, the maker of these EUV machines used to etch the pattern on silicon, has been the supplier of the Taiwanese company. TSMC has announced that they own an amazing 50% of all EUV machine installations.

What is more important is the capacity that the company achieves with it. It is reported that TSMC achieves 60% of all EUV wafer capacity in the world, which is a massive achievement of what TSMC can do with the equipment. The company right now has only two nodes on EUV in high-volume manufacturing, the 7 nm+ node and 5 nm node (which is going HVM in Q4), however, that is more than any of its competitors. All of the future nodes are to be manufactured using the EUV machines and the smaller nodes require it. As far as the competitors go, only Samsung is currently making EUV silicon on the 7 nm LPP node. Intel is yet to release some products on a 7 nm node of its own, which is the first EUV node from the company.

SiliconArts Launches RayCore Path-Series, The GPU for Photo-realistic Graphics

SiliconArts today released RC-MC, its next generation RayCore graphics architecture. The RayCore MC is scalable and modular to enable integration on a wide variety of gaming platforms including cloud, desktop, mobile, console and VR/AR. The RC-MC is being made available in an external Graphics Accelerator (eGFX) for content developers and SOC design evaluation.

Jon Peddie, principle and founder of Jon Peddie Research, says of the RayCore MC product release: "SiliconArts' latest product breaks another barrier between the professional rendering and the broader graphics market, with path tracing features such as global illumination and soft shadows that are being deployed in advanced rendering farms today."

Marvell and TSMC Collaborate to Deliver Industry's Most Advanced Data Infrastructure Portfolio on 5nm Tech

Marvell, a leading provider of data infrastructure semiconductor solutions, today announced an extension of their long term partnership with TSMC (TWSE: 2330; NYSE:TSMC), the world's largest dedicated semiconductor foundry, to deliver a comprehensive silicon portfolio for the data infrastructure market leveraging the industry's most advanced 5 nanometer (nm) process technology. Next-generation infrastructure has never been more critical to the global economy. It's what's keeping the world connected, businesses running and information flowing. With this collaboration, Marvell and TSMC are advancing the essential technology underpinning this infrastructure to provide the storage, bandwidth, speed, and intelligence that tomorrow's digital economy demands - with the added customer benefit of significant energy efficiency. Built in partnership with TSMC on the most advanced process technology currently in volume production, Marvell's new 5 nm portfolio will enable leading-edge silicon innovation for the infrastructure market.

Marvell's breakthrough 5 nm portfolio will provide the essential high-performance compute, networking and security technology required to advance infrastructure development for a multitude of end-market applications. Marvell's Ethernet connectivity solutions enable high-performance, low-power network connectivity, optimized for applications that span cloud data centers to the harsh environment of the automotive market. Marvell's OCTEON platform is the industry's leading Arm-based high-performance compute architecture for embedded infrastructure applications targeting a wide variety of wired and wireless networking equipment including switches, routers, secure gateways, firewalls, and network monitoring solutions. OCTEON is the world's most widely deployed data processing unit (DPU) for data-center scale computing and enables a multitude of acceleration and offload capabilities, including Smart NICs and security accelerators. Featuring optimized and customized 5G processing and baseband capabilities, Marvell's OCTEON Fusion platform is pushing the boundaries of wireless network infrastructure.

TSMC Details 3nm N3, 5nm N5, and 3DFabric Technology

TSMC on Monday kicked off a virtual tech symposium, where it announced its new 12 nm N12e node for IoT edge devices, announced the new 3DFabric Technology, and detailed progress on its upcoming 5 nm N5 and 3 nm N3 silicon fabrication nodes. The company maintains that the N5 (5 nm) node offers the benefits of a full node uplift over its current-gen N7 (7 nm), which recently clocked over 1 billion chips shipped. The N5 node incorporates EUV lithography more extensively than N6/N7+, and in comparison to N7 offers 30% better power at the same performance, 15% more performance at the same power, and an 80% increase in logic density. The company has commenced high-volume manufacturing on this node.

2021 will see the introduction and ramp-up of the N5P node, an enhancement of the 5 nm N5 node, offering a 10% improvement in power at the same performance, or 5% increase in performance at the same power. A nodelet of the N5 family of nodes, called N4, could see risk production in Q4 2021. The N4 node is advertised as "4 nm," although the company didn't get into its iso-power/iso-performance specifics over the N5 node. The next major node for TSMC will be the 3 nm N3 node, with massive 25%-30% improvement in power at the same performance, or 10%-15% improvement in performance at same power, compared to N5. It also offers a 70% logic density gain over N5. 3DFabric technology is a new umbrella term for TSMC's CoWoS (chip on wafer on substrate), CoW (chip on wafer), and WoW (wafer on wafer) 3-D packaging innovations, with which it plans to offer packaging innovations that compete with Intel's various new 3D chip packaging technologies on the anvil.

TSMC Announces the N12e Enhanced 12nm FF Node for 5G and IoT Edge Devices

TSMC on Monday announced the N12e silicon fabrication node. An enhancement of its 12 nm FinFET node, N12e is designed for value 5G application processors, MODEMs, and IoT edge devices, such as true-wireless earbuds, smartwatch processors, wearables, VR HMDs, entry-level and mainstream SoCs, etc. The node has been derived from the company's 12FFC+_ULL node, and fits into the 12-16 nm class of nodes. It's intended to succeed the company's 22ULL node (in terms of pricing), offering a 76% increase in logic density, 49% increase in clock speed at a given power, 55% improvement in power draw at a given speed, 50% reduction in SRAM leakage current, and low Vdd, with support for logic voltages as low as 0.4 V. That last bit in particular should make the node suitable for tiny, battery-powered devices such as wearables.

TSMC Ships its 1 Billionth 7nm Chip

In a bid to show off its volume production prowess and technological edge (but mostly to rub it in to rival fabs), TSMC on Thursday announced that it shipped its 1 billionth chip fabricated on its 7 nm process. If these dies were combined into one big rectangular wafer, they would cover 13 New York City blocks. TSMC's 7 nm process debuted with its N7 node, which went into volume production in April 2018, over two years ago. The fab has since mass-produced 7 nm chips for the likes of Qualcomm, Apple, and AMD, among dozens of other clients. The company now looks to monetize refinements of N7, namely the N7e and N7P (DUV refinements), while executing its crucial EUV-based N7+ node, leading up to future nodelets such as N6. Much of TSMC's growth will be propelled by 5G modems, application processors, and its pivotal role in the growth of companies such as AMD.

Microsoft Details Xbox Series X SoC, Drops More Details on RDNA2 Architecture and Zen 2 CPU Enhancements

Microsoft in its Hot Chips 32 presentation detailed the SoC at the heart of the upcoming Xbox Series X entertainment system. The chip mostly uses AMD IP blocks, and is built on TSMC N7e (enhanced 7 nm) process. It is a 360.4 mm² die with a transistor count of 15.3 billion. Microsoft spoke about the nuts and bolts of the SoC, including its largest component - the GPU based on AMD's new RDNA2 graphics architecture. The GPU takes up much of the chip's die area, and has a raw SIMD throughput of 12 TFLOP/s. It meets DirectX 12 Ultimate logo requirements, supporting hardware-accelerated ray-tracing.

The RDNA2 GPU powering the Xbox Series X SoC features 52 compute units spread across 26 RDNA2 dual compute units. The silicon itself physically features two additional dual CUs (taking the total physical CU count to 56), but are disabled (possibly harvesting headroom). We've detailed first-generation RDNA architecture in the "architecture" pages of our first AMD Radeon RX 5000-series "Navi" graphics card reviews, which explains much of the SIMD-level innovations from AMD that help it drive a massive SIMD IPC gain over the previous-generation GCN architecture. This hierarchy is largely carried over to RDNA2, but with the addition of a few SIMD-level components.

Chinese Fabs Attracted Over 100 TSMC Veteran Engineers Since 2019: Report

A Nikkei investigative report uncovered that two Chinese semiconductor fabrication firms, namely Quanxin Integrated Circuit Manufacturing (QXIC), and Hongxin Semiconductor Manufacturing Co (HSMC), have poached over 100 veteran semiconductor engineers from TSMC since last year. Both firms are recipients of government funding under China's ambitious plan of complete electronics hardware industry independence by 2025. Both firms were floated as recently as 2017, and began hiring specialist engineers and executives with connections across the semiconductor industry, from TSMC. The two began development of a 14 nm-class FinFET node that would support manufacturing of a wide variety of electronics components, including SoCs, ASICs, transceivers, and storage products.

Nikkei estimates that in a span of a year, Taiwan lost more than 3,000 semiconductor engineers to various start-ups in the mainland, including large semiconductor fabs. Sources in TSMC tell the Japanese publication that the company is "very concerned" about the flight of talent toward China, although it didn't believe that there is any immediate danger to the company's output or technological edge. The source advocated a national-level strategy by various Asian governments to retain talent, not through coercion, but by offering better incentives and pay than the Chinese firms flush with public investment.

Qualcomm Could Deliver Chips to Huawei

In the ave of the news that Trump administration has forbidden TSMC to have Huawei as its customer, Huawei seems to be exploring new options for sourcing the best performing mobile processors. As the company has turned to the Chinese SMIC semiconductor factory, it still needs a backup plan in the case of Chinese semiconductor manufacturing flops. So to combat US sanctions, Huawei will use already made chips form the US company - Qualcomm. By sourcing the processors from Qualcomm, Huawei is losing some benefits of customs design like better system integration, however, it will gain quite powerful mobile processors. As Qualcomm is known for providing the fastest processors for Android smartphones, Huawei has ensured that it remains competitive. Qualcomm is reportedly now negotiating with the US government about delivering the chips to Huawei, and if it is allowed, Qualcomm will gain a big customer.

Softbank Approaches TSMC and Foxconn for Potential Arm Buyout

Softbank-owned company Arm Ltd. has been a subject to a round of rumors regarding the potential buyout of the company because Softbank has considered selling it for some time. The company has approached NVIDIA, with their talks getting "advanced", and Samsung wants a piece of the cake as well. It is now reported that Softbank has approached TSMC and Foxconn as well, regarding a potential Arm takeover. In the report by Nikkei Asia, we have found out that Arm has shared the same financial data points and business plan with TSMC and Foxconn, the same way company did with NVIDIA.

If TSMC and Foxconn have any interest in the company, it would be necessary to create a consortium that would operate Arm Ltd. With NVIDIA, Samsung, and these two new players, the consortium would already count four companies. Nikkei sources claim that Apple and Qualcomm have been also included in the poll of potential buyers, which would make the idea of establishing a consortium very valid.

XMG Announces Serious Constraints on AMD Ryzen 7 4800H Supply, Could Extend to Industry

XMG, a well-known gaming brand for high performance laptops and PCs that operates under Schenker Technologies has announced via a Reddit post that it is facing serious constraints in AMD Ryzen 7 4800H supply. This has meant a delay for parts that were expected to be fulfilled in August, which now have an expected delivery date by late September. The company is offering a number of alternatives for users that may want to change their order in wake of the delay, including a chip downgrade (for AMD's Ryzen 4600H), a CPU manufacturer swap (to Intel's Core i7-10750H), a battery downgrade from 62Wh to 46Wh (with laptops being likely manufactured by two different ODMs in this case), or a full refund.

The company says that this has been caused, in part, by an upsurge in demand for AMD Ryzen 4800H CPUs, not only form customers, but also from some leading brands with a much more sizeable portion of the ODM market, who have apparently caught wind of the technological prowess of AMD's most recent 4000 series CPUs compared to Intel's. It can be also speculated that this supply constraint is being affected by the COVID-19 pandemic, which is still straining logistics and shipments across the globe, but also by insufficient supply to meet demand. This can be explained by the fact that most tech companies are fabless, and most semiconductor designers have to fight for TSMC's allocation for 7 nm silicon production - and there are only so many wafers that can be allocated to each company at the outset. Perhaps AMD's allocation is also favoring other renditions of their Zen silicon (ie, custom designs for the next-generation consoles and other higher-margin products).

AMD Confirms "Zen 4" on 5nm, Other Interesting Tidbits from Q2-2020 Earnings Call

AMD late Tuesday released its Q2-2020 financial results, which saw the company rake in revenue of $1.93 billion for the quarter, and clock a 26 percent YoY revenue growth. In both its corporate presentation targeted at the financial analysts, and its post-results conference call, AMD revealed a handful interesting bits looking into the near future. Much of the focus of AMD's presentation was in reassuring investors that [unlike Intel] it is promising a stable and predictable roadmap, that nothing has changed on its roadmap, and that it intends to execute everything on time. "Over the past couple of quarters what we've seen is that they see our performance/capability. You can count on us for a consistent roadmap. Milan point important for us, will ensure it ships later this year. Already started engaging people on Zen4/5nm. We feel customers are very open. We feel well positioned," said president and CEO Dr Lisa Su.

For starters, there was yet another confirmation from the CEO that the company will launch the "Zen 3" CPU microarchitecture across both the consumer and data-center segments before year-end, which means both Ryzen and EPYC "Milan" products based on "Zen 3." Also confirmed was the introduction of the RDNA2 graphics architecture across consumer graphics segments, and the debut of the CDNA scalar compute architecture. The company started shipping semi-custom SoCs to both Microsoft and Sony, so they could manufacture their next-generation Xbox Series X and PlayStation 5 game consoles in volumes for the Holiday shopping season. Semi-custom shipments could contribute big to the company's Q3-2020 earnings. CDNA won't play a big role in 2020 for AMD, but there will be more opportunities for the datacenter GPU lineup in 2021, according to the company. CDNA2 debuts next year.

TSMC Doesn't See Intel as Long-Term Customer, Unlikely to Build Additional Capacity for It

TSMC has been the backbone of silicon designers for a long time. Whenever you question where you can use the latest technology and get some good supply capacity, TSMC got everyone covered. That case seems to be similar to Intel and its struggles. When Intel announced that its 7 nm semiconductor node is going to be delayed a full year, the company's customers and contractors surely became worried about the future releases of products and their delivery, like the case is with Aurora exascale supercomputer made for Argonne National Laboratory, which relies on Intel's 7 nm Ponte Vecchio graphics cards for most of the computation power.

To manage to deliver this, Intel is reportedly in talks with TSMC to prepare capacity for the GPUs and deliver them on time. However, according to industry sources of DigiTimes, TSMC is unlikely to build additional capacity for Intel, besides what it can deliver now. According to those sources, TSMC does not see Intel as a long-term customer and it is unknown what treatment will Intel get from TSMC. Surely, Intel will be able to make a deal with TSMC and secure enough of the present capacity for delivering next-generation processors.

TSMC Allocation the Next Battleground for Intel, AMD, and Possibly NVIDIA

With its own 7 nm-class silicon fabrication node nowhere in sight for its processors, at least not until 2022-23, Intel is seeking out third-party semiconductor foundries to support its ambitious discrete GPU and scalar compute processor lineup under the Xe brand. A Taiwanese newspaper article interpreted by Chiakokhua provides a fascinating insight to the the new precious resource in the high-technology industry - allocation.

TSMC is one of these foundries, and will give Intel access to a refined 7 nm-class node, either the N7P or N7+, for some of its Xe scalar compute processors. The company could also seek out nodelets such as the N6. Trouble is, Intel will be locking horns with the likes of AMD for precious foundry allocation. NVIDIA too has secured a certain allocation of TSMC 7 nm for some of its upcoming "Ampere" GPUs. Sources tell China Times that TSMC will commence mass-production of Intel silicon as early as 2021, on either N7P, N7+, or N6. Business from Intel is timely for TSMC as it is losing orders from HiSilicon (Huawei) in wake of the prevailing geopolitical climate.

Intel to Detail Xe Graphics on August 13

Intel is expected to reveal technical details of its upcoming Xe graphics architecture on August 13, according to a tweet by Intel Graphics that has since been deleted. Tom's Hardware believes the reveal is still on the cards. "You've waited. You've wondered. We'll deliver. In 20 days, expect more details on Xe graphics," the tweet read. Senior Fellow and Director of Graphics Architecture at Intel, David Blythe is expected to present a technical brief on the Xe graphics architecture at a Hot Chips 2020 virtual event on August 17.

These technical reveals are closely timed with the launch of "Tiger Lake," Intel's first commercial debut of Xe as an iGPU solution the chipmaker refers to as "Gen12" for consistency with older generations of integrated graphics. Xe is far from designed for just iGPU or small dGPUs, with the architecture being scalable all the way up to large scalar compute processors the size of beer mug coasters. Even as an iGPU, Xe is formidable, as it was recently shown playing AAA games by itself. Recent commentary from Intel at its Q2 2020 financial results provided strong hints of Xe dGPUs being de-coupled from Intel's foundry woes, and possibly headed for third-party foundries such as Samsung or TSMC.

Intel 7nm CPUs Delayed by a Year, Alder Lake in 2H-2021, Other Commentary from Intel Management

Intel's silicon fabrication woes refuse to torment the company's product roadmaps, with the company disclosing in its Q2-2020 financial results release that the company's first CPUs built on the 7 nanometer silicon fabrication node are delayed by a year due to a further 6-month delay from prior expectations. The company will focus on getting its 10 nm node up to scale in the meantime.

The company mentioned that the 10 nm "Tiger Lake" mobile processor and "Ice Lake-SP" enterprise processor remains on-track for 2020. The company's 12th Generation Core "Alder Lake-S" desktop processors won't arrive before the second half of 2021. In the meantime, Intel will launch its 11th Gen Core "Rocket Lake" processor on the 14 nm node, but with increased IPC from the new "Cypress Cove" CPU cores. Also in 2H-2021, the company will launch its "Sapphire Rapids" enterprise processors that come with next-gen connectivity and updated CPU cores.
Intel 7 nanometer delay

Samsung Rumored to Make Investment in GlobalFoundries

Today we are in for an interesting rumor. According to industry sources of Coreteks, Samsung is rumored to be preparing investment in GlobalFoundries manufacturing facilities. In the latest ave of Asian foundries getting away from China and getting close to EU and US soils, Samsung is the latest one to join the list. First, let's explain the situation. The Trump administration has been pushing TSMC to drop all orders from Huawei, and TSMC did it. That way, Huawei Technologies has lost a major chip supplier which enabled the company a competitive edge. Now, the company must turn to Chinese manufacturers and it can't use any US-made product.

Given that GlobalFoundries is a company headquartered in the US (Santa Clara, California), the company is an American corporation, which has fabs in the US, as well as in Europe. It is truly a global foundry system. Samsung, a Korean semiconductor manufacturer, has been rumored to invest in GlobalFoundries Dresden fab, located in Germany. The company will help GlobalFoundries expand its power supply capacity from 63 MegaWatts to 100 MegaWatts. The proposed expansion of GlobalFoundries Dresden fab would be funded exclusively by Samsung. So why is Samsung doing this? The answer to this question is pretty simple - to get closer to western markets. Even if GlobalFoundries has foundries all over the world, it is a US company at its core. So Samsung hopes that from this investment, it can get closer to US soil and gain some new customers in the future. After all, Samsung plans to become the world's biggest semiconductor manufacturer by 2030, the position currently held by its rival TSMC. Below you can check out the expansion plan illustrated by Coreteks:
Return to Keyword Browsing