News Posts matching #TSMC

Return to Keyword Browsing

TSMC to Put Away More Capacity for Automotive Industry if Possible

TSMC is one of the world's biggest semiconductor manufacturers, and the company is currently the leading provider of the newest technologies like 5 nm and 3 nm, along with advanced packaging. So far, TSMC's biggest customers have included Apple, NVIDIA, AMD, etc., where the company has mainly produced chips for mobile phones and PCs/Servers. However, Taiwan's Economics Ministry has announced that they have spoken to TSMC and have reached an agreement that the company will be putting away some additional capacity for the automotive industry, specifically for the production of automotive chips. The reason for this push is the increasing shortage of semiconductors for automakers, experienced due to the Trump administration sanctions against key Chinese chip factories.

TSMC has stated that "Other than continuously maximizing utilization of our existing capacity, Dr. Wei also confirmed in our investors' conference that we are working with customers closely and moving some of their mature nodes to more advanced nodes, where we have a better capacity to support them". The company also states that their capacities are fully utilized for now, however, TSMC has ensured ministry that "if production can be increased by optimizing production capacity, it will cooperate with the government to regard automotive chips as a primary application." That means that TSMC will not decrease any existing capacity, but rather just evaluate any increased capacity for automotive chip production.

Intel Has Fixed its 7 nm Node, But Outsourcing is Still Going to Happen

Intel has today reported its Q4 2020 earnings disclosing full-year revenue with the current CEO Bob Swan, upcoming new CEO Pat Gelsinger, and Omar Ishrak, Chairman of Intel's board. During the call, company officials have talked about Intel's earnings and most importantly, addressing the current problems about the company's manufacturing part - semiconductor foundries. Incoming Intel CEO, Pat Gelsinger, has talked about the state of the 7 nm node, giving shareholders reassurance and a will to remain in such a position. He has made an argument that he has personally reviewed the progress of the "health and recovery of the 7 nm program."

The 7 nm node has been originally delayed by a full year amid the expectations, and as with the 10 nm node, we have believed that it is going to experience similar issues. However, the incoming CEO has reassured everyone that it is very much improving. The new 7 nm node is on track for 2023 delivery, when Intel is expected to compete with the 3 nm node of TSMC. Firstly, Intel will make a debut of the 7 nm node with client processors scheduled for 1H 2023 arrival, with data center models following that. The company leads have confirmed that Intel will stay true to its internal manufacturing, but have stressed that there will still be a need for some outsourcing to happen.

Industry R&D Spending To Rise 4% After Hitting Record in 2020: IC Insights

Research and development spending by semiconductor companies worldwide is forecast to grow 4% in 2021 to $71.4 billion after rising 5% in 2020 to a record high of $68.4 billion, according to IC Insights' new 2021 edition of The McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry. Total R&D spending by semiconductor companies is expected to rise by a compound annual growth rate (CAGR) of 5.8% between 2021 and 2025 to $89.3 billion.

When the world was hit by the Covid-19 virus health crisis in 2020, wary semiconductor suppliers kept a lid on R&D spending increases, even though total semiconductor industry revenue grew by a surprising 8% in the year despite the economic fallout from the deadly pandemic. Semiconductor R&D expenditures as a percentage of worldwide industry sales slipped to 14.2% in 2020 compared to 14.6% in 2019, when research and development spending declined 1% and total semiconductor revenue fell 12%. Figure 1 plots semiconductor R&D spending levels and the spending-to-sales ratios over the past two decades and IC Insights' forecast through 2025.

MediaTek Launches 6nm Dimensity 1200 Premium 5G SoC

MediaTek today unveiled its new Dimensity 1200 and Dimensity 1100 5G smartphone chipsets with unrivaled AI, camera and multimedia features for powerful 5G experiences. The addition of the 6 nm Dimensity 1200 and 1100 chipsets to MediaTek's 5G portfolio gives device makers a growing suite of options to design highly capable 5G smartphones with top of the line camera features, graphics, connectivity enhancements and more.

"MediaTek continues to expand its 5G portfolio with highly integrated solutions for a range of devices from the high-end to the mid-tier," said JC Hsu, Corporate Vice President and General Manager of MediaTek's Wireless Communications Business Unit. "Our new Dimensity 1200 stands out with its impressive 200MP camera support and advanced AI capabilities, in addition to its innovative connectivity, display, audio and gaming enhancements."

Chinese Tianshu Zhixin Announces Big Island GPGPU on 7 nm, 24 billion Transistors

Chinese company Shanghai Tianshu Zhixin Semiconductor Co., Ltd., commonly known (at least in Asia) as Tianshu Zhixin, has announced the availability of their special-purpose GPGPU, affectionately referred to as Big Island (BI). The BI chip is the first fully domestic-designed solution for the market it caters to, and features close to the latest in semiconductor manufacturing, being built on a 7 nm process featuring 2.5D CoWoS (chip-on-wafer-on-substrate) packaging. The chip is built towards AI and HPC applications foremost, with applications in other industries such as education, medicine, and security. The manufacturing and packaging processes seem eerily similar to those available from Taiwanese TSMC.

Tianshu Zhixin started work on the BI chip as early as 2018, and has announced that the chip features support for most AI and HPC data processing formats, including FP32, FP16, BF16, INT32, INT16, and INT8 (this list is not exhaustive). The company says the chip offers twice the performance of existing mainstream products on the market, and emphasizes its price/performance ratio. The huge chip (it packs as many as 24 billion transistors) is being teased by the company as offering as much as 147 TFLOPs in FP126 workloads, compared to 77.97 TFLOPs in the NVIDIA A100 (54 billion transistors) and 184.6 TFLOPS from the AMD Radeon Instinct MI100 (estimated at 50 billion transistors).

AMD Talks Zen 4 and RDNA 3, Promises to Offer Extremely Competitive Products

AMD is always in development mode and just when they launch a new product, the company is always gearing up for the next-generation of devices. Just a few months ago, back in November, AMD has launched its Zen 3 core, and today we get to hear about the next steps that the company is taking to stay competitive and grow its product portfolio. In the AnandTech interview with Dr. Lisa Su, and The Street interview with Rick Bergman, the EVP of AMD's Computing and Graphics Business Group, we have gathered information about AMD's plans for Zen 4 core development and RDNA 3 performance target.

Starting with Zen 4, AMD plans to migrate to the AM5 platform, bringing the new DDR5 and USB 4.0 protocols. The current aim of Zen 4 is to be extremely competitive among competing products and to bring many IPC improvements. Just like Zen 3 used many small advances in cache structures, branch prediction, and pipelines, Zen 4 is aiming to achieve a similar thing with its debut. The state of x86 architecture offers little room for improvement, however, when the advancement is done in many places it adds up quite well, as we could see with 19% IPC improvement of Zen 3 over the previous generation Zen 2 core. As the new core will use TSMC's advanced 5 nm process, there is a possibility to have even more cores found inside CCX/CCD complexes. We are expecting to see Zen 4 sometime close to the end of 2021.

TrendForce: TSMC to Mass-Produce Select Intel Products, CPUs Starting 2021

According to a market analysis from TrendForce, Intel's manufacturing efforts with TSMC will go way beyond a potential TSMC technology licensing for that company's manufacturing technology to be employed in Intel's own fabs. The market research firm says that Intel will instead procure wafers directly from TSMC, starting on 2H2021, in the order of 20-25% of total production for some of its non-CPU products. But the manufacturing deal is said to go beyond that, with TSMC picking up orders for Intel's Core i3 CPUs in the company's 5 nm manufacturing node - one that Intel will take years to scale down to on its own manufacturing capabilities.

According to TrendForce, that effort will scale upwards with TSMC manufacturing certain allotments of Intel's midrange and high-end CPUs using the semiconductor manufacturer's 3 nm technology in 2022. TrendForce believes that increased outsourcing of Intel's product lines will allow the company to not only continue its existence as a major IDM, but also maintain and prioritize in-house production lines for chips with high margins, while more effectively spending CAPEX on advanced R&D due to savings on fabrication technology scaling - fewer in-house chips means lower needs for investment in capacity increases, which would allow the company to sink the savings into further R&D. The move would also allow Intel to close the gap with rival AMD's manufacturing advantages in a more critical, timely manner.

Intel Xe-HPG to be Built on TSMC N7: Report

Intel's first discrete gaming graphics card based on the Xe-HPG graphics architecture, will be built on a TSMC 7 nanometer silicon fabrication node, according to a Reuters report citing sources "familiar with the matter." The first such discrete GPU is being referred to internally by Intel as the DG2. Recent reports suggest that Intel will give the DG2 formidable specs, such as 4,096 unified shaders across 512 execution units, and 8 GB of GDDR6 video memory. Back in 2020, the company launched the DG1 under the Intel Iris Xe MAX marketing name, targeting only the mobile discrete GPU market. The DG1 has entry-level specs, with which Intel is eyeing the same pie as NVIDIA's fast-moving GeForce MX series mobile GPUs. Interestingly, the other major client of TSMC-N7 following Apple's transition to N5, is Intel's rival AMD.

TSMC Publishes December 2020 Revenue Report

TSMC (TWSE: 2330, NYSE: TSM) today announced its net revenues for December 2020: On a consolidated basis, revenues for December 2020 were approximately NT$117.37 billion, a decrease of 6.0 percent from November 2020 and an increase of 13.6 percent from December 2019. Revenues for January through December 2020 totaled NT$1,339.26 billion, an increase of 25.2 percent compared to the same period in 2019.

AMD's Radeon RX 6700 Series Reportedly Launches in March

AMD may be finding itself riding a new wave of success caused by its accomplishments with the Zen architecture, which in turn bolstered its available R&D for its graphics division and thus turned the entire AMD business on its head. However, success comes at a cost, particularly when you don't own your own fabs and have to vie for capacity with TSMC against its cadre of other clients. I imagine that currently, AMD's HQ has a direct system of levers and pulleys that manage its chip allocation with TSMC: pull this lever and increase number of 7 nm SOC for the next-generation consoles; another controls Ryzen 5000 series; and so on and so on. As we know, production capacity on TSMC's 7 nm is through the roof, and AMD is finding it hard to ship enough of its Zen 3 CPUs and RDNA2 graphics cards. The reported delay for the AMD RX 6700 series may well be a result of AMD overextending its product portfolio on the 7 nm process with foundry partner TSMC.

A report coming from Cowcotland now points towards a 1Q2021 release for AMD's high-performance RX 6700 series, which was initially poised to see the light of day in the current month of January. The RX 6700 series will ship with AMD's Navi 22 chip, which is estimated to be half of the full Navi 21 chip (which puts it at a top configuration of 2560 Stream Processors over 40 CUs). These cards are expected to ship with 12 GB of GDDR6 memory over a 192-bit memory bus. However, it seems that AMD may have delayed the launch for these graphics cards. One can imagine that this move from AMD happens so as to not further dilute the TSMC wafers coming out of the factory, limited as they are, between yet another chip. One which will undoubtedly have lower margins than the company's Zen 3 CPUs, EPYC CPUs, RX 6800 and RX 6900, and that doesn't have the same level of impact on its business relations as console-bound SoCs. Besides, it likely serves AMD best to put out enough of its currently-launched products' to sate demand (RX 6000 series, Ryzen 5000, cof cof) than to launch yet another product with likely too limited availability in relation to the existing demand.

Hedge Fund Urges Intel to Outsource Chip Production: Reuters

Intel is familiar with chip manufacturing problems since the company started the development of a 10 nm silicon semiconductor node. The latest node is coming years late with many IPs getting held back thanks to the inability of the company to produce it. All of Intel's chip production was historically happening at Intel's facilities, however, given the fact that the demand for 14 nm products is exceeding production capability, the company was forced to turn to external foundries like TSMC to compensate for its lack of capacity. TSMC has a contract with Intel to produce silicon for things like chipsets, which is offloading a lot of capacity for the company. Today, thanks to the exclusive information obtained by Reuters, we have information that a certain New York hedge fund, Third Point LLC, is advising the company about the future of its manufacturing.

The hedge fund is reportedly accounting for about one billion USD worth of assets in Intel, thus making it a huge and one influencing shareholder. The Third Point Chief Executive Daniel Loeb wrote a letter to Intel Chairman Omar Ishrak to take immediate action to boost the company's state as a major provider of processors for PCs and data centers. The company has noted that Intel needs to outsource more of its chip production to satisfy the market needs, so it can stay competitive with the industry. The poor performance of Intel has reflected on the company shares, which have declined about 21% this year. This has awoken the shareholders and now we see that they are demanding more aggressiveness from the company and a plan to outsource more of the chip production to partner foundries like TSMC and Samsung. It remains to be seen how Intel responds and what changes are to take place.

Prices of NAND Flash Controller ICs Poised to Rise by 15-20% due to Tightening Production Capacity for Foundry Services, Says TrendForce

In the upstream semiconductor industry, the major foundries such as TSMC and UMC are reporting fully loaded capacities, while in the downstream, the available production capacity for OSAT is also lacking, according to TrendForce's latest investigations. Given this situation, suppliers of NAND Flash controller ICs such as Phison and Silicon Motion are now unable to meet upside demand from their clients. Not only have many controller IC suppliers temporarily stopped offering quotes for new orders, but they are also even considering raising prices soon because the negotiations between NAND Flash suppliers and module houses over 1Q21 contracts are now at the critical juncture. The potential increases in prices of controller ICs from outsourced suppliers (IC design houses) are currently estimated to be the range of 15-20%.

With regards to the demand side, demand has risen significantly for eMMC solutions with medium- and low-density specifications (i.e., 64 GB and lower), for which NAND Flash suppliers have mostly stopped updating the NAND Flash process technology, while maintaining support with the legacy 2D NAND or the 64L 3D NAND process. This is on account of strong sales for Chromebook devices and TVs. As older processes gradually account for a lowering portion of bit output proportions from NAND Flash suppliers, these companies are exhibiting a lowered willingness to directly supply such eMMC products to clients. As a result, clients now need to turn to memory module houses, which are able to source NAND Flash components and controllers, to procure eMMC products in substantial quantities.

NVIDIA to Introduce an Architecture Named After Ada Lovelace, Hopper Delayed?

NVIDIA has launched its GeForce RTX 3000 series of graphics cards based on the Ampere architecture three months ago. However, we are already getting information about the next-generation that the company plans to introduce. In the past, the rumors made us believe that the architecture coming after Ampere is allegedly being called Hopper. Hopper architecture is supposed to bring multi-chip packaging technology and be introduced after Ampere. However, thanks to @kopite7kimi on Twitter, a reliable source of information, we have data that NVIDIA is reportedly working on a monolithic GPU architecture that the company internally refers to as "ADxxx" for its codenames.

The new monolithically-designed Lovelace architecture is going make a debut on the 5 nm semiconductor manufacturing process, a whole year earlier than Hopper. It is unknown which foundry will manufacture the GPUs, however, both of NVIDIA's partners, TSMC and Samsung, are capable of manufacturing it. The Hopper is expected to arrive sometime in 2023-2024 and utilize the MCM technology, while the Lovelace architecture will appear in 2021-2022. We are not sure if the Hopper architecture will be exclusive to data centers or extend to the gaming segment as well. The Ada Lovelace architecture is supposedly going to be a gaming GPU family. Ada Lovelace, a British mathematician, has appeared on NVIDIA's 2018 GTC t-shirt known as "Company of Heroes", so NVIDIA may have already been using the ADxxx codenames internally for a long time now.

Oversupply to Continue Affecting NAND Flash Prices, with 10-15% QoQ Decline Expected in 1Q21, Says TrendForce

The percentage distribution of 2021 NAND Flash bit demand by application currently shows that client SSD accounts for 31%, enterprise SSD 20%, eMMC/UFS 41%, and NAND wafer 8%, according to TrendForce's latest investigations. TrendForce expects NAND Flash ASP to undergo QoQ declines throughout 2021, since the number of NAND suppliers far exceeds DRAM suppliers, and the bit supply remains high. As Samsung, YMTC, SK Hynix, and Intel actively expand their NAND Flash bit output in 1Q21, the oversupply situation in the industry will become more severe, with a forecasted 6% QoQ increase in NAND Flash bit output and a 10-15% QoQ decline in NAND Flash ASP in 1Q21.

TSMC to Roll Out 3nm Plus Manufacturing Process in 2023

The possibility barely exists to account for all the silicon manufacturing processes currently in development; TSMC themselves are rolling out 5 nm, 4 nm, 3 nm, and 2 nm processes at various points in time in the future. Now, the company has announced that it will be rolling out a revision of the 3 nm manufacturing process, named 3 nm Plus, come 2023. According to DigiTimes, the Taiwanese manufacturer's first client for this process will be Apple.

There is no information on what exactly 3 nm Plus leverages and offers over the "vanilla" 3 nm process. It could be anything from higher transistor density, lower power consumption, or higher operating frequency - or maybe a mixture of the three. The original 3 nm manufacturing process is set to offer a 15% performance gain over the current top-of-the-line 5 nm node, with 30% decreased power use and up to 70% density increase. Interestingly, TSMC is keeping their FinFet manufacturing technology, on grounds of better implementation costs and higher power efficiency compared to the more exotic GAA (Gate-All-Around) technology that its rival Samsung, for one, aims to implement in 3 nm.

TSMC Ends Its Volume Discounts For the Biggest Customers, Could Drive Product Prices Up

Taiwan Semiconductor Manufacturing Company (TSMC), one of the largest semiconductor manufacturers in the world, is reportedly ending its volume discounts. The company is the maker of the currently smallest manufacturing nodes, like 7 nm and 5 nm. For its biggest customers, TSMC used to offer a discount - when you purchase 10s or 100s of thousands of 300 mm (12-inch) wafers per month, the company will give you a deal of a 3% price decrease per wafer, meaning that the customer is taking a higher margin off a product it sells. Many of the customers, like Apple, NVIDIA, and AMD, were a part of this deal.

Today, thanks to a report from the Taiwanese Central News Agency, TSMC is terminating this type of discount. Now, every customer will pay full price for the wafer, without any exceptions. For now, it is unclear what drove that decision at TSMC's headquarters, but the only thing that we could think is that the demand is too high to keep up with the discounts and the margins are possibly lower. What this means for consumers is a possible price increase in products that are manufactured at TSMC's facilities. The consumer market is already at a drought of new PC components like CPUs and GPUs due to high demand and scalping. This could contribute a bit to the issue, however, we do not expect it to be of any major significance.

Largest Swiss Retailer Digitec to Receive a Grand Total of 35 AMD RX 6900 XT Graphics Cards for Launch

AMD's launch of their top of the line RX 6900 XT graphics card seems that it will have even less availability than the company's high-end RX 6800 and RX 6800 XT graphics card. This isn't surprising; the RX 6900 XT is a 590 mm² beast of a GPU with all of its execution units enabled - that's a lot of die space to harvest without a single silicon fault, no matter how good TSMC's 7 nm manufacturing process really is. Stock will be scarce, and likely will be scarce throughout the lifetime of the product, especially with the clogged, unmet, existing demand for high performance GPUs from a world population that has turned to gaming as a solace in times of quarantine.

Digitec, the largest Swiss retailer (serving a population of 8.5 million people), is only receiving 35 RX 6900 XT graphics cards for launch. We don't know, of course, what exactly is the Swiss demand for high-performance graphics cards, but it being one of the world's wealthiest countries (when it comes to its population's average income) it's expected to be higher than other countries with comparable population but lower income. As a result, the retailer isn't even putting the cards up for sale as they normally would; instead, there's a sweepstakes of sorts where 35 random users that opt-in for the event will receive a code that allows them to purchase the graphics card for its retail price of $999. An interesting solution, albeit of course, it just signals the dimension of the cards' availability issues.

Intel to Outsource Atom and Low-Power Xeon Manufacturing to TSMC?

In a bid to maximize utilization of its own semiconductor foundry for manufacturing larger, more profitable processors, Intel could be look at contracting TSMC to manufacture certain processors based on its low-power CPU microarchitectures, according to a new Intel job posting discovered by Komachi Ensaka. The job description for a position in Intel's Bengaluru facility, speaks of a "QAT Design Integration Engineer" who would play a role in the "development and integration of CPM into Atom and Xeon-based SoC on Intel and TSMC process."

QAT is a hardware feature that accelerates cryptography and data-compression workloads. Since the Xeon part in this sentence is referenced next to SoC, Intel could be referring to Xeon processors based on low-power cores, such as "Snow Ridge," which uses "Tremont" CPU cores. The decision to go with TSMC could also be driven by the 5G infrastructure hardware gold rush awaiting the likes of Intel across dozens of new markets, particularly those averse to buying hardware from Huawei.

TSMC Completes Its Latest 3 nm Factory, Mass Production in 2022

They say that it is hard to keep up with Moore's Law, however, for the folks over at Taiwan Semiconductor Manufacturing Company (TSMC), that doesn't seem to represent any kind of a problem. Today, to confirm that TSMC is one of the last warriors for the life of Moore's Law, we have information that the company has completed building its manufacturing facility for the next-generation 3 nm semiconductor node. Located in Southern Taiwan Science Park near Tainan, TSMC is expecting to start high-volume manufacturing of the 3 nm node in that Fab in the second half of 2022. As always, one of the first customers expected is Apple.

Estimated to cost an amazing 19.5 billion US Dollars, the Fab is expected to have an output of 55,000 300 mm (12-inch) wafers per month. Given that the regular facilities of TSMC exceed the capacity of over 100K wafers per month, this new facility is expected to increase the capacity over time and possibly reach the 100K level. The new 3 nm node is going to use the FinFET technology and will deliver a 15% performance gain over the previous 5 nm node, with 30% decreased power use and up to 70% density increase. Of course, all of those factors will depend on a specific design.

TSMC Partners With Google and AMD to Push 3D Silicon

Silicon manufacturing is starting to get harder and harder every day, with new challenges appearing daily. It requires massive investment and massive knowledge to keep a silicon manufacturing company afloat. No company can survive that alone, so some collaborations are emerging. Today, thanks to the sources of Nikkei Asia, we have information that Taiwanese Semiconductor Manufacturing Company (TSMC) is collaborating with Google to push the production of 3D chip manufacturing process, that is said to overcome some of the silicon manufacturing difficulties. The sources also say that AMD is involved in the process as well, making Google and AMD the first customers of the advanced 3D chip design. The two companies are preparing designs for the new way of creating silicon and will help TSMC test and certify the process.

TSMC will deploy the 3D silicon manufacturing technology at its chip packaging plant in Miaoli, which is supposed to do mass production in 2022. With Google and AMD being the first customers of new 3D technology, it is exciting to see what new products will look like and how they will perform. The 3D approach is said to bring huge computing power increase, however, it is a waiting game now to see how it will look like.

Intel to Keep Its Number One Semiconductor Supplier Ranking in 2020: IC Insights

IC Insights' November Update to the 2020 McClean Report, released later this month, includes a discussion of the forecasted top-25 semiconductor suppliers in 2020. This research bulletin covers the expected top-15 2020 semiconductor suppliers (Figure 1).

The November Update also includes a detailed five-year forecast through 2024 of the IC market by product type (including dollar volume, unit shipments, and average selling price) and a forecast of the major semiconductor industry capital spenders for 2020. A five-year outlook for total semiconductor industry capital spending is also provided.

Wafer Prices Rising by Up to 40% in 2021: Report

Semiconductor foundries across the board are preparing to raise price quotes of their 8-inch wafers from 2021. A DigiTimes report sheds light on various foundry companies, including UMC (United Microelectronics), Global Foundries, and Vanguard International Semiconductor (VIS) have raised their 8-inch foundry quotes by 10-15% in Q4-2020, with the quotes set to rise by another 20-40% in 2021. Foundries don't tend to use flat pricing, and instead rely on quotes specific to the size and design requirements of an order (by a fabless chip designer).

The foundry industry operates broadly on silicon fabrication nodes and wafer sizes. This article by Telescope Magazine provides insights into the typical use-cases for each wafer size. Although pertaining strictly to pricing of 8-inch (200 mm) wafers, an impending price-rise across the semiconductor industry can be extrapolated on the basis on significant labor cost increases. TSMC is planning to implement a 20% pay hike for its personnel in 2021.

TSMC Achieves Major Breakthrough in 2 nm Manufacturing Process, Risk Production in 2023

The Taiwan Economic Daily claims that TSMC has achieved a major internal breakthrough for the eventual rollout of 2 nm fabrication process technology. According to the publication, this breakthrough has turned TSMC even more optimistic towards a 2023 rollout of 2 nm risk production - which is all the more impressive considering reports that TSMC will be leaving the FinFet realm for a new multi-bridge channel field effect transistor (MBCFET) architecture - itself based on the Gate-All-Around (GAA) technology. This breakthrough comes one year after TSMC put together an internal team whose aim was to pave the way for 2 nm deployment.

MBCFET expands on the GAAFET architecture by taking the Nanowire field-effect transistor and expanding it so that it becomes a Nanosheet. The main idea is to make the field-effect transistor three-dimensional. This new complementary metal oxide semiconductor transistor can improve circuit control and reduce leakage current. This design philosophy is not exclusive to TSMC - Samsung has plans to deploy a variant of this design on their 3 nm process technology. And as has been the norm, further reductions in chip fabrication scale come at hefty costs - while the development cost for 5 nm has already achieved $476M in cost, Samsung reports that their 3 nm GAA technology will cost in excess of $500M - and 2 nm, naturally, will come in even costlier than that.

TSMC Increases Orders of EUV Tools Amid High Demand

In the latest report by DigiTimes, it is said that TSMC has placed an order on 13 Extreme Ultra-Violet (EUV) machines from the Dutch company ASML. Thanks to the rapid increase in demand for its silicon, TSMC has developed plans for expansion across the next few years to satisfy the existing and upcoming customers. Usually, the company knows and can predict its demand for a future period. That is why TSMC is expanding its capacities with 13 additional ASML Twinscan NXE EUV scanners. These machines are set to be delivered by the course of 2021. It is unknown exactly when these machines are going to be delivered and installed at TSMC's facilities, however, it is fascinating that the demand for the company's capacities is ever-expanding. The price of single EUV machinery is as much as $175.75 million, so it is estimated that the expansion of capacity will cost TSMC a whopping $2.284,75 million. Despite the high pricing, the Return on Investment (ROI) is very high for TSMC.

TSMC Approves 3.5 Billion Dollar Arizona Foundry

TSMC plans to open a new 3.5 billion dollar foundry in Arizona with a new wholly-owned US subsidiary. The new foundry will begin construction in 2021 with an expected completion date of 2024. The new facility will target production volumes of 20,000 wafers per month with 5 nm production being the main priority. TSMC will be joining Intel who also produces chips in Arizona enabling them to tap into this well-established supply chain. TSMC plans to employ 1,600 staff at the facility which will be their most advanced facility outside of Taiwan. The new foundry will likely be popular with US customers and military applications requiring more secure facilities.
Return to Keyword Browsing