• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

Intel's Secret Sauce at Catching Up with AMD Core Count is the Gracemont E-core and its Mind-boggling Perf/Watt

btarunr

Editor & Senior Moderator
Staff member
Joined
Oct 9, 2007
Messages
47,670 (7.43/day)
Location
Dublin, Ireland
System Name RBMK-1000
Processor AMD Ryzen 7 5700G
Motherboard Gigabyte B550 AORUS Elite V2
Cooling DeepCool Gammax L240 V2
Memory 2x 16GB DDR4-3200
Video Card(s) Galax RTX 4070 Ti EX
Storage Samsung 990 1TB
Display(s) BenQ 1440p 60 Hz 27-inch
Case Corsair Carbide 100R
Audio Device(s) ASUS SupremeFX S1220A
Power Supply Cooler Master MWE Gold 650W
Mouse ASUS ROG Strix Impact
Keyboard Gamdias Hermes E2
Software Windows 11 Pro
When early benchmarks of the Core i9-12900K "Alder Lake-S" processor showing performance comparable to AMD's top 16-core Ryzen 9 5950X surfaced, we knew something was up. 8 Intel P-cores and 8 E-cores, are able to match 16 "Zen 3" cores that are all performance cores. Apparently Intel is able to turn its P-core deficit around by taking a wacky approach. First, the 8 "Golden Cove" P-cores themselves offer significantly higher IPC than "Zen 3." Second, the 8 "Gracemont" E-cores aren't as "slow" as conventional wisdom would suggest.

Intel in its Architecture Day presentation put out some astounding numbers that help support how 8 big + 8 little cores are able to perform in the league of 16 AMD big cores. Apparently, on "Alder Lake-S," the 8 "Gracemont" E-cores enjoy a lavish power budget, and are able to strike an incredible performance/Watt sweet-spot. Intel claims that the "Gracemont" E-core offers 40% higher performance at ISO power than a "Skylake" core (Intel's workhorse P-core for desktops until as recently as 2020); which means it consumes 40% less power at comparable performance.



A "Gracemont" core hence doesn't end up too far behind "Skylake." The combination of high-IPC P-cores and "fairly fast" E-cores are hence able to attain performance levels comparable to 16 "Zen 3" cores. There are some limitations, though. For starters, "Gracemont" cores don't support HyperThreading, unlike "Skylake," and have a reduced ISA instruction-set compared to the P-cores.

View at TechPowerUp Main Site
 
If this translates to IRL, we're actually looking at a feasible big.little architecture that CAN extract an advantage from its design. At some point that's what I was hoping for when they did launch this idea in the beginning. Its the only way they can somehow make it tick better than what they have.

If, because how workload dependant is this :) Its interesting nonetheless.
 
Today is probably the day with most Intel news... LOL (7 total)
 
This is great news. For a decade Intel has been stubborn as a goat and as a consumer had me at the end of my patience. If Intel did this before sinking billions into their mobile foray we would still be talking about competition in the mobile sector. I'm sick and tired of their ex-colleagues who go on record saying x86 doesn't have to be uncompetitive - you are the one to make it happen!
Well done and I hope they stop their old habits which die hard. Intel can renovate itself they hired Jim Keller for heaven's sake - they better develop system level changes! Intel with all its might does not need to be the slow adopter!
 
If this translates to IRL, we're actually looking at a feasible big.little architecture that CAN extract an advantage from its design. At some point that's what I was hoping for when they did launch this idea in the beginning. Its the only way they can somehow make it tick better than what they have.

If, because how workload dependant is this :) Its interesting nonetheless.
Too bad it can't run half the code at all bc it lacks AVX. Oops.
 
Too bad it can't run half the code at all bc it lacks AVX. Oops.
W... what?
Neither core has AVX? Thats.... special.

Here's what I read...
"Gracemont" is Intel's first low-power core to support AVX, AVX2, and AVX-VNNI instruction sets. "Golden Cove" features a more lavish ISA that includes AVX-512 (select client-relevant instructions)."
 
Too bad it can't run half the code at all bc it lacks AVX. Oops.
You have to understand those huge MUX'es create huge voltage fluctuations. You cannot have power efficiency if you insist on running wide execution units. Design follows function for a reason. All the researchers in the world wouldn't be able to solve an already 'known issue' unless you want to invest into more expensive motherboards which aren't without their own issues.
PS: Nvidia didn't beat 3dfx by featuring the same supersampling, Intel didn't beat IBM with the same level of performance...
 
W... what?
Neither core has AVX? Thats.... special.

Here's what I read...
"Gracemont" is Intel's first low-power core to support AVX, AVX2, and AVX-VNNI instruction sets. "Golden Cove" features a more lavish ISA that includes AVX-512 (select client-relevant instructions)."
Huh, interesting.
 
These PR piece's are getting stupid, if Intel are aiming they're next generation at against a part that's about to get a +25%(zen3+cache) performance boost near EOL and not even the competition they will face,(Zen4), I can't see the win they can.

For me it's got too damn many little cores, I mean who needs 16 small better than Skylake core's to run the backend and wants just 8 big cores for in focus gaming?!.

Surely 4/8 small OS cores and 16 Big cores is what I might have bought into not the vice versa version they're peddling.
 
not including AVX in a new processor lineup is something Intel never done before. Perhaps with Gelsinger at the helm, these are perhaps the changes we're seeing?
 
not including AVX in a new processor lineup is something Intel never done before. Perhaps with Gelsinger at the helm, these are perhaps the changes we're seeing?
Jim Keller is a corporate now - what else were we expecting? The guy is the systems engineer. He will definitely trim Intel's architecture until he can have what he wants: more power!
PS: I have full confidence in him turning the power grab away from the marketing team(Product Assurance HR). Where in the world does stupid HR people know better than the engineers?
 
Someone should tell'em that I have a 5950X in my chassis now, while Alder Lake is just a tiny timid promise of a possible future...
 
Well, if an Intel presentation says so it's probably safe to start getting excited about it...
 
not including AVX in a new processor lineup is something Intel never done before. Perhaps with Gelsinger at the helm, these are perhaps the changes we're seeing?
AVX-512 is not included. I understand AVX and AVX2 are still included in both core types
 
Take this with a grain of salt, wait for reviews.
 
Is a TPM in these CPU's enough for windows 11 hardware requirements or do you need to look for specific TPM motherboards as well?
 
Last edited:
Too bad it can't run half the code at all bc it lacks AVX. Oops.
With AVX512, intel's biggest 'invention'?

They removed AVX512 (hardware physically still there for use in Sapphire Rapids) from the P-cores, and gave the E-cores AVX. Although, not sure what they are saying when they claim "Haswell-level AVX support" with "Skylake-level AVX performance". Though to be honest I don't think the thermal/power/clock cost of AVX2 has changed that much since Haswell.

And apparently they migrated the only actually marketed component of 512 to AVX2 (VNNI). Seems like a big win, obvious AVX512 memeing aside due to Intel marketing, don't see how this is a bad thing.

That said, comparing Gracemont to Coffee Lake/Comet Lake seems a bit sus, yes it's going to be a big jump in efficiency for Intel but Skylake was only relevant for so long because it was pushed to 5-5.3GHz. Yeah Gracemont is nice and efficient, but it runs at what, 3.0GHz? Not sure how they're expected to make up the MT perf gap with AMD, push Golden Cove even harder with the power budget freed from Gracemont? :confused:
 
Last edited:
Catching up with core count when?!.

I can throw 32 core's in my age's old pc now and they're offering a revolutionary 24?!, FFS is they're PR team on crack.
Anyone can buy 128 thread CPU today too so yeh go Intel.

If I were AMD I'd just stack 8 arm core's on and work some driver magic and have any arm x86 app run on the most effective core type, have at apple and co while they're at it, those arm core's could run back end tat emulated.
 
If the gracemont cores are so amazingly efficient and perform this well why on earth does intel even bother with the "big" cores anyway? Just make the gracemont cores the main cores and give them more cache so they can keep up with AMD.
 
On that middle slide, it's a 4C/4T Gracemont against a 2C/4T Skylake. So 8 Gracemont cores is going to be like a 10-series i3?
 
My concern with all of these changes is that Windows is too much of a dinosaur to be able to make use of all this tech. But if this is the x86 processor of the future, I think i'm satisfied. Will be eagerly awaiting reviews!
 
Back
Top