https://en.wikipedia.org/wiki/Flash_memory
Another limitation is that flash memory has a finite number of program – erase cycles (typically written as P/E cycles). Most commercially available flash products are guaranteed to withstand around 100,000 P/E cycles before the wear begins to deteriorate the integrity of the storage.
[28] Micron Technology and
Sun Microsystems announced an SLC NAND flash memory chip rated for 1,000,000 P/E cycles on 17 December 2008.
[29]
The guaranteed cycle count may apply only to block zero (as is the case with
TSOP NAND devices), or to all blocks (as in NOR). This effect is mitigated in some chip firmware or file system drivers by counting the writes and dynamically remapping blocks in order to spread write operations between sectors; this technique is called
wear leveling. Another approach is to perform write verification and remapping to spare sectors in case of write failure, a technique called
bad block management (BBM). For portable consumer devices, these wearout management techniques typically extend the life of the flash memory beyond the life of the device itself, and some data loss may be acceptable in these applications. For high reliability data storage, however, it is not advisable to use flash memory that would have to go through a large number of programming cycles. This limitation is meaningless for 'read-only' applications such as
thin clients and
routers, which are programmed only once or at most a few times during their lifetimes.
In December 2012, Taiwanese engineers from Macronix revealed their intention to announce at the 2012 IEEE International Electron Devices Meeting that they had figured out how to improve NAND flash storage read/write cycles from 10,000 to 100 million cycles using a "self-healing" process that used a flash chip with "onboard heaters that could anneal small groups of memory cells."
[30] The built-in thermal annealing was to replace the usual erase cycle with a local high temperature process that not only erased the stored charge, but also repaired the electron-induced stress in the chip, giving write cycles of at least 100 million.
[31] The result was to be a chip that could be erased and rewritten over and over, even when it should theoretically break down. As promising as Macronix’s breakthrough might have been for the mobile industry, however, there were no plans for a commercial product to be released any time in the near future