• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.
  • The forums have been upgraded with support for dark mode. By default it will follow the setting on your system/browser. You may override it by scrolling to the end of the page and clicking the gears icon.

Researchers at the Rice University Create New Memory from Graphene

malware

New Member
Joined
Nov 7, 2004
Messages
5,422 (0.72/day)
Location
Bulgaria
Processor Intel Core 2 Quad Q6600 G0 VID: 1.2125
Motherboard GIGABYTE GA-P35-DS3P rev.2.0
Cooling Thermalright Ultra-120 eXtreme + Noctua NF-S12 Fan
Memory 4x1 GB PQI DDR2 PC2-6400
Video Card(s) Colorful iGame Radeon HD 4890 1 GB GDDR5
Storage 2x 500 GB Seagate Barracuda 7200.11 32 MB RAID0
Display(s) BenQ G2400W 24-inch WideScreen LCD
Case Cooler Master COSMOS RC-1000 (sold), Cooler Master HAF-932 (delivered)
Audio Device(s) Creative X-Fi XtremeMusic + Logitech Z-5500 Digital THX
Power Supply Chieftec CFT-1000G-DF 1kW
Software Laptop: Lenovo 3000 N200 C2DT2310/3GB/120GB/GF7300/15.4"/Razer
A team at Rice University has determined that a strip of graphite only 10 atoms thick can serve as the basic element in a new type of memory, making massive amounts of storage available for computers, handheld media players, cell phones and cameras. In new research available online in Nature Materials, Rice professor James Tour and postdoctoral researchers Yubao Li and Alexander Sinitskii describe a solid-state device that takes advantage of the conducting properties of graphene. Tour said such a device would have many advantages over today's state-of-the-art flash memory and other new technologies. Graphene memory would increase the amount of storage in a two-dimensional array by a factor of five, he said, as individual bits could be made smaller than 10 nanometers, compared to the 45-nanometer circuitry in today's flash memory chips. The new switches can be controlled by two terminals instead of three, as in current chips.




Two-terminal capability makes three-dimensional memory practical as graphene arrays can be stacked, multiplying a chip's capacity with every layer, said Tour, Rice's Chao Professor of Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

Being essentially a mechanical device, such chips will consume virtually no power while keeping data intact - much the same way today's e-book readers keep the image of a page visible even when the power is off.

What distinguishes graphene from other next-generation memories is the on-off power ratio - the amount of juice a circuit holds when it's on, as opposed to off. "It's huge - a million-to-one," said Tour. "Phase change memory, the other thing the industry is considering, runs at 10-to-1. That means the 'off' state holds, say, one-tenth the amount of electrical current than the 'on' state."

Current tends to leak from an "off" that's holding a charge. "That means in a 10-by-10 grid, 10 'offs' would leak enough to look like they were 'on.' With our method, it would take a million 'offs' in a line to look like 'on,''' he said. "So this is big. It allows us to make a much larger array."

While generating little heat itself, graphene memory seems impervious to a wide temperature range, having been tested from minus 75 to more than 200 degrees Celsius with no discernable effect, Tour said. That allows graphene memory to work in close proximity to hot processors. Better still, tests show it to be impervious to radiation, making it suitable for extreme environments.

Tour said the new switches are faster than his lab's current testing systems can measure. And they're robust. "We've tested it in the lab 20,000 times with no degradation," said Tour. "Its lifetime is going to be huge, much better than flash memory."

Best of all, the raw material is far from exotic. Graphene is a form of carbon. In a clump it's called graphite, which you spread on paper every time you use a pencil.

The technology has drawn serious interest from industry, said Tour, who's working on manufacturing techniques. He said it's possible to deposit a layer of graphene on silicon or another substrate by chemical vapor deposition. "Typically, graphene is very hard to think about fabricating commercially," he said, "but this can be done very easily by deposition. The same types of processes used right now can be used to grow this type of graphene in place."

The paper is available at http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2331.html

View at TechPowerUp Main Site
 
If this comes to success then we could have huge data storage with cheap prices.

Carbon Carbon every where Carbon..
 
I'll stick to magnetised platters, thank you. ;)
 
Seems like déjà vu to me, i'm certain I read a similar article using graphene a fortnight ago. :confused:
 
Graphene is a bit of an issue to me, however the overclocking possibilities are all over the place, I can see the scores now. The reason why this is a problem is that it is very hard to produce, so this could affect pricing if we don't find new ways.
 
Apparently with their chemical vapor deposition manufacturing technique is easy enough for them to implement and begin their mass production. I never liked SSD's due to their stupid lifetime. Graphene memory seems like the way to go. We will see how the rest of the DIMM world takes this.
 
There are so many crazy storage ideas "on the horizon" its about impossible to say what if any will work out, at least not anytime soon.
 
Back
Top