• Welcome to TechPowerUp Forums, Guest! Please check out our forum guidelines for info related to our community.

Taiwan Semiconductor Manufacturing Company (TSMC) Announces 40nm Volume Production

malware

New Member
Joined
Nov 7, 2004
Messages
5,422 (1.12/day)
Likes
954
Location
Bulgaria
Processor Intel Core 2 Quad Q6600 G0 VID: 1.2125
Motherboard GIGABYTE GA-P35-DS3P rev.2.0
Cooling Thermalright Ultra-120 eXtreme + Noctua NF-S12 Fan
Memory 4x1 GB PQI DDR2 PC2-6400
Video Card(s) Colorful iGame Radeon HD 4890 1 GB GDDR5
Storage 2x 500 GB Seagate Barracuda 7200.11 32 MB RAID0
Display(s) BenQ G2400W 24-inch WideScreen LCD
Case Cooler Master COSMOS RC-1000 (sold), Cooler Master HAF-932 (delivered)
Audio Device(s) Creative X-Fi XtremeMusic + Logitech Z-5500 Digital THX
Power Supply Chieftec CFT-1000G-DF 1kW
Software Laptop: Lenovo 3000 N200 C2DT2310/3GB/120GB/GF7300/15.4"/Razer
#1
Taiwan Semiconductor Manufacturing Company (TSMC) today announced volume production of the first semiconductor foundry 40nm logic manufacturing process with the successful ramp of its 40 nanometer (nm) General Purpose (G) and Low Power (LP) versions. Nanometers measure the width of metal lines in semiconductors. Forty nanometers is less than one-thousandth the width of a human hair.
The 40nm process is one of the semiconductor industry’s most advanced available for production manufacturing process and is expected to play a key role in the development of next generation products in global consumer electronics, mobile, and computer end markets.


“For decades, IDMs set the pace for innovation in process technology and services,” said Kay-Yang Tan, Gartner Dataquest principal research analyst, said. “They will continue to play a significant role in fostering new products, but dedicated foundries, such as TSMC, have become key contributors to next generation products that will drive the eventual resurgence of the worldwide semiconductor industry.”

According to Gartner, foundry contribution of chips sold to the global semiconductor market has over the past decade increased from 9.2% in 1998 to 25.3% in 2008.

“We view 40nm as an important process node for the cost-effective development of graphics chips and other devices, especially in 2009. This is another example of a long and successful history of AMD and TSMC ramping leading edge processes,” said Rick Bergman, Senior Vice-President & General Manager, Graphics Products Group.

“Today designers are faced with the challenge of increasing the functionality of their product while not increasing power consumption. By rolling out the industry’s most advanced programmable logic devices at 40-nm, we are enabling designers to quickly achieve new levels of integration and innovation, while staying within their power budgets,” said Bill Hata, Altera senior vice president of Worldwide Operations and Engineering.

TSMC’s 40nm G and the 40nm low power (LP) manufacturing processes timetables were formally announced in March this year. The 40G process targets performance-driven applications including computer processor chips, GPU (graphic processing units), game consoles, networking applications, field programmable gate arrays (FPGA), hard disc drive, and other devices. The 40LP process targets low-power applications including cellular baseband, application processors, portable consumer and wireless connectivity devices.

"High-performance GPUs are only continuing to grow in importance for a variety of industries," said Debora Shoquist, NVIDIA senior vice president of Operations. "The advantages that TSMC's 40nm G process provides to designing a GPU will allow us to continue pushing the limits of what's currently possible."

TSMC’s 40nmG and 40nm LP processes both passed process qualification, reaching “first wafers out” status as planned and completed product qualification in October when first customer wafers entered production. As with every TSMC process node, the 40G and 40LP processes offer a full range of mixed-signal and RF options, along with embedded memory to support a broad range of analogy/RF-intensive and memory-rich applications.

”While timed to respond to the technical requirements of our broad customer base, the two processes are clearly the right manufacturing processes at the right time and can help stimulate the semiconductor industry to produce the next wave of new products,” said Jason Chen, TSMC vice president, Worldwide Sales and Marketing.

Source: TSMC
 
Joined
Aug 30, 2006
Messages
6,377 (1.53/day)
Likes
984
System Name ICE-QUAD // ICE-CRUNCH
Processor Q6600 // 2x Xeon 5472
Memory 2GB DDR // 8GB FB-DIMM
Video Card(s) HD3850-AGP // FireGL 3400
Display(s) 2 x Samsung 204Ts = 3200x1200
Audio Device(s) Audigy 2
Software Windows Server 2003 R2 as a Workstation now migrated to W10 with regrets.
#2
40nm LP here we come... Great news.

I wonder if CPU's will migrate to 40nm first. The roadmap shows 45nm to 32nm but it seems that the physics are against us getting there so easily as we did 120nm to 90nm or 90nm to 65nm. 65nm to 45nm was, IIRC, more difficult and more expensive that any other fab migration. So it makes sense the "steps" are getting relatively smaller (even under log measurements).

GPU's on 40nm please. I want cool and quiet.
 

WarEagleAU

Bird of Prey
Joined
Jul 9, 2006
Messages
10,809 (2.56/day)
Likes
529
Location
Gurley, AL
System Name Boddha Getta Boddha Getta Bah!
Processor AMD FX 6100 @ 4.432Ghz @1.382
Motherboard ASUS M5A99X EVO AMD 990X AMD SB950
Cooling Custom Water. EK 240MM Kit, Supreme HSF - Runs 35C
Memory 2 x 4GB Corsair Vengeance White LP @ 1.35V
Video Card(s) XFX Radeon HD 6870 980/1100
Storage WD Caviar Black 1.0TB, WD Caviar Green 1.0TB, WD 160GB
Display(s) Asus VH222/S 22: (21.5" Viewable) 1920x1080p HDMI LCD Monitor
Case NZXT White Switch 810
Audio Device(s) Onboard Realtek 5.1
Power Supply NZXT Hale 90 Gold Cert 750W Modular PSU
Software Windows 8.1 Profession 64 Bit
#3
I assumed it was 45 to 30 to 32. However, TSMC fabs alot of cpu and gpu dies as well as other things.