News Posts matching #GPU

Return to Keyword Browsing

Intel Asks Xe-HPG Scavenger Hunt Winners to Accept a CPU In Lieu of Graphics Card

Remember that Xe-HPG Scavenger Hunt that Intel hosted last year? If you somehow missed it, Intel was maybe giving away some Arc graphics cards to 300 lucky winners. There were two different tiers of prizes, grand prize and first prize, which later ended up translating to an Arc A770 and an Arc A750 graphics card respectively. Now news via VideoCardz are suggesting that Intel is trying to get out of giving these 300 people their prize, well, at least the promised graphics card, in exchange for an Alder Lake CPU.

Intel has apparently sent out an email to the winners, asking them to accept an Intel Core i7-12700K if they were a grand prize winner or a Core i5-12600K if they were a first prize winner, instead of the promised graphics card. The winners have until Friday the 19th of August to decide if they want a CPU instead of a GPU, although Intel is apparently still allowing them to wait for a GPU, the company just doesn't say how long the wait will be. As the prize has to have a similar retail price, it's also possible to get a ballpark figure of the MSRP of Intel's supposedly upcoming Arc 700-series graphics cards. The Arc A770 should end up at around the $410 mark and the A750 around the $290 mark, as this is the ballpark MSRP for the CPU's that are being offered. It would be interesting to know how many people would be willing to do the trade, but sadly we're unlikely to ever find out.

Biren Technology Unveils BR100 7 nm HPC GPU with 77 Billion Transistors

Chinese company Biren Technology has recently unveiled the Biren BR100 HPC GPU during their Biren Explore Summit 2022 event. The Biren BR100 features an in-house chiplet architecture with 77 billion transistors and is manufactured on a 7 nm process using TSMC's 2.5D CoWoS packaging technology. The card is equipped with 300 MB of onboard cache alongside 64 GB of HBM2E memory running at 2.3 TFLOPs. This combination delivers performance above that of the NVIDIA Ampere A100 achieving 1024 TFLOPs in 16-bit floating point operations.

The company also announced the BR104 which features a monolithic design and should offer approximately half the performance of the BR100 at a TDP of 300 W. The Biren BR104 will be available as a standard PCIe card while the BR100 will come in the form of an OAM compatible board with a custom tower cooler. The pricing and availability information for these cards is currently unknown.

Fractal Design Expands Define 7 and Meshify 2 Case Lineup With Mini and Nano Models

Fractal Design have concentrated the essence of their Meshify 2 and Define 7 series to bring you four new cases - introducing a Mini and Nano form factor to each family. All four cases feature the same recognizable exterior design expressions as their larger siblings, while offering many of the quality-of-life features associated which each series. They also offer generous compatibility, accessibility, and flexibility, in space-conscious sizes - so you can develop your ideal Mini or Nano system.

The Meshify 2 Mini offers an excellent combination of airflow and flexibility, in a form-factor optimized for mATX. The bold yet refined exterior design, with its asymmetric angular mesh front, is complemented by a flush TG panel and a fully removable top. Its accessible and intuitive interior layout makes it easy and enjoyable to build a stylish, airflow-centric system.

Intel Arc Board Partners are Reportedly Stopping Production, Encountering Quality Issues

According to sources close to Igor Wallossek from Igor's lab, Intel's upcoming Arc Alchemist discrete graphics card lineup is in trouble. As the anonymous sources state, certain add-in board (AIB) partners are having difficulty adopting the third GPU manufacturer into their offerings. As we learn, AIBs are sitting on a pile of NVIDIA and AMD GPUs. This pile is decreasing in price daily and losing value, so it needs to be moved quickly. Secondly, Intel is reportedly suggesting AIBs ship cards to OEMs and system integrators to start the market spread of the new Arc dGPUs. This business model is inherently lower margin compared to selling GPUs directly to consumers.

Last but not least, it is reported that at least one major AIB is stopping the production of custom Arc GPUs due to quality concerns. What this means is yet to be uncovered, and we have to wait and see which AIB (or AIBs) is stepping out of the game. All of this suggests that the new GPU lineup is on the verge of extinction, even before it has launched. However, we are sure that the market will adapt and make a case for the third GPU maker. Of course, these predictions should be taken with a grain of salt, and we await more information to confirm those issues.

Intel Meteor Lake Reportedly Delayed Until End of 2023, Will Have Knock-On Effects for TSMC

Based on a report by TrendForce, Intel has yet again had to push back its upcoming Meteor Lake CPUs and it now appears that Intel will only be launching Meteor Lake towards the end of 2023. It's unclear why there has been yet another delay, but Intel is said to have cancelled most of its orders with TSMC for the 3 nm tGPU that Intel will have made at TSMC, for 2023. The knock-on effect of this, is that TSMC is said to be slowing down its production line expansion towards 3 nm, as the company is now unsure if it'll be able to fill its order books for all of 2023. TSMC's main customer for the 3 nm node is still going to be Apple, but with the loss of what is likely to be around six months worth of production from Intel, TSMC is said to be considering cutting its CapEx for 2023.

TSMC's other customers, such as AMD, MediaTek and Qualcomm aren't planning on moving to 3 nm until 2024, so unless there's a change in plans from either of these companies, or increased demand from Apple, TSMC is said to hit the brakes when it comes to starting up new, cutting edge production lines next year. TSMC is also likely to see reduced revenues during 2023 due to Intel's change of plans, although it's too early to make any assumptions. TrendForce also suggests that Intel might still use TSMC's 3 nm node as a backup plan, if Intel would fail to execute on moving to the Intel 4 process, but considering how complex it is to move a design between different foundry processes, this seems unlikely.

AMD Introduces Radeon Raytracing Analyzer 1.0

Today, the AMD GPUOpen announced that AMD developed a new tool for game developers using ray tracing technologies to help organize the model geometries in their scenes. Called Radeon Raytracing Analyzer (RRA) 1.0, it is officially available to download for Linux and Windows and released as a part of the Radeon Developer Tool Suite. With rendering geometries slowly switching from rasterization to ray tracing, developers need a tool that will point out performance issues and various workarounds in the process. With RRA, AMD has enabled all Radeon developers to own a tool that will answer many questions like: how much memory is the acceleration structure using, how complex is the implemented BVH, how many acceleration structures are used, does geometry in the BLAS axis align enough, etc. Developers will find it very appealing for their ray tracing workloads.
AMDRRA is able to work because our Radeon Software driver engineers have been hard at work, adding raytracing support to our Developer Driver technology. This means that once your application is running in developer mode - using the Radeon Developer Panel which ships with RRA - the driver can log all of the acceleration structures in a scene with a single button click. The Radeon Raytracing Analyzer tool can then load and interrogate the data generated by the driver, presenting it in an easy-to-understand way.

Supermicro Launches Multi-GPU Cloud Gaming Solutions Based on Intel Arctic Sound-M

Super Micro Computer, Inc., a global leader in enterprise computing, storage, networking, and green computing technology, is announcing future Total IT Solutions for availability with Android Cloud Gaming and Media Processing & Delivery. These new solutions will incorporate the Intel Data Center GPU, codenamed Arctic Sound-M, and will be supported on several Supermicro servers. Supermicro solutions that will contain the Intel Data Center GPUs codenamed Arctic Sound-M, include the 4U 10x GPU server for transcoding and media delivery, the Supermicro BigTwin system with up to eight Intel Data Center GPUs, codenamed Arctic Sound-M in 2U for media processing applications, the Supermicro CloudDC server for edge AI inferencing, and the Supermicro 2U 2-Node server with three Intel Data Center GPUs, codenamed Arctic Sound-M per node, optimized for cloud gaming. Additional systems will be made available later this year.

"Supermicro will extend our media processing solutions by incorporating the Intel Data Center GPU," said Charles Liang, President, and CEO, Supermicro. "The new solutions will increase video stream rates and enable lower latency Android cloud gaming. As a result, Android cloud gaming performance and interactivity will increase dramatically with the Supermicro BigTwin systems, while media delivery and transcoding will show dramatic improvements with the new Intel Data Center GPUs. The solutions will expand our market-leading accelerated computing offerings, including everything from Media Processing & Delivery to Collaboration, and HPC."

GIGABYTE Launches New G5/G7 Gaming Laptop

GIGABYTE TECHNOLOGY Co. Ltd, the global leading brand of PC, launches GIGABYTE Gaming G5/G7 gaming laptops equipped with 10nm Intel 12th Gen Processor today. A laptop to meet the wide range of needs in multitasking, gaming, and entertainment, with 12th Gen Intel Core i5-12500H laptop CPU, which is comprised of 12-core, 16 threads, and a maximum clock rate of 4.5GHz, to meet the needs for telecommuting and online classes, the purchase of high-performance laptops has been made easier with the adoption of Core i5-12500H, the Core i5 processor is powerful enough to effortlessly handle users' routines. Equipped with the graphics cards of NVIDIA GeForce RTX 30 Series, also introduces MUX switch graphics card switching technology, discrete GPU can be directly output to the display with just one click, which can easily improve the game performance and increase the frame rate in fierce game battles. For offering authentic gaming specifications and flexible expandability of hardware. The series can satisfy the user's needs for playing multiple roles in life.

Glenfly Details its Arise-GT10C0 Graphics Card

It's not only Intel that has been showing off new graphics cards recently, as Chinese company Glenfly has revealed more details about its Arise-GT10C0 graphics card. To be clear from the start, this is not a graphics card for gamers, but rather for the PRC government and its computers, as the nation is trying to become self-sufficient when it comes to computer hardware for its government agencies and other government backed organisations. The 28 nm GPU has a clock speed of a whopping 500 MHz and delivers 1.5 TFLOPs of FP32 performance, which places it firmly in yesteryear's performance category. Glenfly claims support for up to 4K resolution, althought this is most likely only for desktop use.

The GPU is paired with 2 or 4 GB of DDR4 memory with a clock speed of 1200 MHz, using either a 64 or a 128 bit memory interface. The actual cards have a PCIe 3.0 x8 interface and have support for unspecified HDMI and DP interfaces, as well as D-Sub VGA ports. Driver support includes DirectX 11, OpenGL 4.5 and OpenCL 1.2. The GPU is also said to have hardware offload support for HEVC and H.264 hardware encoding, as well as decoding for both formats, plus most other common video formats, although, oddly enough, support for AVS, which is China's homebrewed video codec, is missing. OS support includes various Chinese flavours of Linux, Ubuntu and Windows according to Glenfly and outside of the x86 processor world, MIPS and arm based processors are said be supported.

GPU Prices Continue Falling in China with Prices 20% Below MSRP

Graphics card prices continue to fall in China with NVIDIA & AMD holding excessive stock of RTX 3000/RX 6000 cards without enough consumers interested in buying them. The companies have resisted pressure to lower the official MSRP of these cards with most retailers now offering discounts of between 5% and 30%. The largest drops are with flagship cards such as the NVIDIA RTX 3090 Ti which is now available for 9499 RMB (1415 USD) which is 38% below MSRP while the AMD Radeon RX 6900 XT is 4999 RMB (744 USD) a 37.5% reduction. The prices for all graphics cards are now below MSRP with drops amounting to 20% on average for NVIDIA and 19% for AMD.

NVIDIA PrefixRL Model Designs 25% Smaller Circuits, Making GPUs More Efficient

When designing integrated circuits, engineers aim to produce an efficient design that is easier to manufacture. If they manage to keep the circuit size down, the economics of manufacturing that circuit is also going down. NVIDIA has posted on its technical blog a technique where the company uses an artificial intelligence model called PrefixRL. Using deep reinforcement learning, NVIDIA uses the PrefixRL model to outperform traditional EDA (Electronics Design Automation) tools from major vendors such as Cadence, Synopsys, or Siemens/Mentor. EDA vendors usually implement their in-house AI solution to silicon placement and routing (PnR); however, NVIDIA's PrefixRL solution seems to be doing wonders in the company's workflow.

Creating a deep reinforcement learning model that aims to keep the latency the same as the EDA PnR attempt while achieving a smaller die area is the goal of PrefixRL. According to the technical blog, the latest Hopper H100 GPU architecture uses 13,000 instances of arithmetic circuits that the PrefixRL AI model designed. NVIDIA produced a model that outputs a 25% smaller circuit than comparable EDA output. This is all while achieving similar or better latency. Below, you can compare a 64-bit adder design made by PrefixRL and the same design made by an industry-leading EDA tool.

NVIDIA GeForce RTX 40 Series Could Be Delayed Due to Flood of Used RTX 30 Series GPUs

NVIDIA's next generation of graphics cards, codenamed RTX 40 series, Ada Lovelace, is expected to arrive sometime in October. However, the latest information from the YouTube channel "Moore's Law Is Dead" suggests that NVIDIA could postpone the arrival of the new GPU generation to December. Why, you might be wondering? The report claims that the current GPU market is flooded with used GeForce RTX 30 series GPUs. Thus, NVIDIA could postpone the availability of the latest GPUs to keep the demand high and ensure that the market is searching for additional graphics cards.

Retailers are experiencing smaller demand as the used GPU market is full of devices used for cryptocurrency mining, and the recent crypto crash has helped the situation. What we could see is NVIDIA announcing Ada Lovelace GPUs in October, with availability arriving later in December. Of course, these are just the current industry rumors, and we are yet to see how the market and NVIDIA will respond.

Semiconductor Fab Order Cancellations Expected to Result in Reduced Capacity Utilization Rate in 2H22

According to TrendForce investigations, foundries have seen a wave of order cancellations with the first of these revisions originating from large-size Driver IC and TDDI, which rely on mainstream 0.1X μm and 55 nm processes, respectively. Although products such as MCU and PMIC were previously in short supply, foundries' capacity utilization rate remained roughly at full capacity through their adjustment of product mix. However, a recent wave cancellations have emerged for PMIC, CIS, and certain MCU and SoC orders. Although still dominated by consumer applications, foundries are beginning to feel the strain of the copious order cancellations from customers and capacity utilization rate has officially declined.

Looking at trends in 2H22, TrendForce indicates, in addition to no relief from the sustained downgrade of driver IC demand, inventory adjustment has begun for smartphones, PCs, and TV-related peripheral components such as SoCs, CIS, and PMICs, and companies are beginning to curtail their wafer input plans with foundries. This phenomenon of order cancellations is occurring simultaneously in 8-inch and 12-inch fabs at nodes including 0.1X μm, 90/55 nm, and 40/28 nm. Not even the advanced 7/6 nm processes are immune.

Intel Raptor Lake-S CPU-attached NVMe Storage Remains on PCIe Gen4

Intel is preparing to launch its next-generation desktop platform codenamed Rocket Lake-S. According to the presentation held by Intel today in Shenzen, China, we have official information regarding some of the platform features that Raptor Lake is bringing. Starting with memory support, Raptor Lake is still carrying the transitional DDR4 and DDR5 support, as the full swing towards DDR5 is still in progress. Unlike the previous generation Alder Lake, which brought DDR5-4800 support, Raptor Lake's integrated memory controller can drive DDR5 modules with a 5600 MT/s configuration. As DDR4 support remains, it is limited to 3200 MT/s speed.

Interesting information from the leaked slide points out that support for CPU-attached NVMe storage remains PCIe Gen4. While AMD will provide an AM5 socket with CPU-attached NMVe storage on PCIe Gen5 protocol, Intel is taking a step back and holding on to Gen4. The CPU is outputting 16 PCIe Gen5 lanes on its own. Motherboard vendors for the upcoming 700-series boards for Raptor Lake can still provide a PCIe Gen5 NVMe slot; however, it will have to subtract eight Gen5 lanes from the PCI Express Graphics (PEG) slot and route them to NVMe storage. As our testing shows, this will affect GPU's performance by a few percent. AMD's upcoming AM5 platform has no such issues, as the CPU provides both the PEG and CPU-attached NVMe storage with sufficient PCIe Gen5 bandwidth.

AMD WMMA Instruction is Direct Response to NVIDIA Tensor Cores

AMD's RDNA3 graphics IP is just around the corner, and we are hearing more information about the upcoming architecture. Historically, as GPUs advance, it is not unusual for companies to add dedicated hardware blocks to accelerate a specific task. Today, AMD engineers have updated the backend of the LLVM compiler to include a new instruction called Wave Matrix Multiply-Accumulate (WMMA). This instruction will be present on GFX11, which is the RDNA3 GPU architecture. With WMMA, AMD will offer support for processing 16x16x16 size tensors in FP16 and BF16 precision formats. With these instructions, AMD is adding new arrangements to support the processing of matrix multiply-accumulate operations. This is closely mimicking the work NVIDIA is doing with Tensor Cores.

AMD ROCm 5.2 API update lists the use case for this type of instruction, which you can see below:
rocWMMA provides a C++ API to facilitate breaking down matrix multiply accumulate problems into fragments and using them in block-wise operations that are distributed in parallel across GPU wavefronts. The API is a header library of GPU device code, meaning matrix core acceleration may be compiled directly into your kernel device code. This can benefit from compiler optimization in the generation of kernel assembly and does not incur additional overhead costs of linking to external runtime libraries or having to launch separate kernels.

rocWMMA is released as a header library and includes test and sample projects to validate and illustrate example usages of the C++ API. GEMM matrix multiplication is used as primary validation given the heavy precedent for the library. However, the usage portfolio is growing significantly and demonstrates different ways rocWMMA may be consumed.

Arm Announces the Cortex-X3, Cortex-A715 CPU Cores and Immortalis-G715 GPU

This time last year, I wrote about how digital experiences had never been more important, from personal to business devices - they helped us stay connected and entertained at a time when we needed it most. Compute continues to define our experiences in the modern world, and now these experiences are becoming even more visual.

Smartphones are at the center of our connected lives. From gaming to productivity, through video calling, social media or virtual environments, it is the device that provides us the connection to everyone and everything, in real time. For developers, making these immersive real-time 3D experiences even more compelling and engaging requires more performance. Arm sets the standard for performance and efficient compute, and our latest suite of compute solutions for consumer devices will continue to raise the threshold of what's possible in the mobile market, shaping the visual experiences of tomorrow.

AMD Ryzen 7000 Series Dragon Range and Phoenix Mobile Processor Specifications Leak

AMD is preparing to update its mobile sector with the latest IP in the form of Zen4 CPU cores and RDNA3 graphics. According to Red Gaming Tech, we have specifications of upcoming processor families. First, we have AMD Dragon Range mobile processors representing a downsized Raphael design for laptops. Carrying Zen4 CPU cores and RDNA2 integrated graphics, these processors are meant to power high-performance laptops with up to 16 cores and 32 threads. Being a direct competitor to Intel's Alder Lake-HX, these processors also carry an interesting naming convention. The available SKUs include AMD Ryzen 5 7600HX, Ryzen 7 7800HX, Ryzen 9 7900HX, and Ryzen 9 7980HX design with a massive 16-core configuration. These CPUs are envisioned to run along with more powerful dedicated graphics, with clock speeds of 4.8-5.0+ GHz.

Next, we have AMD Phoenix processors, which take Dragon Range's design to a higher level thanks to the newer graphics IP. Having Zen4 cores, Phoenix processors carry upgraded RDNA3 graphics chips to provide a performance level similar to NVIDIA's GeForce RTX 3060 Max-Q SKU, all in one package. These APUs will come in four initial configurations: Ryzen 5 7600HS, Ryzen 7 7800HS, Ryzen 9 7900HS, and Ryzen 9 7980HS. While maxing out at eight cores, these APUs will compensate with additional GPU compute units with a modular chiplet design. AMD Phoenix is set to become AMD's first chiplet design launching for the laptop market, and we can expect more details as we approach the launch date.

Intel Arc A370M Graphics Card Tested in Various Graphics Rendering Scenarios

Intel's Arc Alchemist graphics cards launched in laptop/mobile space, and everyone is wondering just how well the first generation of discrete graphics performs in actual, GPU-accelerated workloads. Tellusim Technologies, a software company located in San Diego, has managed to get ahold of a laptop featuring an Intel Arc A370M mobile graphics card and benchmark it against other competing solutions. Instead of using Vulkan API, the team decided to use D3D12 API for tests, as the Vulkan usually produces lower results on the new 12th generation graphics. With the 30.0.101.1736 driver version, this GPU was mainly tested in the standard GPU working environment like triangles and batches. Meshlet size is set to 69/169, and the job is as big as 262K Meshlets. The total amount of geometry is 20 million vertices and 40 million triangles per frame.

Using the tests such as Single DIP (drawing 81 instances with u32 indices without going to Meshlet level), Mesh Indexing (Mesh Shader emulation), MDI/ICB (Multi-Draw Indirect or Indirect Command Buffer), Mesh Shader (Mesh Shaders rendering mode) and Compute Shader (Compute Shader rasterization), the Arc GPU produced some exciting numbers, measured in millions or billions of triangles. Below, you can see the results of these tests.

AMD GPU Prices Fall Below MSRP in Europe, NVIDIA GPUs Approach the Baseline

Graphics card prices have been on a steady decline in the past few months, following their peak in May of last year when we saw double and triple pricing compared to the baseline MSRP value. According to the 3DCenter.org report, which tracks graphics card prices in Germany and Austria, we have information that AMD GPU prices have dipped below MSRP, while NVIDIA GPUs are very close to baseline listed prices. The report tracks Ethereum mining profitability and displays it in the yellow line. As the line is declining, so are the GPU prices. For AMD, the prices are now 8% below the 100% of MSRP. At 92%, consumers can find AMD GPUs at a slight discount. While AMD cards are slightly cheaper, NVIDIA GPUs are now at 102% of the MSRP, the lowest price point since the launch.

NVIDIA RTX 40 Series Could Reach 800 Watts on Desktop, 175 Watt for Mobile/Laptop

Rumors of NVIDIA's upcoming Ada Lovelace graphics cards keep appearing. With every new update, it seems like the total power consumption is getting bigger, and today we are getting information about different SKUs, including mobile and desktop variants. According to a well-known leaker, kopite7kimi, we have information about the power limits of the upcoming GPUs. The new RTX 40 series GPUs will feature a few initial SKUs: AD102, AD103, AD104, and AD106. Every SKU, except the top AD102, will be available as well. The first in line, AD102, is the most power-hungry SKU with a maximum power limit rating of 800 Watts. This will require multiple power connectors and a very beefy cooling solution to keep it running.

Going down the stack, we have an AD103 SKU limited to 450 Watts on desktop and 175 Watts on mobile. The AD104 chip is limited to 400 Watts on desktop, while the mobile version is still 175 Watts. Additionally, the AD106 SKU is limited to 260 Watts on desktop and 140 Watts on mobile.

Apple M2 CPU & GPU Benchmarks Surface on Geekbench

The recently announced Apple M2 processor which is set to feature in the new MacBook Air and 13-inch MacBook Pro models has been benchmarked. The processor appeared in numerous Geekbench 5 CPU & GPU tests where the chip scored a maximum single-core result of 1919 points and 8928 points in multi-core representing an 11% and 18% CPU performance improvement respectively from the M1. The chip brings significant GPU performance increases achieving a Geekbench Metal score of 30627 points which is a ~42% increase from the M1 partially due to a larger 10-core GPU compared to the 8-core GPU on the M1. These initial numbers largely align with claims from Apple of an 18% CPU and 35% GPU improvement over the original M1.

AMD Plans Late-October or Early-November Debut of RDNA3 with Radeon RX 7000 Series

AMD is planning to debut its next-generation RDNA3 graphics architecture with the Radeon RX 7000 series desktop graphics cards, some time in late-October or early-November, 2022. This, according to Greymon55, a reliable source with AMD and NVIDIA leaks. We had known about a late-2022 debut for AMD's next-gen graphics, but now we have a finer timeline.

AMD claims that RDNA3 will repeat the feat of over 50 percent generational performance/Watt gains that RDNA2 had over RDNA. The next-generation GPUs will be built on the TSMC N5 (5 nm EUV) silicon fabrication process, and debut a multi-chip module design similar to AMD's processors. The logic dies with the GPU's SIMD components will be built on the most advanced node, while the I/O and display/media accelerators will be located in separate dies that can make do on a slightly older node.

Intel Arc Alchemist GPUs Get Vulkan 1.3 Compatibility

A part of the process of building a graphics card is designing compatibility to execute the latest graphics APIs like DirectX, OpenGL, and Vulkan. Today, we have confirmation that Intel's Arc Alchemist discrete graphics cards will be compatible with Vulkan's latest iteration - version 1.3. In January, Khronos, the team behind Vulkan API, released their regular two-year update to the standard. Graphics card vendors like NVIDIA and AMD announced support immediately with their drivers. Today, the Khronos website officially lists Intel Arc Alchemist mobile graphics cards as compatible with Vulkan 1.3 with Intel Arc A770M, A730M, A550M, A370M, and A350M GPUs.

At the time of writing, there is no official announcement for the desktop cards yet. However, given that the mobile SKUs are supporting the latest standard, it is extremely likely that the desktop variants will also carry the same level of support.

AMD Said to Become TSMC's Third Largest Customer in 2023

Based on a report in the Taiwanese media, AMD is quickly becoming a key customer for TSMC and is expected to become its third largest customer in 2023. This is partially due to new orders that AMD has placed with TSMC for its 5 nm node. AMD is said to become TSMC's single largest customer for its 5 nm node in 2023, although it's not clear from the report how large of a share of the 5 nm node AMD will have.

The additional orders are said to be related to AMD's Zen 4 based processors, as well as its upcoming RDNA3 based GPUs. AMD is expected to be reaching a production volume of some 20,000 wafers in the fourth quarter of 2022, although there's no mention of what's expected in 2023. Considering most of AMD's products for the next year or two will all be based on TSMC's 5 nm node, this shouldn't come as a huge surprise though, as AMD has a wide range of new CPU and GPU products coming.

Jon Peddie Research: Q1 of 2022 Saw a Decline in GPU Shipments Quarter-to-Quarter

Jon Peddie Research reports that the global PC-based graphics processor units (GPU) market reached 96 million units in Q1'22 and PC GPUs shipments decreased 6.2% due to disturbances in China, Ukraine, and the pullback from the lockdown elsewhere. However, the fundamentals of the GPU and PC market are solid over the long term, JPR predicts GPUs will have a compound annual growth rate of 6.3% during 2022-2026 and reach an installed base of 3.3 million units at the end of the forecast period. Over the next five years, the penetration of discrete GPUs (dGPU) in the PC market will grow to reach a level of 46%.

AMD's overall market share percentage from last quarter increased 0.7%, Intel's market share decreased by -2.4%, and Nvidia's market share increased 1.69%, as indicated in the following chart.
Return to Keyword Browsing
May 1st, 2024 08:43 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts