News Posts matching #SiFive

Return to Keyword Browsing

SiFive To Introduce New RISC-V Processor Architecture and RISC-V PC at Linley Fall Virtual Processor Conference

SiFive, Inc., the leading provider of commercial RISC-V processor IP and silicon solutions, today announced that Dr. Yunsup Lee, CTO of SiFive, and Dr. Krste Asanovic, Chief Architect of SiFive, will present at the technology industry's premier processor conference, the Linley Fall Virtual Processor Conference. The conference will be held on October 20th - 22nd and 27th - 29th, 2020 and will feature high-quality technical content from leading semiconductor companies worldwide.

"Industry demand for AI performance has skyrocketed over the last few years driven by rapid adoption from the data center to the edge. This year's Linley Fall Processor Conference will feature our biggest program yet and will introduce a host of new technology disclosures and product announcements of innovative processor architectures and IP technologies," said Linley Gwennap, principal analyst and conference chairperson. "In spite of the challenges posed by the pandemic, development of these technologies continues to accelerate and we're excited to be sharing these presentations with a global audience via our live-streamed format."

SiFive Secures $61 Million in Series E Funding Led by SK Hynix

SiFive, Inc., the leading provider of commercial RISC-V processor IP and silicon solutions, today announced it raised $61 million in a Series E round led by SK hynix, joined by new investor Prosperity7 Ventures, with additional funding from existing investors, Sutter Hill Ventures, Western Digital Capital, Qualcomm Ventures, Intel Capital, Osage University Partners, and Spark Capital.

"Global demand for storage and memory in the data center is increasing as AI-powered business intelligence and data processing growth continues", said Youjong Kang, VP of Growth Strategy, SK hynix. "SiFive is well-positioned to grow with opportunities created from data center, enterprise, storage and networking requirements for workload-focused processor IP."

GLOBALFOUNDRIES and SiFive to Deliver Next Level of High Bandwidth Memory on 12LP

GLOBALFOUNDRIES (GF ) and SiFive, Inc. announced today at GLOBALFOUNDRIES Technology Conference (GTC) in Taiwan that they are working to extend high DRAM performance levels with High Bandwidth Memory (HBM2E) on GF's recently announced 12LP+ FinFET solution, with 2.5D packaging design services to enable fast time-to-market for Artificial Intelligence (AI) applications.

In order to achieve the capacity and bandwidth for data-intensive AI training applications, system designers are challenged with squeezing more bandwidth into a smaller area while maintaining a reasonable power profile. SiFive's customizable high bandwidth memory interface on GF's 12LP platform and 12LP+ solution will enable easy integration of high bandwidth memory into a single System-on-Chip (SoC) solutions to deliver fast, power-efficient data processing for AI applications in the computing and wired infrastructure markets.

Startup SiFive Wants to Enable a New Era of Custom Chip Design, Production

You may never have heard of SiFive before -and that's perfectly understandable. The startup has just been brought from the ground-up following a round of funding, which netted it some $50.6 million dollars in the old, pre-ICO-preferred ways for funding: venture capital. The objective: to offer other startup companies a way to bring their idealized silicon into actual, custom silicon based on the RISC-V architecture, and then work with them towards achieving actual large-scale production.

The company will have available for customers options of IP and pre-baked designs which they can mix and match according to their needs, alongside small-scale production capability for companies to have their actual product - and test it in real-world conditions - before entering large-scale production. This move by SiFive aims to enable a larger variety of task-specific processor designs, ushering in a new, more liberal area of chip design and production.
Return to Keyword Browsing