News Posts matching #HBM

Return to Keyword Browsing

Supermicro Expands AI Solutions with the Upcoming NVIDIA HGX H200 and MGX Grace Hopper Platforms Featuring HBM3e Memory

Supermicro, Inc., a Total IT Solution Provider for AI, Cloud, Storage, and 5G/Edge, is expanding its AI reach with the upcoming support for the new NVIDIA HGX H200 built with H200 Tensor Core GPUs. Supermicro's industry leading AI platforms, including 8U and 4U Universal GPU Systems, are drop-in ready for the HGX H200 8-GPU, 4-GPU, and with nearly 2x capacity and 1.4x higher bandwidth HBM3e memory compared to the NVIDIA H100 Tensor Core GPU. In addition, the broadest portfolio of Supermicro NVIDIA MGX systems supports the upcoming NVIDIA Grace Hopper Superchip with HBM3e memory. With unprecedented performance, scalability, and reliability, Supermicro's rack scale AI solutions accelerate the performance of computationally intensive generative AI, large language Model (LLM) training, and HPC applications while meeting the evolving demands of growing model sizes. Using the building block architecture, Supermicro can quickly bring new technology to market, enabling customers to become more productive sooner.

Supermicro is also introducing the industry's highest density server with NVIDIA HGX H100 8-GPUs systems in a liquid cooled 4U system, utilizing the latest Supermicro liquid cooling solution. The industry's most compact high performance GPU server enables data center operators to reduce footprints and energy costs while offering the highest performance AI training capacity available in a single rack. With the highest density GPU systems, organizations can reduce their TCO by leveraging cutting-edge liquid cooling solutions.

Rambus Boosts AI Performance with 9.6 Gbps HBM3 Memory Controller IP

Rambus Inc., a premier chip and silicon IP provider making data faster and safer, today announced that the Rambus HBM3 Memory Controller IP now delivers up to 9.6 Gigabits per second (Gbps) performance supporting the continued evolution of the HBM3 standard. With a 50% increase over the HBM3 Gen 1 data rate of 6.4 Gbps, the Rambus HBM3 Memory Controller can enable a total memory throughput of over 1.2 Terabytes per second (TB/s) for training of recommender systems, generative AI and other demanding data center workloads.

"HBM3 is the memory of choice for AI/ML training, with large language models requiring the constant advancement of high-performance memory technologies," said Neeraj Paliwal, general manager of Silicon IP at Rambus. "Thanks to Rambus innovation and engineering excellence, we're delivering the industry's leading-edge performance of 9.6 Gbps in our HBM3 Memory Controller IP."

SK hynix Reports Third Quarter 2023 Financial Results

SK hynix Inc., today reported the financial results for the third quarter ended September 30, 2023. The company recorded revenues of 9.066 trillion won, operating losses of 1.792 trillion won and net losses of 2.185 trillion won in the three-month period. The operating and net margins were a negative 20% and 24%, respectively. After bottoming out in the first quarter, the business has been on a steady recovery track, helped by growing demand for products such as high-performance memory chips, the company said.

"Revenues grew 24%, while operating losses narrowed 38%, compared with the previous quarter, thanks to strong demand for high-performance mobile flagship products and HBM3, a key product for AI applications, and high-capacity DDR5," the company said, adding that a turnaround of the DRAM business following two quarters of losses is particularly hopeful. SK hynix attributed the growth in sales to increased shipments of both DRAM and NAND and a rise in the average selling price.

Samsung Electronics Holds Memory Tech Day 2023 Unveiling New Innovations To Lead the Hyperscale AI Era

Samsung Electronics Co., Ltd., a world leader in advanced memory technology, today held its annual Memory Tech Day, showcasing industry-first innovations and new memory products to accelerate technological advancements across future applications—including the cloud, edge devices and automotive vehicles.

Attended by about 600 customers, partners and industry experts, the event served as a platform for Samsung executives to expand on the company's vision for "Memory Reimagined," covering long-term plans to continue its memory technology leadership, outlook on market trends and sustainability goals. The company also presented new product innovations such as the HBM3E Shinebolt, LPDDR5X CAMM2 and Detachable AutoSSD.

SK hynix Displays Next-Gen Solutions Set to Unlock AI and More at OCP Global Summit 2023

SK hynix showcased its next-generation memory semiconductor technologies and solutions at the OCP Global Summit 2023 held in San Jose, California from October 17-19. The OCP Global Summit is an annual event hosted by the world's largest data center technology community, the Open Compute Project (OCP), where industry experts gather to share various technologies and visions. This year, SK hynix and its subsidiary Solidigm showcased advanced semiconductor memory products that will lead the AI era under the slogan "United Through Technology".

SK hynix presented a broad range of its solutions at the summit, including its leading HBM(HBM3/3E), CXL, and AiM products for generative AI. The company also unveiled some of the latest additions to its product portfolio including its DDR5 RDIMM, MCR DIMM, enterprise SSD (eSSD), and LPDDR CAMM devices. Visitors to the HBM exhibit could see HBM3, which is utilized in NVIDIA's H100, a high-performance GPU for AI, and also check out the next-generation HBM3E. Due to their low-power consumption and ultra-high-performance, these HBM solutions are more eco-friendly and are particularly suitable for power-hungry AI server systems.

Samsung Notes: HBM4 Memory is Coming in 2025 with New Assembly and Bonding Technology

According to the editorial blog post published on the Samsung blog by SangJoon Hwang, Executive Vice President and Head of the DRAM Product & Technology Team at Samsung Electronics, we have information that High-Bandwidth Memory 4 (HBM4) is coming in 2025. In the recent timeline of HBM development, we saw the first appearance of HBM memory in 2015 with the AMD Radeon R9 Fury X. The second-generation HBM2 appeared with NVIDIA Tesla P100 in 2016, and the third-generation HBM3 saw the light of the day with NVIDIA Hopper GH100 GPU in 2022. Currently, Samsung has developed 9.8 Gbps HBM3E memory, which will start sampling to customers soon.

However, Samsung is more ambitious with development timelines this time, and the company expects to announce HBM4 in 2025, possibly with commercial products in the same calendar year. Interestingly, the HBM4 memory will have some technology optimized for high thermal properties, such as non-conductive film (NCF) assembly and hybrid copper bonding (HCB). The NCF is a polymer layer that enhances the stability of micro bumps and TSVs in the chip, so memory solder bump dies are protected from shock. Hybrid copper bonding is an advanced semiconductor packaging method that creates direct copper-to-copper connections between semiconductor components, enabling high-density, 3D-like packaging. It offers high I/O density, enhanced bandwidth, and improved power efficiency. It uses a copper layer as a conductor and oxide insulator instead of regular micro bumps to increase the connection density needed for HBM-like structures.

Avicena Demonstrates First microLED Based Transceiver IC in 16 nm finFET CMOS for Chip-to-Chip Communications

Avicena, a privately held company headquartered in Sunnyvale, CA, is demonstrating its LightBundle multi-Tbps chip-to-chip interconnect technology at the European Conference for Optical Communications (ECOC) 2023 in Glasgow, Scotland (https://www.ecocexhibition.com/). Avicena's microLED-based LightBundle architecture breaks new ground by unlocking the performance of processors, memory and sensors, removing key bandwidth and proximity constraints while simultaneously offering class leading energy efficiency.

"As generative AI continues to evolve, the role of high bandwidth-density, low-power and low latency interconnects between xPUs and HBM modules cannot be overstated", says Chris Pfistner, VP Sales & Marketing of Avicena. "Avicena's innovative LightBundle interconnects have the potential to fundamentally change the way processors connect to each other and to memory because their inherent parallelism is well-matched to the internal wide and slow bus architecture within ICs. With a roadmap to multi-terabit per second capacity and sub-pJ/bit efficiency these interconnects are poised to enable the next era of AI innovation, paving the way for even more capable models and a wide range of AI applications that will shape the future."

TSMC Announces Breakthrough Set to Redefine the Future of 3D IC

TSMC today announced the new 3Dblox 2.0 open standard and major achievements of its Open Innovation Platform (OIP) 3DFabric Alliance at the TSMC 2023 OIP Ecosystem Forum. The 3Dblox 2.0 features early 3D IC design capability that aims to significantly boost design efficiency, while the 3DFabric Alliance continues to drive memory, substrate, testing, manufacturing, and packaging integration. TSMC continues to push the envelope of 3D IC innovation, making its comprehensive 3D silicon stacking and advanced packaging technologies more accessible to every customer.

"As the industry shifted toward embracing 3D IC and system-level innovation, the need for industry-wide collaboration has become even more essential than it was when we launched OIP 15 years ago," said Dr. L.C. Lu, TSMC fellow and vice president of Design and Technology Platform. "As our sustained collaboration with OIP ecosystem partners continues to flourish, we're enabling customers to harness TSMC's leading process and 3DFabric technologies to reach an entirely new level of performance and power efficiency for the next-generation artificial intelligence (AI), high-performance computing (HPC), and mobile applications."

Synopsys and TSMC Streamline Multi-Die System Complexity with Unified Exploration-to-Signoff Platform and Proven UCIe IP on TSMC N3E Process

Synopsys, Inc. today announced it is extending its collaboration with TSMC to advance multi-die system designs with a comprehensive solution supporting the latest 3Dblox 2.0 standard and TSMC's 3DFabric technologies. The Synopsys Multi-Die System solution includes 3DIC Compiler, a unified exploration-to-signoff platform that delivers the highest levels of design efficiency for capacity and performance. In addition, Synopsys has achieved first-pass silicon success of its Universal Chiplet Interconnect Express (UCIe) IP on TSMC's leading N3E process for seamless die-to-die connectivity.

"TSMC has been working closely with Synopsys to deliver differentiated solutions that address designers' most complex challenges from early architecture to manufacturing," said Dan Kochpatcharin, head of the Design Infrastructure Management Division at TSMC. "Our long history of collaboration with Synopsys benefits our mutual customers with optimized solutions for performance and power efficiency to help them address multi-die system design requirements for high-performance computing, data center, and automotive applications."

Q2 DRAM Industry Revenue Rebounds with a 20.4% Quarterly Increase, Q3 Operating Profit Margin Expected to Turn from Loss to Gains

TrendForce reports that rising demand for AI servers has driven growth in HBM shipments. Combined with the wave of inventory buildup for DDR5 on the client side, the second quarter saw all three major DRAM suppliers experience shipment growth. Q2 revenue for the DRAM industry reached approximately US$11.43 billion, marking a 20.4% QoQ increase and halting a decline that persisted for three consecutive quarters. Among suppliers, SK hynix saw a significant quarterly growth of over 35% in shipments. The company's shipments of DDR5 and HBM, both of which have higher ASP, increased significantly. As a result, SK hynix's ASP grew counter-cyclically by 7-9%, driving its Q2 revenue to increase by nearly 50%. With revenue reaching US$3.44 billion, SK hynix claimed the second spot in the industry, leading growth in the sector.

Samsung, with its DDR5 process still at 1Ynm and limited shipments in the second quarter, experienced a drop in its ASP by around 7-9%. However, benefitting from inventory buildup by module houses and increased demand for AI server setups, Samsung saw a slight increase in shipments. This led to an 8.6% QoQ increase in Q2 revenue, reaching US$4.53 billion, securing them the top position. Micron, ranking third, was a bit late in HBM development. However, DDR5 shipments held a significant proportion, keeping their ASP relatively stable. Boosted by shipments, its revenue was around US$2.95 billion, a quarterly increase of 15.7%. Both companies saw a reduction in their market share.

Strong Cloud AI Server Demand Propels NVIDIA's FY2Q24 Data Center Business to Surpass 76% for the First Time

NVIDIA's latest financial report for FY2Q24 reveals that its data center business reached US$10.32 billion—a QoQ growth of 141% and YoY increase of 171%. The company remains optimistic about its future growth. TrendForce believes that the primary driver behind NVIDIA's robust revenue growth stems from its data center's AI server-related solutions. Key products include AI-accelerated GPUs and AI server HGX reference architecture, which serve as the foundational AI infrastructure for large data centers.

TrendForce further anticipates that NVIDIA will integrate its software and hardware resources. Utilizing a refined approach, NVIDIA will align its high-end, mid-tier, and entry-level GPU AI accelerator chips with various ODMs and OEMs, establishing a collaborative system certification model. Beyond accelerating the deployment of CSP cloud AI server infrastructures, NVIDIA is also partnering with entities like VMware on solutions including the Private AI Foundation. This strategy extends NVIDIA's reach into the edge enterprise AI server market, underpinning steady growth in its data center business for the next two years.

Suppliers Amp Up Production, HBM Bit Supply Projected to Soar by 105% in 2024

TrendForce highlights in its latest report that memory suppliers are boosting their production capacity in response to escalating orders from NVIDIA and CSPs for their in-house designed chips. These efforts include the expansion of TSV production lines to increase HBM output. Forecasts based on current production plans from suppliers indicate a remarkable 105% annual increase in HBM bit supply by 2024. However, due to the time required for TSV expansion, which encompasses equipment delivery and testing (9 to 12 months), the majority of HBM capacity is expected to materialize by 2Q24.

TrendForce analysis indicates that 2023 to 2024 will be pivotal years for AI development, triggering substantial demand for AI Training chips and thereby boosting HBM utilization. However, as the focus pivots to Inference, the annual growth rate for AI Training chips and HBM is expected to taper off slightly. The imminent boom in HBM production has presented suppliers with a difficult situation: they will need to strike a balance between meeting customer demand to expand market share and avoiding a surplus due to overproduction. Another concern is the potential risk of overbooking, as buyers, anticipating an HBM shortage, might inflate their demand.

AMD & Xilinx Introduce the Versal HBM Series VHK158 Evaluation Kit

Introducing the Versal HBM Series VHK158 Evaluation Kit. This features the Versal HBM series VH1582 device, which integrates multi-Tbps High Bandwidth Memory (HBM), hardened connectivity IP, and adaptive compute in a single device, eliminating the bottlenecks between memory, I/O, and compute while delivering up to 6 times more memory bandwidth.

The VHK158 evaluation kit is an evaluation platform for the Versal HBM series VH1582 device designed to keep up with the higher memory needs of compute intensive, memory bound applications, providing adaptable acceleration for data center, wired networking, test & measurement, and aerospace & defense applications. The VHK158 board's primary focus is to enable demonstration and evaluation of the VH1582 silicon and support customer application development

Samsung Electronics Announces Second Quarter 2023 Results

Samsung Electronics today reported financial results for the second quarter ended June 30, 2023. The Company posted KRW 60.01 trillion in consolidated revenue, a 6% decline from the previous quarter, mainly due to a decline in smartphone shipments despite a slight recovery in revenue of the DS (Device Solutions) Division. Operating profit rose sequentially to KRW 0.67 trillion as the DS Division posted a narrower loss, while Samsung Display Corporation (SDC) and the Digital Appliances Business saw improved profitability.

The Memory Business saw results improve from the previous quarter as its focus on High Bandwidth Memory (HBM) and DDR5 products in anticipation of robust demand for AI applications led to higher-than-guided DRAM shipments. System semiconductors posted a decline in profit due to lower utilization rates on weak demand from major applications.

Micron Delivers Industry's Fastest, Highest-Capacity HBM to Advance Generative AI Innovation

Micron Technology, Inc. today announced it has begun sampling the industry's first 8-high 24 GB HBM3 Gen2 memory with bandwidth greater than 1.2 TB/s and pin speed over 9.2 Gb/s, which is up to a 50% improvement over currently shipping HBM3 solutions. With a 2.5 times performance per watt improvement over previous generations, Micron's HBM3 Gen2 offering sets new records for the critical artificial intelligence (AI) data center metrics of performance, capacity and power efficiency. These Micron improvements reduce training times of large language models like GPT-4 and beyond, deliver efficient infrastructure use for AI inference and provide superior total cost of ownership (TCO).

The foundation of Micron's high-bandwidth memory (HBM) solution is Micron's industry-leading 1β (1-beta) DRAM process node, which allows a 24Gb DRAM die to be assembled into an 8-high cube within an industry-standard package dimension. Moreover, Micron's 12-high stack with 36 GB capacity will begin sampling in the first quarter of calendar 2024. Micron provides 50% more capacity for a given stack height compared to existing competitive solutions. Micron's HBM3 Gen2 performance-to-power ratio and pin speed improvements are critical for managing the extreme power demands of today's AI data centers. The improved power efficiency is possible because of Micron advancements such as doubling of the through-silicon vias (TSVs) over competitive HBM3 offerings, thermal impedance reduction through a five-time increase in metal density, and an energy-efficient data path design.

BBCube 3D Could be the Future of Stacked DRAM

Scientists at the Tokyo Institute of Technology have developed a new type of stacked or 3D DRAM that the researchers call Bumpless Build Cube 3D or BBCube 3D, which relies on Through Silicon Vias or TSVs to connect the DRAM dies. This is a different approach to HBM which relies on micro bumps to connect the layers together and the Japanese scientists are saying that their bumpless wafer-on-wafer solution should allow not only for an easier manufacturing process, but more importantly, improved cooling, as the TSVs can channel the heat from the DRAM dies down into whatever substrate the BBCube 3D stack is finally mounted onto.

If that wasn't enough, the researchers believe that BBCube 3D will be able to deliver higher speeds than HBM courtesy of a combination of the TSVs being relatively short and "high-density signal parallelism". BBCube 3D is expected to deliver up to a 32 fold increase in bandwidth compared to DDR5 memory and a four fold increase compared to HBM2E memory, while at the same time, drawing less power. The research paper goes into a lot more details for those interested at taking a closer look at this potentially revolutionary shift in DRAM assembly. However, the question that remains unanswered is if this will end up as a real world product some time in the near future, which is all based on how manufacturable BBCube 3D memory will be.

Two-ExaFLOP El Capitan Supercomputer Starts Installation Process with AMD Instinct MI300A

When Lawrence Livermore National Laboratory (LLNL) announced the creation of a two-ExaFLOP supercomputer named El Capitan, we heard that AMD would power it with its Instinct MI300 accelerator. Today, LNLL published a Tweet that states, "We've begun receiving & installing components for El Capitan, @NNSANews' first #exascale #supercomputer. While we're still a ways from deploying it for national security purposes in 2024, it's exciting to see years of work becoming reality." As published images show, HPE racks filled with AMD Instinct MI300 are showing up now at LNLL's facility, and the supercomputer is expected to go operational in 2024. This could mean that November 2023 TOP500 list update wouldn't feature El Capitan, as system enablement would be very hard to achieve in four months until then.

The El Capitan supercomputer is expected to run on AMD Instinct MI300A accelerator, which features 24 Zen4 cores, CDNA3 architecture, and 128 GB of HBM3 memory. All paired together in a four-accelerator configuration goes inside each node from HPE, also getting water cooling treatment. While we don't have many further details on the memory and storage of El Capitan, we know that the system will exceed two ExFLOPS at peak and will consume close to 40 MW of power.

DRAM ASP Decline Narrows to 0~5% for 3Q23 Owing to Production Cuts and Seasonal Demand

TrendForce reports that continued production cuts by DRAM suppliers have led to a gradual quarterly decrease in overall DRAM supply. Seasonal demand, on the other hand, is helping to mitigate inventory pressure on suppliers. TrendForce projects that the third quarter will see the ASP for DRAM converging towards a 0~5% decline. Despite suppliers' concerted efforts, inventory levels persistently remain high, keeping prices low. While production cutbacks may help to curtail quarterly price declines, a tangible recovery in prices may not be seen until 2024.

PC DRAM: The benefits of consolidated production cuts on DDR4 by the top three suppliers are expected to become evident in the third quarter. Furthermore, inventory pressure on suppliers has been partially alleviated due to aggressive purchasing by several OEMs at low prices during 2Q23. Evaluating average price trends for PC DRAM products in 3Q23 reveals that DDR4 will continue to remain in a state of persistent oversupply, leading to an expected quarterly price drop of 3~8%. DDR5 prices—influenced by suppliers' efforts to maintain prices and unmet buyer demand—are projected to see a 0-5% quarterly decline. The overall ASP of PC DRAM is projected to experience a QoQ decline of 0~5% in the third quarter.

AI and HPC Demand Set to Boost HBM Volume by Almost 60% in 2023

High Bandwidth Memory (HBM) is emerging as the preferred solution for overcoming memory transfer speed restrictions due to the bandwidth limitations of DDR SDRAM in high-speed computation. HBM is recognized for its revolutionary transmission efficiency and plays a pivotal role in allowing core computational components to operate at their maximum capacity. Top-tier AI server GPUs have set a new industry standard by primarily using HBM. TrendForce forecasts that global demand for HBM will experience almost 60% growth annually in 2023, reaching 290 million GB, with a further 30% growth in 2024.

TrendForce's forecast for 2025, taking into account five large-scale AIGC products equivalent to ChatGPT, 25 mid-size AIGC products from Midjourney, and 80 small AIGC products, the minimum computing resources required globally could range from 145,600 to 233,700 Nvidia A100 GPUs. Emerging technologies such as supercomputers, 8K video streaming, and AR/VR, among others, are expected to simultaneously increase the workload on cloud computing systems due to escalating demands for high-speed computing.

Samsung Electronics Unveils Foundry Vision in the AI Era

Samsung Electronics, a world leader in advanced semiconductor technology, today announced its latest foundry technology innovations and business strategy at the 7th annual Samsung Foundry Forum (SFF) 2023. Under the theme "Innovation Beyond Boundaries," this year's forum delved into Samsung Foundry's mission to address customer needs in the artificial intelligence (AI) era through advanced semiconductor technology.

Over 700 guests, from customers and partners of Samsung Foundry, attended this year's event, of which 38 companies hosted their own booths to share the latest technology trends in the foundry industry.

NVIDIA Allegedly Preparing H100 GPU with 94 and 64 GB Memory

NVIDIA's compute and AI-oriented H100 GPU is supposedly getting an upgrade. The H100 GPU is NVIDIA's most powerful offering and comes in a few different flavors: H100 PCIe, H100 SXM, and H100 NVL (a duo of two GPUs). Currently, the H100 GPU comes with 80 GB of HBM2E, both in the PCIe and SXM5 version of the card. A notable exception if the H100 NVL, which comes with 188 GB of HBM3, but that is for two cards, making it 94 GB per each. However, we could see NVIDIA enable 94 and 64 GB options for the H100 accelerator soon, as the latest PCI ID Repository shows.

According to the PCI ID Repository listing, two messages are posted: "Kindly help to add H100 SXM5 64 GB into 2337." and "Kindly help to add H100 SXM5 94 GB into 2339." These two messages indicate that NVIDIA could prepare its H100 in more variations. In September 2022, we saw NVIDIA prepare an H100 variation with 120 GB of memory, but that still isn't official. These PCIe IDs could just come from engineering samples that NVIDIA is testing in the labs, and these cards could never appear on any market. So, we have to wait and see how it plays out.

Major CSPs Aggressively Constructing AI Servers and Boosting Demand for AI Chips and HBM, Advanced Packaging Capacity Forecasted to Surge 30~40%

TrendForce reports that explosive growth in generative AI applications like chatbots has spurred significant expansion in AI server development in 2023. Major CSPs including Microsoft, Google, AWS, as well as Chinese enterprises like Baidu and ByteDance, have invested heavily in high-end AI servers to continuously train and optimize their AI models. This reliance on high-end AI servers necessitates the use of high-end AI chips, which in turn will not only drive up demand for HBM during 2023~2024, but is also expected to boost growth in advanced packaging capacity by 30~40% in 2024.

TrendForce highlights that to augment the computational efficiency of AI servers and enhance memory transmission bandwidth, leading AI chip makers such as Nvidia, AMD, and Intel have opted to incorporate HBM. Presently, Nvidia's A100 and H100 chips each boast up to 80 GB of HBM2e and HBM3. In its latest integrated CPU and GPU, the Grace Hopper Superchip, Nvidia expanded a single chip's HBM capacity by 20%, hitting a mark of 96 GB. AMD's MI300 also uses HBM3, with the MI300A capacity remaining at 128 GB like its predecessor, while the more advanced MI300X has ramped up to 192 GB, marking a 50% increase. Google is expected to broaden its partnership with Broadcom in late 2023 to produce the AISC AI accelerator chip TPU, which will also incorporate HBM memory, in order to extend AI infrastructure.

Intel Falcon Shores is Initially a GPU, Gaudi Accelerators to Disappear

During the ISC High Performance 2023 international conference, Intel announced interesting roadmap updates to its high-performance computing (HPC) and artificial intelligence (AI). With the scrapping of Rialto Bridge and Lancaster Sound, Intel merged these accelerator lines into Falcon Shores processor for HPC and AI, initially claiming to be a CPU+GPU solution on a single package. However, during the ISC 2023 talk, the company forced a change of plans, and now, Falcon Shores is GPU only solution destined for a 2025 launch. Originally, Intel wanted to combine x86-64 cores with Xe GPU to form an "XPU" module that powers HPC and AI workloads. However, Intel did not see a point in forcing customers to choose between specific CPU-to-GPU core ratios that would need to be in an XPU accelerator. Instead, a regular GPU solution paired with a separate CPU is the choice of Intel for now. In the future, as workloads get more defined, XPU solutions are still a possibility, just delayed from what was originally intended.

Regarding Intel's Gaudi accelerators, the story is about to end. The company originally paid two billion US Dollars for Habana Labs and its Gaudi hardware. However, Intel now plans to stop the Gaudi development as a standalone accelerator and instead use the IP to integrate it into its Falcon Shores GPU. Using modular, tile-based architecture, the Falcon Shores GPU features standard ethernet switching, up to 288 GB of HBM3 running at 9.8 TB/s throughput, I/O optimized for scaling, and support for FP8 and FP16 floating point precision needed for AI and other workloads. As noted, the creation of XPU was premature, and now, the initial Falcon Shores GPU will become an accelerator for HPC, AI, and a mix of both, depending on a specific application. You can see the roadmap below for more information.

PMIC Issue with Server DDR5 RDIMMs Reported, Convergence of DDR5 Server DRAM Price Decline

TrendForce reports that mass production of new server platforms—such as Intel Sapphire Rapids and AMD Genoa—is imminent. However, recent market reports have indicated a PMIC compatibility issue for server DDR5 RDIMMs; DRAM suppliers and PMIC vendors are working to address the problem. TrendForce believes this will have two effects: First, DRAM suppliers will temporarily procure more PMICs from Monolithic Power Systems (MPS), which supplies PMICs without any issues. Second, supply will inevitably be affected in the short term as current DDR5 server DRAM production still uses older processes, which will lead to a convergence in the price decline of DDR5 server DRAM in 2Q23—from the previously estimated 15~20% to 13~18%.

As previously mentioned, PMIC issues and the production process relying on older processes are all having a short-term impact on the supply of DDR5 server DRAM. SK hynix has gradually ramped up production and sales of 1α-nm, which, unlike 1y-nm, has yet to be fully verified by consumers. Current production processes are still being dominated by Samsung and SK hynix's 1y-nm and Micron's 1z-nm; 1α and 1β-nm production is projected to increase in 2H23.

HBM Supply Leader SK Hynix's Market Share to Exceed 50% in 2023 Due to Demand for AI Servers

A strong growth in AI server shipments has driven demand for high bandwidth memory (HBM). TrendForce reports that the top three HBM suppliers in 2022 were SK hynix, Samsung, and Micron, with 50%, 40%, and 10% market share, respectively. Furthermore, the specifications of high-end AI GPUs designed for deep learning have led to HBM product iteration. To prepare for the launch of NVIDIA H100 and AMD MI300 in 2H23, all three major suppliers are planning for the mass production of HBM3 products. At present, SK hynix is the only supplier that mass produces HBM3 products, and as a result, is projected to increase its market share to 53% as more customers adopt HBM3. Samsung and Micron are expected to start mass production sometime towards the end of this year or early 2024, with HBM market shares of 38% and 9%, respectively.

AI server shipment volume expected to increase by 15.4% in 2023
NVIDIA's DM/ML AI servers are equipped with an average of four or eight high-end graphics cards and two mainstream x86 server CPUs. These servers are primarily used by top US cloud services providers such as Google, AWS, Meta, and Microsoft. TrendForce analysis indicates that the shipment volume of servers with high-end GPGPUs is expected to increase by around 9% in 2022, with approximately 80% of these shipments concentrated in eight major cloud service providers in China and the US. Looking ahead to 2023, Microsoft, Meta, Baidu, and ByteDance will launch generative AI products and services, further boosting AI server shipments. It is estimated that the shipment volume of AI servers will increase by 15.4% this year, and a 12.2% CAGR for AI server shipments is projected from 2023 to 2027.
Return to Keyword Browsing
Apr 25th, 2024 20:44 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts