News Posts matching #Michelle Simmons

Return to Keyword Browsing

Scientists Invent First Functional Single-Atom Transistor

A team of scientists at the ARC Centre for Quantum Computation and Communication, at the University of New South Wales (UNSW), unveiled a fully functional single-atom transistor, which they predict will go on to become a critical building block of tomorrow's high-performance computing devices. The new transistor design was described in a paper, published by Nature. The active component of this transistor is a single phosphorous atom patterned between atomic-scale electrodes and control gates.

Single atom transistor designs have been attempted in the past, but those designs have had an error of about 10 nanometres in positioning of the atoms, which is big enough to affect their functionality. Professor Michelle Simmons, group leader of this study, said that this is the first time "anyone has shown control of a single atom in a substrate with this level of precise accuracy," adding that "Several groups have tried this, but if you want to make a practical computer in the long-term you need to be able to put lots of individual atoms in."

A video presentation by the group follows.

World's Smallest Silicon Wire Leads To Atomic-Scale Computing, Moore's Law Continues

News of quantum breakthroughs seem to be coming every few months now, edging ever closer towards the hallowed goal of building a quantum computer using quantum qubits rather than classical bits and bringing colossal improvements in computational power. This will eventually lead to applications that we can't even imagine now and possibly a true artificial intelligence of the kind one sees in the movies. Also, it would allow calculations that would normally take longer than the lifetime of the universe on a classical computer to be made in just a few seconds or minutes on a quantum one. A goal well worth striving for.

The latest breakthrough comes from the University of New South Wales, Melbourne University and Purdue University who have developed the smallest wire yet. It's a silicon nanowire, having the tiny dimensions of just one atom high and four atoms wide. This is a feat in itself, but the crucial part is that the wire is able to maintain its resistivity even at this atomic level, making it far easier for current to flow, thereby preventing the tiny wire from becoming useless. This will help with the continuation of Moore's Law, giving us ever more powerful computers at the present rate and opens the door to quantum computing within the next decade.

TechEYE has a more detailed article about this development. This is based on an ABC Radio interview with Michelle Simmons from the University of New South Wales and makes for fascinating listening.
Return to Keyword Browsing