News Posts matching #Scalable

Return to Keyword Browsing

Intel Discontinues Omni-Path Enabled Xeon Processors

Intel's Omni-Path technology has been used primarily in high performance computing market, in order to provide high speed interconnect between Intel Xeon CPUs, with speeds reaching around 100 Gbps. Accompanied by different design and system integration that Omni-Path uses, it was a bit difficult to integrate into server system, while not adding much value that other technologies couldn't match or beat.

Because of these reasons, Intel is now discontinuing its last product capable of utilizing Omni-Path - the first generation Xeon Scalable CPUs. Carrying the suffix "F", these CPUs had an extra connector sticking out of CPU's PCB to enable the Omni-Path functionality (see images bellow). There were eight CPUs manufactured in total that had this extra feature, consisting out of two Xeon Platinum and six Xeon Gold CPUs, which have now reached end of life. Intel states that focus from these CPUs has shifted to other technologies like silicon photonics, which provides much greater speed reaching 100s of gigabits per second. Intel already demonstrated transceivers capable of reaching 400 Gb/s speeds with the magic of light, which will become available in 1H 2020.

LGA 4189 is the Latest Socket for Intel's Next Generation of Xeon CPUs

TE Connectivity, the maker of various kinds of connectivity solutions for computer systems, has released its latest iteration of the LGA socket for the next generation of Xeon Scalable CPUs. Being validated by Intel, the LGA 4189-4 and LGA 4189-5 are going to power the next generation of 10 nm Xeon CPUs, based on the Ice Lake architecture, and up to 56-core 2nd generation Xeon Scalable CPUs. While there are two models of the socket, TE Connectivity didn't reveal what the differences are between them. Socket P4 (LGA 4189-4) and P5 (LGA 4189-5) also feature exactly the same pin count, 0.9906 mm hex pitch and 2.7 mm SP height, so we can only speculate that the "4" or "5" in the revision is supposed to indicate details like higher power delivery capability or support for Ice Lake CPUs.

In addition to providing a new socket for Ice Lake, these sockets have support for PCI-Express Gen 4.0 and eight-channel memory (supported memory configurations are vendor dependent), meaning that we are getting two more memory channels than previous Xeon CPUs with a faster and newer PCIe standard.

Next-generation Intel Xeon Scalable Processors to Deliver Breakthrough Platform Performance with up to 56 Processor Cores

Intel today announced its future Intel Xeon Scalable processor family (codename Cooper Lake) will offer customers up to 56 processor cores per socket and built-in AI training acceleration in a standard, socketed CPU as part of its mainline Intel Xeon Scalable platforms, with availability in the first half of 2020. The breakthrough platform performance delivered within the high-core-count Cooper Lake processors will leverage the capabilities built into the Intel Xeon Platinum 9200 series, which today is gaining momentum among the world's most demanding HPC customers, including HLRN, Advania, 4Paradigm, and others.

"The Intel Xeon Platinum 9200 series that we introduced as part of our 2nd Generation Intel Xeon Scalable processor family generated a lot of excitement among our customers who are deploying the technology to run their high-performance computing (HPC), advanced analytics, artificial intelligence and high-density infrastructure. Extended 56-core processor offerings into our mainline Intel Xeon Scalable platforms enables us to serve a much broader range of customers who hunger for more processor performance and memory bandwidth."
-Lisa Spelman, vice president and general manager of Data Center Marketing, Intel Corporation

Intel Reports First-Quarter 2019 Financial Results

Intel Corporation today reported first-quarter 2019 financial results. "Results for the first quarter were slightly higher than our January expectations. We shipped a strong mix of high performance products and continued spending discipline while ramping 10nm and managing a challenging NAND pricing environment. Looking ahead, we're taking a more cautious view of the year, although we expect market conditions to improve in the second half," said Bob Swan, Intel CEO. "Our team is focused on expanding our market opportunity, accelerating our innovation and improving execution while evolving our culture. We aim to capitalize on key technology inflections that set us up to play a larger role in our customers' success, while improving returns for our owners."

In the first quarter, the company generated approximately $5.0 billion in cash from operations, paid dividends of $1.4 billion and used $2.5 billion to repurchase 49 million shares of stock. In the first quarter, Intel achieved 4 percent growth in the PC-centric business while data-centric revenue declined 5 percent.

Intel Unleashes 56-core Xeon "Cascade Lake" Processor to Preempt 64-core EPYC

Intel late Tuesday made a boat-load of enterprise-relevant product announcements, including the all important update to its Xeon Scalable enterprise processor product-stack, with the addition of the new 56-core Xeon Scalable "Cascade Lake" processor. This chip is believed to be Intel's first response to the upcoming AMD 7 nm EPYC "Rome" processor with 64 cores and a monolithic memory interface. The 56-core "Cascade Lake" is a multi-chip module (MCM) of two 28-core dies, each with a 6-channel DDR4 memory interface, totaling 12-channel for the package. Each of the two 28-core dies are built on the existing 14 nm++ silicon fabrication process, and the IPC of each of the 56 cores are largely unchanged since "Skylake." Intel however, has added several HPC and AI-relevant instruction-sets.

To begin with, Intel introduced DL Boost, which could be a fixed-function hardware matrix multiplier that accelerates building and training of AI deep-learning neural networks. Next up, are hardware mitigation against several speculative execution CPU security vulnerabilities that haunted the computing world since early-2018, including certain variants of "Spectre" and "Meltdown." A hardware fix presents lesser performance impact compared to a software fix in the form of a firmware patch. Intel has added support for Optane Persistent Memory, which is the company's grand vision for what succeeds volatile primary memory such as DRAM. Currently slower than DRAM but faster than SSDs, Optane Persistent Memory is non-volatile, and its contents can be made to survive power-outages. This allows sysadmins to power-down entire servers to scale down with workloads, without worrying about long wait times to restore uptime when waking up those servers. Among the CPU instruction-sets added include AVX-512 and AES-NI.

Intel Announces Broadest Product Portfolio for Moving, Storing, and Processing Data

Intel Tuesday unveiled a new portfolio of data-centric solutions consisting of 2nd-Generation Intel Xeon Scalable processors, Intel Optane DC memory and storage solutions, and software and platform technologies optimized to help its customers extract more value from their data. Intel's latest data center solutions target a wide range of use cases within cloud computing, network infrastructure and intelligent edge applications, and support high-growth workloads, including AI and 5G.

Building on more than 20 years of world-class data center platforms and deep customer collaboration, Intel's data center solutions target server, network, storage, internet of things (IoT) applications and workstations. The portfolio of products advances Intel's data-centric strategy to pursue a massive $300 billion data-driven market opportunity.

Intel Could Upstage EPYC "Rome" Launch with "Cascade Lake" Before Year-end

Intel is reportedly working tirelessly to launch its "Cascade Lake" Xeon Scalable 48-core enterprise processor before year-end, according to a launch window timeline slide leaked by datacenter hardware provider QCT. The slide suggests a late-Q4 thru Q1-2019 launch timeline for the XCC (extreme core count) version of "Cascade Lake," which packs 48 CPU cores across two dies on an MCM. This launch is part of QCT's "early shipment program," which means select enterprise customers can obtain the hardware in pre-approved quantities. In other words, this is a limited launch, but one that's probably enough to upstage AMD's 7 nm EPYC "Rome" 64-core processor launch.

It's only by late-Q1 thru Q2-2019 that the Xeon "Cascade Lake" family would be substantially launched, including lower core-count variants that are still 2-die MCMs. This aligns to preempt or match AMD's 7 nm EPYC family rollout through 2019. "Cascade Lake" is probably Intel's final enterprise microarchitecture to be built on the 14 nm++ node, and consists of 2-die multi-chip modules that feature 48 cores, and a 12-channel memory interface (6-channel per die); with 88-lane PCIe from the CPU socket. The processor is capable of multi-socket configurations. It will also be Intel's launch platform for substantially launching its Optane Persistent Memory product series.

Intel Announces Cascade Lake Advanced Performance and Xeon E-2100

Intel today announced two new members of its Intel Xeon processor portfolio: Cascade Lake advanced performance (expected to be released the first half of 2019) and the Intel Xeon E-2100 processor for entry-level servers (general availability today). These two new product families build upon Intel's foundation of 20 years of Intel Xeon platform leadership and give customers even more flexibility to pick the right solution for their needs.

"We remain highly focused on delivering a wide range of workload-optimized solutions that best meet our customers' system requirements. The addition of Cascade Lake advanced performance CPUs and Xeon E-2100 processors to our Intel Xeon processor lineup once again demonstrates our commitment to delivering performance-optimized solutions to a wide range of customers," said Lisa Spelman, Intel vice president and general manager of Intel Xeon products and data center marketing.

GIGABYTE Expands Density Optimized Intel Xeon Scalable Server Range

GIGABYTE TECHNOLOGY Co. Ltd, an industry leader in competitive, high performance server platforms & embedded solutions continues to expand its Intel Xeon Scalable product family by adding three new density optimized systems: H231-H60, H261-H60, and H261-H61, giving our customer a wider range of choices to meet their ever increasing needs for efficiency in the server room.
Return to Keyword Browsing
Jun 17th, 2024 07:56 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts