News Posts matching #Zen 4

Return to Keyword Browsing

AMD Ryzen 7000 "Phoenix" APUs with RDNA3 Graphics to Rock Large 3D V-Cache

AMD's next-generation Ryzen 7000-series "Phoenix" mobile processors are all the rage these days. Bound for 2023, these chips feature a powerful iGPU based on the RDNA3 graphics architecture, with performance allegedly rivaling that of a GeForce RTX 3060 Laptop GPU—a popular performance-segment discrete GPU. What's more, AMD is also taking a swing at Intel in the CPU core-count game, by giving "Phoenix" a large number of "Zen 4" CPU cores. The secret ingredient pushing this combo, however, is a large cache.

AMD has used large caches to good effect both on its "Zen 3" processors, such as the Ryzen 7 5800X3D, where they're called 3D Vertical Cache (3D V-cache); as well as its Radeon RX 6000 discrete GPUs, where they're called Infinity Cache. The only known difference between the two is that the latter is fully on-die, while the former is stacked on top of existing silicon IP. It's being reported now, that "Phoenix" will indeed feature a stacked 3D V-cache.

AMD Ryzen 7000U "Phoenix" Processor iGPU Matches RTX 3060 Laptop GPU Performance: Rumor

AMD is planning a massive integrated graphics performance uplift for its next-generation Ryzen 7000U mobile processors. Codenamed "Phoenix," this SoC will feature a CPU based on the "Zen 4" microarchitecture with a higher CPU core count than the Intel alternative of the time; and an iGPU based on the RDNA3 graphics architecture. AMD is planning to endow this with the right combination of a CU count and engine clocks, to result in performance that roughly matches the NVIDIA GeForce RTX 3060 Laptop GPU, a popular performance-segment discrete GPU for notebooks, according to greymon55. Other highlights of "Phoenix" include a DDR5 + LPDDR5 memory interface, and PCI-Express Gen 5. The SoC is expected to be built on the TSMC N5 (5 nm) process, and debut in 2023.

AMD Confirms Zen 4 Dragon Range, Phoenix APUs for 2023

AMD has confirmed its revamped APU strategy will be delivered throughout three different APU line-ups come 2023. While Raphael will take care of AMD's hopes in the desktop space, the company is readying a new, "Dragon Range" lineup of "pinnacle gaming"-oriented APUs, leveraging the company's upcoming Zen 4 architecture, DDR5, and PCIe 5. Dragon Range APUs will feature the "highest core, thread, and cache ever for a mobile gaming CPU" - although AMD stopped just short of confirming exactly what "highest" translates to. To aid in its extreme gaming aspirations, TDP for Dragon Range is set at 55 W - they thus "largely exist in the space where gaming laptops are plugged in the majority of the time," according to AMD director of technical marketing Robert Hallock.

Another APU family, Phoenix, will be aimed at thin and lights with a penchant for gaming. Phoenix too will leverage AMD's Zen 4 core, DDR5 memory subsystem, and PCIe 5 interfaces. Being aimed at thin and lights, Phoenix APUs are set for a 35 W - 45 W operating range. Interestingly, AMD didn't share any other details - more crucially, the graphics architecture that's to be employed in these high-performance APUs.

AMD Ryzen 7000 "Raphael" to Ship with DDR5-5200 Native Support

AMD's upcoming Socket AM5 Ryzen 7000-series "Raphael" desktop processors will ship with native support for DDR5-5200 memory speed, according to a marketing slide by memory maker Apacer (which also owns the overclocking memory brand ZADAK). The "Zen 4" based desktop processors will feature a dual-channel DDR5 (4 sub-channel) interface, just like the 12th Gen Core "Alder Lake," but with no backwards compatibility with DDR4.

AMD already stated that Ryzen 7000 processors have a design focus on memory overclocking capabilities, including AMD EXPO, a custom memory module SPD extension standard rivaling Intel XMP 3.0, which will come with fine-grained settings specific to the AMD memory controller architecture. Until now, AMD relied on A-XMP, a motherboard vendor-enabled feature based in the UEFI firmware setup program, which translates Intel XMP SPD profiles of memory modules into AMD-approximate settings.

AMD Ryzen 7000 "Zen 4" Processors Have DDR5 Memory Overclocking Design-Focus

AMD's first desktop processor with DDR5 memory support, the Ryzen 7000 series "Raphael," based on the "Zen 4" microarchitecture, will come with a design focus on DDR5 memory overclocking capabilities, with the company claiming that the processors will be capable of handling DDR5 memory clock speeds "you maybe thought couldn't be possible," according to Joseph Tao who is a Memory Enabling Manager at AMD.

Tao stated: "Our first DDR5 platform for gaming is our Raphael platform and one of the awesome things about Raphael is that we are really gonna try to make a big splash with overclocking and I'll just kinda leave it there but speeds that you maybe thought couldn't be possible, may be possible with this overclocking spec." We are hearing reports of AMD innovating a new overclocking standard for DDR5 memory, which it calls RAMP (Ryzen Accelerated Memory Profile), which it is positioning as a competing standard to Intel's XMP 3.0 spec.

MSI Liquid Coolers Fully Support Next-Gen AMD Socket AM5

AMD Socket AM5 (LGA1718) is the next-generation socket designed to support next-generation AMD Ryzen 7000 desktop processors (Zen 4). AMD Socket AM5 uses the same liquid cooler bracket as Socket AM4. This allows you to upgrade to and enjoy AM5 without buying a new liquid cooler. MSI liquid coolers all support AMD Socket AM5, for specifics please refer to the chart below:

AMD EPYC "Genoa" Zen 4 Processor Multi-Chip Module Pictured

Here is the first picture of a next-generation AMD EPYC "Genoa" processor with its integrated heatspreader (IHS) removed. This is also possibly the first picture of a "Zen 4" CPU Complex Die (CCD). The picture reveals as many as twelve CCDs, and a large sIOD silicon. The "Zen 4" CCDs, built on the TSMC N5 (5 nm EUV) process, look visibly similar in size to the "Zen 3" CCDs built on the N7 (7 nm) process, which means the CCD's transistor count could be significantly higher, given the transistor-density gained from the 5 nm node. Besides more number-crunching machinery on the CPU core, we're hearing that AMD will increase cache sizes, particularly the dedicated L2 cache size, which is expected to be 1 MB per core, doubling from the previous generations of the "Zen" microarchitecture.

Each "Zen 4" CCD is reported to be about 8 mm² smaller in die-area than the "Zen 3" CCD, or about 10% smaller. What's interesting, though, is that the sIOD (server I/O die) is smaller in size, too, estimated to measure 397 mm², compared to the 416 mm² of the "Rome" and "Milan" sIOD. This is good reason to believe that AMD has switched over to a newer foundry process, such as the TSMC N7 (7 nm), to build the sIOD. The current-gen sIOD is built on Global Foundries 12LPP (12 nm). Supporting this theory is the fact that the "Genoa" sIOD has a 50% wider memory I/O (12-channel DDR5), 50% more IFOP ports (Infinity Fabric over package) to interconnect with the CCDs, and the mere fact that PCI-Express 5.0 and DDR5 switching fabric and SerDes (serializer/deserializers), may have higher TDP; which together compel AMD to use a smaller node such as 7 nm, for the sIOD. AMD is expected to debut the EPYC "Genoa" enterprise processors in the second half of 2022.

AMD SP5 EPYC "Genoa" Zen4 Processor Socket Pictured in the Flesh

Here's the first picture of AMD Socket SP5, the huge new CPU socket the company is building its next-generation EPYC "Genoa" enterprise processors around. "Genoa" will be AMD's first server products to implement the new "Zen 4" CPU cores, and next-gen I/O, including DDR5 memory and PCI-Express Gen 5. SP5, much like its predecessor SP3, is a land-grid array (LGA) socket, and has 6,096 pins.

The vast pin-count enables power to support CPU core-counts of up to 96 on the EPYC "Genoa," and up to 128 on the EPYC "Bergamo" cloud processor; a 12-channel DDR5 memory interface (24 sub-channels); and up to 128 PCI-Express 5.0 lanes. The socket's retention mechanism and processor installation procedure appears similar to that of the SP3, although the thermal requirements of SP5 will be entirely new, with processors expected to ship with TDP as high as 400 W, compared to 280 W on the current-generation EPYC "Milan." AMD is expected to debut EPYC "Genoa" in the second half of 2022.

AMD Ryzen 7000 "Raphael" Zen 4 Processors Enter Mass-Production by April-May?

The next-generation AMD Ryzen 7000 "Raphael" desktop processors in the Socket AM5 package are rumored to enter mass-production soon, according to Greymon55 on Twitter, a reliable source with AMD leaks. Silicon fabrication of the chips may already be underway, as the source claims that packaging (placing the dies on the fiberglass substrate or package), will commence by late-April or early-May. "Raphael" is a multi-chip module of "Zen 4" CCDs fabricated on the TSMC N5 (5 nm) node, combined with a cIOD built on a yet-unknown node. A plant in China performs packaging.

It's hard to predict retail availability, but for the Ryzen 5000 "Vermeer" processors, this development milestone was reached in June 2020, with the first products hitting shelves 4 months later, in November. This was, however, in the thick of the pre-vaccine COVID-19 pandemic. The "Zen 4" CPU cores are expected to introduce an IPC increase, as well as higher clock speeds. Also on offer will be next-gen connectivity, including PCI-Express Gen 5 (including CPU-attached Gen 5 NVMe), and DDR5 memory. These processors will launch alongside Socket AM5 motherboards based on the new AMD 600 series chipsets.

AMD Threadripper PRO 5000 and EPYC "Milan-X" Join Ryzen 5800X3D for March Availability

It will be an unexpectedly busy March for AMD, with the company launching three distinct products across its processor lines. The first one, which we reported earlier this morning, speaks of a late-March availability of the Ryzen 7 5800X3D 8-core/16-thread Socket AM4 processor, which AMD claims offers gaming performance on par with the Core i9-12900K "Alder Lake." It turns out, there are two more surprises.

Apparently the company is ready with Ryzen Threadripper PRO 5000 series workstation processors. Designed for Socket sWRX8 motherboards based on the only chipset option available—the AMD WRX80, these are the first Threadripper products based on the "Zen 3" microarchitecture, and feature 8-channel DDR4 memory, and up to 128 PCI-Express Gen4 lanes for workstation connectivity. Unfortunately, you can't buy one of these in the retail channel, as AMD is making them OEM-only. The first pre-built workstations will arrive as early as next week (March 8). At this point we still don't know if these chips use the newer "Zen 3" CCD with 3D Vertical Cache, or the conventional "Zen 3" CCD with 32 MB planar L3 cache.

AMD Reports Fourth Quarter and Full Year 2021 Financial Results

AMD (NASDAQ:AMD) today announced revenue for the fourth quarter of 2021 of $4.8 billion, operating income of $1.2 billion, net income of $974 million and diluted earnings per share of $0.80. On a non-GAAP basis, operating income was $1.3 billion, net income was $1.1 billion and diluted earnings per share was $0.92. For full year 2021, the company reported revenue of $16.4 billion, operating income of $3.6 billion, net income of $3.2 billion and diluted earnings per share of $2.57. On a non-GAAP basis, operating income was $4.1 billion, net income was $3.4 billion and diluted earnings per share was $2.79.

"2021 was an outstanding year for AMD with record annual revenue and profitability," said AMD President and CEO Dr. Lisa Su. "Each of our businesses performed extremely well, with data center revenue doubling year-over-year driven by growing adoption of AMD EPYC processors across cloud and enterprise customers. We expect another year of significant growth in 2022 as we ramp our current portfolio and launch our next generation of PC, gaming and data center products."

Intel "Raptor Lake" Rumored to Feature Massive Cache Size Increases

Large on-die caches are expected to be a major contributor to IPC and gaming performance. The upcoming AMD Ryzen 7 5800X3D processor triples its on-die last-level cache using the 3D Vertical Cache technology, to level up to Intel's "Alder Lake-S" processors in gaming, while using the existing "Zen 3" IP. Intel realizes this, and is planning a massive increase in on-die cache sizes, although spread across the cache hierarchy. The next-generation "Raptor Lake-S" desktop processor the company plans to launch in the second half of 2022 is rumored to feature 68 MB of "total cache" (that's AMD lingo for L2 + L3 caches), according to a highly plausible theory by PC enthusiast OneRaichu on Twitter, and illustrated by Olrak29_.

The "Raptor Lake-S" silicon is expected to feature eight "Raptor Cove" P-cores, and four "Gracemont" E-core clusters (each cluster amounts to four cores). The "Raptor Cove" core is expected to feature 2 MB of dedicated L2 cache, an increase over the 1.25 MB L2 cache per "Golden Cove" P-core of "Alder Lake-S." In a "Gracemont" E-core cluster, four CPU cores share an L2 cache. Intel is looking to double this E-core cluster L2 cache size from 2 MB per cluster on "Alder Lake," to 4 MB per cluster. The shared L3 cache increases from 30 MB on "Alder Lake-S" (C0 silicon), to 36 MB on "Raptor Lake-S." The L2 + L3 caches hence add up to 68 MB. All eyes are now on "Zen 4," and whether AMD gives the L2 caches an increase from the 512 KB per-core size that it's consistently maintained since the first "Zen."

AMD's Lisa Su Confirms Zen 4 is Using Optimised TSMC 5 nm Node, 2D and 3D chiplets

Anandtech asked AMD during a meeting at CES about the production nodes used to make its chips at TSMC and the importance of leading edge nodes for AMD to stay competitive, especially in light of the cost of using said nodes. Lisa Su confirmed in her answer to Anandtech that AMD is using an optimised high-performance 5 nm node for its upcoming Zen 4 processor chiplets, which there interestingly appears to be both 2D and 3D versions of. This is the first time we've heard a mention of two different chiplet types using the same architecture and it could mean that we get to see Zen 4 based CPUs with and without 3D cache.

What strikes us as a bit odd about the Anandtech article, is that they mention the fact that several of TSMC's customers are already making 4 nm and soon 3 nm chips and are questioning why AMD wouldn't want to be on these same nodes. It seems like Anandtech has forgotten that not all process nodes are universally applicable and just because you can make one type of chip on a smaller node, doesn't mean it'll be suitable for a different type of chip. For the longest of times, mobile SoCs or other similar chips seem to always have been among the first things being made on new nodes, with more complex things like GPUs and more advanced CPUs coming later, to tweaked versions of the specific node. The fact that TSMC has no less than three 7 nm nodes, should be reason enough to realise that the leading edge node might not be the ideal node for all types of chips.

AMD EPYC "Genoa" Socket SP5 16-core Processor Prototype Pictured in the Flesh

Here are some of the first real-world pictures of the next-generation AMD EPYC "Genoa" enterprise processors in the Socket SP5 package. The coaster-sized 6,080-pin SP5 package gives AMD's chip-designers fiberglass substrate real-estate to dial up CCD counts up to 12, resulting in up to 96 "Zen 4" CPU cores for "Genoa." Pictured below is a 16-core prototype with just two CCDs in place, as revealed by an X-ray shot. Socket SP5 gives "Genoa" some stellar I/O capabilities, including 24x 40-bit DDR5 channels (12-channel in the classical definition), and 128x PCI-Express Gen 5.0 lanes. AMD is expected to time its EPYC "Genoa" processor launch within 2022, to best compete with Intel's Xeon "Sapphire Rapids" processor launch. It will also launch a variant codenamed "Bergamo," based on "Zen 4c" CPU cores, with up to 128 cores to go around.

Two AMD Ryzen 7000 Series Processors Based on Zen 4 Core Appear: 16-Core and 8-Core SKUs

AMD's Ryzen 7000 series of desktop processors based on the novel Zen 4 core architecture are scheduled to arrive in the second half of 2022. While we are not sure just how big the architectural differences will be going from Zen 3 (with or without 3D V-cache) to the new Zen 4 core, we have some leaked information that confirms the existence of two SKUs that reveal additional details about the processor configuration. In the MilkyWay@Home project, aiming to create a model of the Milky Way galaxy by utilizing countless PCs across the globe, we found two next-generation Ryzen 7000 SKUs. The MilkyWay@Home project isn't a benchmark. However, it is a valuable reference where the next generation processors appeared.

First in line is the 100-000000666-21_N CPU, a codename for an eight-core, sixteen-threaded design. This model should correspond to the AMD Ryzen 7 7800X CPU, a successor to the Ryzen 7 5800X model. Next in line is the 100-000000665-21_N CPU with 16 cores and 32 threads, a successor to the Ryzen 9 5950X named Ryzen 9 7950X. One important thing to note is that these new CPUs feature different level two (L2) cache configurations. With the previous generation 5000 series "Vermeer" processors, the L2 cache was locked at 512 KB per core. However, according to today's leak, the upgraded Zen 4 IP will bring 1024 KB of L2 cache per core, doubling the cache size at one of the fastest levels.

AMD Readying 16-core "Zen 4" CCDs Exclusively for the Client Segment with an Answer to Intel E-cores?

AMD already declared the CPU core counts of its EPYC "Genoa" and "Bergamo" processors to top out at 96 and 128, respectively, a core-count believed to have been facilitated by the larger fiberglass substrate of the next-gen SP5 CPU socket, letting AMD add more 8-core "Zen 4" chiplets, dubbed CPU complex dies (CCDs). Until now, AMD has used the chiplet as a common component between its EPYC enterprise and Ryzen desktop processors, to differentiate CPU core counts.

A fascinating theory that hit the rumor-mill, indicates that the company might leverage 5 nm (TSMC N5) carve out larger CCDs with up to 16 "Zen 4" CPU cores. Half of these cores are capped at a much lower power budget, essentially making them efficient-cores. This is a concept AMD appears to be carrying over from its 15-Watt class mobile processors, which see the CPU cores operate under an aggressive power-management. These cores still turn out a reasonable amount of performance, and are functionally identical to the ones on 105 W desktop processors with a relaxed power budget.

AMD CES 2022 Liveblog: Zen 3+, RDNA2 IGP, 6nm, RX 6500 XT, AM5, Zen 4 and More

Although physically away from the 2022 International CES, AMD is hosting a virtual press event to announce many new consumer products. The year's biggest tech-show allows AMD to talk about its latest, and next-generation architectures, the products it has in store for 2022, as well as introduce new technology. We expect the company to unveil "Zen 4" from a consumer perspective, its next-generation mobile processors, and much more. Stay tuned as we live-blog the event as it unfolds.

15:01 UTC: Straight away we see some big new model names:
15:02 UTC: CEO Dr Lisa Su takes centrestage.

AMD Socket AM5 "Raphael" Ryzen Processor Confirmed for H2-2022 Launch

AMD's next-generation Ryzen "Raphael" processor could launch only in the second half of 2022, confirms a leaked company slide scored by VideoCardz. The slide points to a Ryzen 5000X3D series product-stack update within the 1H-2022. These are Socket AM4 processors that leverage the company's updated "Zen 3(+)" CPU core die (CCD), which features 64 MB of 3D Vertical cache memory in addition to 32 MB of L3. AMD claims that 3DV Cache technology significantly improves performance akin to a generational update (anywhere between 5% to 25% depending on the application). The company is targeting "Spring" 2022 for launch, which would put this around early-Q2.

The "Raphael" Socket AM5 processor is sure to catch much of the attention, as it's the company's true next-gen desktop product. It heralds Socket AM5, a new LGA-based socket; and next-generation connectivity that includes DDR5 memory and PCI-Express Gen 5. The CCDs of these processors are built on the TSMC N5 (5 nm) silicon fabrication node, and are based on the "Zen 4" microarchitecture. The leaked slide shows the first grainy picture of Socket AM5, with a retention mechanism not unlike what we're used to, on the Intel platform. We're hearing rumors that AM5 will somehow manage cooler-compatibility with AM4 despite the radical redesign to the socket. An H2-2022 launch would put "Raphael" close to Intel's 13th Gen Core "Raptor Lake" launch, as team blue hopes to return to an annual IPC-uplift cadence, with up to 8 "Raptor Cove" P-cores, and 16 "Gracemont" E-cores.

AMD Will Give a Glimpse of Zen4 Core at CES 2022 Presentation

As the year ends, one of the biggest consumer trade shows, CES, is on the horizon, and manufacturers are ready to present the work that will become real throughout the year. AMD will offer a keynote at the CES 2022 press conference, and we expect to hear more about the upcoming Zen3 processors with 3D V-cache stacked in them. However, what is interesting is that we may listen to more details about Zen4 core. In an exclusive interview conducted by Antony Leather, Forbes contributor and the person behind CrazyTechLab, AMD CTO Mark Papermaster started the hype machine by sharing that AMD will announce some Zen4 core details at the CES 2022 conference.
AMD CTO Mark PapermasterWith regards to the upcoming generation - I point to CES in January. We're excited to be revealing some additional details on our new product launches that will deliver phenomenal experiences and as we've said, later in the year as it progresses we'll share more detail on Zen 4 with some mentioned at CES and more announcements on it over the course of 2022. It will be a very exciting year for AMD.

AMD EPYC Genoa Processors to Feature Up to 12 TB of DDR5 Memory, Maximum Speeds of 5200 MT/s

Just yesterday, thanks to the Linux driver update, we found information stating that AMD's upcoming EPYC Genoa processor generation based on Zen 4 core IP will have a 12-channel memory controller. However, we didn't know how AMD engineered the memory controller of this processor generation and some of its maximum capabilities. However, there is an exciting discovery. According to the report from ComputerBase, with information exclusive to them, AMD will enable up to 12 TB of DDR5 memory spread across 12 memory channels. The processor supports DDR5-5200 memory, but when all 24 memory slots (two per channel) are populated, the DDR5 maximum speed drops to 4000 MT/s.

It is unclear why this is the case, and if any difficulties were designing the controller, so the maximum speed drops when every slot is used. One reassuring thing is that the bandwidth created by 12 memory channels should be sufficient to make up for the lost speed of DDR5 memory reduction.

12-channel DDR5 Memory Support Confirmed for Zen 4 EPYC CPUs by AMD

Thanks to a Linux driver update, we now know that AMD's upcoming Zen 4 based EPYC CPUs will support up to 12 channels of DDR5 memory, an upgrade over the current eight. The EDAC driver, or Error Detection and Correction driver update from AMD contained details of the memory types supported by AMD's upcoming server and workstation CPUs and although this doesn't tell us much about what we'll see from the desktop platform, some of this might spill over to a future Ryzen Threadripper CPU.

The driver also reveals that there will be support for both RDDR5 and LRDDR5, which translates to Registered DDR5 and Load-Reduced DDR5 respectively. LRDDR5 is the replacement for LRDIMMs, which are used in current servers with very high memory densities. Although we don't know when AMD is planning to announce Zen 4, even less so the new EPYC processors, it's expected that it will be some time in the second half next year.

AMD and Intel Announce Online Press Events on January 4, 2022

January 4, 2022 could be a date of major product announcements by both AMD and Intel as part of their International CES 2022 plans. Both companies will host virtual press-meets on that day, and are expected to unveil several product lines. AMD could shed more like on its Ryzen "Vermeer-S" Socket AM4 desktop processors, possible updates to its Ryzen 5000 mobile product stack; as well as put out some juicy nuggets of info on its future "Zen 4" processors; while Intel will significantly expand its 12th Gen Core "Alder Lake" family across both its desktop and mobile segments, along with more info on its Arc "Alchemist" gaming GPU. The AMD event is slated for 8 AM Pacific, while the Intel one goes up two hours later, at 10 AM Pacific. We will be live-blogging both.

AMD Prepares 7nm "Renoir X" Processors Lacking Integrated Graphics, and "Vermeer S"

AMD apparently finds itself with quite a bit of undigested 7 nm "Renoir" silicon, which it plans to repackage as Socket AM4 processors, reports VideoCardz, citing sources on ChipHell forums. The most interesting aspect of this leak is that the silicon variant, codenamed "Renoir X," comes with a disabled iGPU. This is hence a case of AMD harvesting enough "Renoir" dies with faulty iGPU components, to sell them off as desktop processors. It is also learned that these chips don't feature all of the 8 "Zen 2" CPU cores present on the silicon, but rather AMD is looking to carve out entry-level SKUs, such as the Ryzen 3 or Athlon. The company lacks Athlon desktop SKUs based on "Zen 2" or later, although traditionally the company sought to include some basic iGPU solution with its Athlon SKUs.

In related news, the source reports that AMD will refresh its Ryzen desktop processor family with the new "Vermeer S" Ryzen processors. Built on the existing Socket AM4 package, these use AMD's "Zen 3" CCDs that feature 3D Vertical Cache (3DV Cache), much like the recently announced EPYC "Milan X" server processors. AMD claimed that the 3DV Cache technology has a significant performance uplift on performance akin to a generational update. These could be the company's first response to Intel Core "Alder Lake," although since they're based on the older AM4 platform, could only feature DDR4 and PCIe Gen 4. Much like the Ryzen 3000XT series, these appear to be a stopgap product lineup, with AMD targeting late-Q2/early-Q3 for next-generation "Raphael" Socket AM5 processors based on the "Zen 4" architecture, with DDR5 and PCIe Gen 5.

AMD Posts November Investor Presentation

AMD later this month is preparing to address investors as part of a yet-unknown event. The company typically hosts Financial Analyst Day events around Q1-Q2, and goes to the investors with substantial material on the current state of the organization, the products on offer, what's on the horizon, and how it could impact the company's financials. An alleged presentation related to the November 2021 event was leaked to the web. The presentation provides a guided tour of the entire product portfolio of the company, spanning server processors, compute accelerators, consumer graphics, some client processors, and the semi-custom business.

The presentation outlines that the company has so far successfully executed its roadmaps for the client-CPU, server-CPU, graphics, and compute-accelerator segments. In the client CPU segment, it shows a successful execution up to 2021 with the "Zen 3" microarchitecture. In the server space, it mentions successful execution for its EPYC processors up to "Zen 3" with its "Milan" processors, and confirms that its next-generation "Zen 4" microarchitecture, and its sister-architecture, the "Zen 4c," will be built on the 5 nm silicon fabrication node (likely TSMC N5). The presentation also details the recently announced "Milan-X" processor for existing SP3 platforms, which debuts the 3D Vertical Cache technology, bringing up to 96 MB of L3 cache per CCD, and up to 768 MB of L3 cache (804 MB L1+L2+L3 cache) per socket.
Update 10:54 UTC: The presentation can now be found on the AMD Investor Relations website.

TSMC 3 nm To Enter Volume Production in 2022

TSMC will commercialize its N3 (3 nm) EUV silicon fabrication node in 2022, with volume production set to commence in the second half of the year. The company is looking to maximize capacity on its current N5 (5 nm) node, which already serves major customers such as Apple. AMD is expected to utilize N5 allocation going into 2022 as its next-generation "Zen 4" processors are expected to leverage the node to drive up CPU core counts and caches. The company is also utilizing N6 (6 nm) for its CDNA2 compute accelerator logic dies. N5 could also power mobile application processors from several manufacturers.
Return to Keyword Browsing
May 18th, 2022 19:43 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts