News Posts matching #Hawk Point

Return to Keyword Browsing

AMD "Strix Point" Mobile Processor Confirmed 12-core/24-thread, But Misses Out on PCIe Gen 5

AMD's next-generation Ryzen 9000 "Strix Point" mobile processor, which succeeds the current Ryzen 8040 "Hawk Point" and Ryzen 7040 "Phoenix," is confirmed to feature a CPU core-configuration of 12-core/24-thread, according to a specs-leak by HKEPC citing sources among notebook OEMs. It appears like Computex 2024 will be big for AMD, with the company preparing next-gen processor announcements across the desktop and notebook lines. Both the "Strix Point" mobile processor and "Granite Ridge" desktop processor debut the company's next "Zen 5" microarchitecture.

Perhaps the biggest takeaway from "Zen 5" is that AMD has increased the number of CPU cores per CCX from 8 in "Zen 3" and "Zen 4," to 12 in "Zen 5." While this doesn't affect the core-counts of its CCD chiplets (which are still expected to be 8-core), the "Strix Point" processor appears to use one giant CCX with 12 cores. Each of the "Zen 5" cores has a 1 MB dedicated L2 cache, while the 12 cores share a 24 MB L3 cache. The 12-core/24-thread CPU, besides the generational IPC gains introduced by "Zen 5," marks a 50% increase in CPU muscle over "Hawk Point." It's not just the CPU complex, even the iGPU sees a hardware update.

AMD Readies Ryzen 7 8700F and Ryzen 5 8400F for Retail Channel Launch

AMD is reportedly planning to launch the Ryzen 7 8700F and Ryzen 5 8400F Socket AM5 desktop processors for a global launch, in the retail channel, as boxed processors. The two chips had launched earlier this month in the Chinese retail market. The 8700F reportedly comes with an OPN of 100-100001590BOX, while the 8400F is marked 100-100001591BOX. The "F" in both SKUs denotes a lack of integrated graphics. The Ryzen 7 8700F is an 8-core/16-thread processor based on the 4 nm "Hawk Point" silicon, while the 8400F is a 6-core/12-thread processor based on "Phoenix 2," which offers two "Zen 4" cores that run at higher clock speeds, and four "Zen 4c" cores that run at lower speeds.

The lack of an iGPU isn't the only thing differentiating the 8700F from the 8700G, the new chip even comes with slightly lower CPU clock speeds—100 MHz lower base and maximum boost frequencies. The 8700F CPU runs at a base frequency of 4.10 GHz, with 5.00 GHz maximum boost, when compared to the 4.20/5.10 GHz speeds of the 8700G. The 8400F, on the other hand, runs at 4.20 GHz base frequency, and a 4.70 GHz maximum boost frequency that applies to at least its two "Zen 4" cores; its four "Zen 4c" cores run at lower frequencies. There is no word on pricing. One reason you could want an 8700F over something like a 7700 would be its appetite for memory overclocking, if you can overlook the lack of integrated graphics, a smaller L3 cache, and most importantly, the lack of PCIe Gen 5, and four fewer PCIe lanes.

Microsoft Copilot to Run Locally on AI PCs with at Least 40 TOPS of NPU Performance

Microsoft, Intel, and AMD are attempting to jumpstart demand in the PC industry again, under the aegis of the AI PC—devices with native acceleration for AI workloads. Both Intel and AMD have mobile processors with on-silicon NPUs (neural processing units), which are designed to accelerate the first wave of AI-enhanced client experiences on Windows 11 23H2. Microsoft's bulwark with democratizing AI has been Copilot, as a licensee of Open AI GPT-4, GPT-4 Turbo, Dali, and other generative AI tools from the Open AI stable. Copilot is currently Microsoft's most heavily invested application, with its most capital and best minds mobilized to making it the most popular AI assistant. Microsoft even pushed for the AI PC designator to PC OEMs, which requires them to have a dedicated Copilot key akin to the Start key (we'll see how anti-competition regulators deal with that).

The problem with Microsoft's tango with Intel and AMD to push AI PCs, is that Copilot doesn't really use an NPU, not even at the edge—you input a query or a prompt, and Copilot hands it over to a cloud-based AI service. This is about to change, with Microsoft announcing that Copilot will be able to run locally on AI PCs. Microsoft identified several kinds of Copilot use-cases that an NPU can handle on-device, which should speed up response times to Copilot queries, but this requires the NPU to have at least 40 TOPS of performance. This is a problem for the current crop of processors with NPUs. Intel's Core Ultra "Meteor Lake" has an AI Boost NPU with 10 TOPS on tap, while the Ryzen 8040 "Hawk Point" is only slightly faster, with a 16 TOPS Ryzen AI NPU. AMD has already revealed that the XDNA 2-based 2nd Generation Ryzen AI NPU in its upcoming "Strix Point" processors will come with over 40 TOPS of performance, and it stands to reason that the NPUs in Intel's "Arrow Lake" or "Lunar Lake" processors are comparable in performance; which should enable on-device Copilot.

Orange Pi Neo Launched in China - $599 & $499 Price Points Unveiled

The Orange Pi Neo handheld gaming PC was first exhibited in Europe earlier in the year—where the Manjaro Linux team handed out demo units to attendees of FOSDEM. The initial batch of Orange Pi Neo handhelds were specced with AMD's ubiquitous Ryzen 7 7840U "Phoenix" mobile APU, but a recent official launch event—in China—revealed a new-gen alternative. The Manjaro Linux social media account summarized this weekend presentation: "we launched Orange Pi Neo in Shenzhen. The Ryzen 7 7840U model (16 GB/512 GB) will be 4099 CNY / 499 USD and Ryzen 7 8840U (16 GB/512 GB) model starts at 4499 CNY / 599 USD."

The newly unveiled price points have been deemed quite reasonable and competitive—when lined up against the nearest competition. The Manjaro Linux distribution could be a sticking point for more discerning OS-heads, but alternative operating routes could be outlined by online communities in the near future. The $599 AMD "Hawk Point" Ryzen 7 8840U-based option seems to be slightly overpriced, when you consider the marginal performance improvements it levies when compared to the very similarly appointed Ryzen 7 7840U APU. The "modernized" processor nets you a more potent XDNA NPU, but both product generations house Team Red's Radeon 780M iGPU. Orange Pi and Manjaro are likely testing the waters with an initial Chinese market launch—we hope to see a wider global rollout in the coming months.

AMD Debuts Ryzen 7 8700F & Ryzen 5 8400F SKUs at Beijing AI PC Summit

AMD's Beijing AI PC Innovation Summit served as introduction point for a Chinese market launch of "Hawk Point" Ryzen 8040 mobile series and 8000G desktop processors—news coverage has, so far, focused on that rollout as well as a teasing of next-gen "Strix Point" processors. HXL/9550pro has put a spotlight on an easy-to-miss presentation slide—their social media post revealed the existence of new budget-friendly Ryzen 8000F CPUs. Team Red seems to be preparing two China-exclusive SKUs: Ryzen 7 8700F and Ryzen 5 8400F—not many details were revealed on-stage, so reporters have played a guessing game with speculated technical information. Industry experts believe that the 8700F is an iGPU-less version of AMD's "Hawk Point" Ryzen 7 8700G APU—utilizing the same 8 core and 16 thread configuration, but missing the Radeon 780M integrated graphics solution.

The lower-end SKU is a more perplexing product, since AMD did not elaborate much during "budget" product unveilings—VideoCardz put its thinking hat on for this one: "meanwhile, the 8400F might be harder to guess, as the name sits between 8500G and 8300G, both featuring vastly different configurations. An educated guess would be 6 cores and 12 threads, possibly with two Zen 4 and four Zen 4c cores." The "F" model suffix gained attention last year—courtesy of Team Red's Ryzen 5 7500F CPU. This iGPU-less "Raphael" Zen 4 SKU was initially released as a Chinese market exclusive, but eventually headed West as an option for system integrators.

Qualcomm Snapdragon X Elite Benchmarked Against Intel Core Ultra 7 155H

Qualcomm Snapdragon X Elite is about to make landfall in the ultraportable notebook segment, powering a new wave of Windows 11 devices powered by Arm, capable of running even legacy Windows applications. The Snapdragon X Elite SoC in particular has been designed to rival the Apple M3 chip powering the 2024 MacBook Air, and some of the "entry-level" variants of the 2023 MacBook Pros. These chips threaten the 15 W U-segment and even 28 W P-segment of x86-64 processors from Intel, such as the Core Ultra "Meteor Lake," and Ryzen 8040 "Hawk Point." Erdi Özüağ, prominent tech journalist from Türkiye, has access to a Qualcomm-reference notebook powered by the Snapdragon X Elite X1E80100 28 W SoC. He compared its performance to an off-the-shelf notebook powered by a 28 W Intel Core Ultra 7 155H "Meteor Lake" processor.

There are three tests that highlight the performance of the key components of the SoCs—CPU, iGPU, and NPU. A Microsoft Visual Studio code compile test sees the Snapdragon X Elite with its 12-core Oryon CPU finish the test in 37 seconds; compared to 54 seconds by the Core Ultra 7 155H with its 6P+8E+2LP CPU. In the 3DMark test, the Adreno 750 iGPU posts identical performance numbers to the Arc Graphics Xe-LPG of the 155H. Where the Snapdragon X Elite dominates the Intel chip is AI inferencing. The UL Procyon test sees the 45 TOPS NPU of the Snapdragon X Elite score 1720 points compared to 476 points by the 10 TOPS AI Boost NPU of the Core Ultra. The Intel machine is using OpenVINO, while the Snapdragon is using Qualcomm SNPE SDK for the test. Don't forget to check out the video review by Erdi Özüağ in the source link below.

AMD Ryzen 7 8700GE Engineering Sample Compared to Standard 8700G APU

Last week, AMD's Ryzen 8000GE desktop APU lineup appeared online—four lower power (TDP of 35 W) SKUs are set to join the already released 65 W TDP AM5 "Hawk Point" family. GucksTV has acquired a flagship 8000GE model, albeit in engineering sample form—a Hong Kong-based Ebay Store lists "AMD Ryzen 7 8700GE ES Tray" processors. At the time of writing only one unit remains in stock, priced at $298.99 with the option for free international delivery. The "hugohk" shop appears to specialize in supplying all sorts of Team Red engineering sample CPUs. GucksTV's German language video review pitches the Ryzen 7 8700GE engineering sample against the finalized retail release Ryzen 7 8700 APU.

AMD has not made any official release date announcements regarding the leaked Ryzen 8000GE range, but VideoCardz believes that "expectations are high that these variants will hit the market soon through system integrators." The GucksTV comparison video shows that: "On average, the single-core of 8700GE performance drops by 5%, while multi-core is 17% below 8700G. For graphics, that's a 23% average drop in performance while requiring 52% less power." The reviewer noted that his engineering sample was not allowing access to memory OC profiles, until a motherboard BIOS update was implemented (most likely via Beta firmware)—granting 6400 MT/s instead of the normal JEDEC rate of 5200 MT/s. The test platform utilized an ASRock A620I Lightning WiFi Mini-ITX mainboard—finalized Ryzen 7 8700GE APUs could be ideal candidates for usage in quiet/low temperature compact form factor systems.

AMD Ryzen 7 8840U "Hawk Point" APU Exceeds Expectations in 10 W TDP Gaming Test

AMD Ryzen 8040 "Hawk Point" mobile processors continue to roll out in all sorts of review sample guises—mostly within laptops/notebooks and handheld gaming PC segments. An example of the latter would be GPD's Hawk Point-refreshed Win Max 2 model—Cary Golomb, a tech reviewer and self-described evangelist of "PC Gaming Handhelds Since 2016" has acquired this device for benchmark comparison purposes. A Ryzen 7 8840U-powered GPD Win Max 2 model was pitched against similar devices that house older Team Red APU technologies. Golomb's collection included Valve's Steam Deck LCD model, and three "Phoenix" Ryzen 7840U-based GPD models. He did not have any top-of-the-line ASUS or Lenovo handhelds within reach, but the onboard Ryzen Z1 Extreme APU is a close relative of 7840U.

Golomb's social media post included a screenshot of a Batman: Arkham Knight "average frames per second" comparison chart—all devices were running on a low 10 W TDP setting. The overall verdict favors AMD's new Hawk Point part: "Steam Deck low TDP performance finally dethroned...GPD continues to make the best AMD devices. 8840U shouldn't be better, but everywhere I'm testing, it is consistently better across every TDP. TSP measuring similar." Hawk Point appears to be a slight upgrade over Phoenix—most of the generational improvements reside within a more capable XDNA NPU, so it is interesting to see that the 8840U outperforms its predecessor. They both sport AMD's Radeon 780M integrated graphics solution (RDNA 3), while the standard/first iteration Steam Deck makes do with an RDNA 2-era "Van Gogh" iGPU. Golomb found that the: "three other GPD 7840U devices behaved somewhat consistently."

AMD Ryzen 8040 NPU Monitoring Coming to Windows Task Manager

AMD's first generation XDNA-based Neural Processing Unit (NPU) arrived last year, as an onboard aspect of their "Phoenix" Ryzen 7040 mobile processor series, followed many months later by Intel's similarly NPU-laden Core Ultra "Meteor Lake" generation. It was recently revealed that a Windows 11 DirectML preview grants preliminary support for Core Ultra NPUs—Microsoft's software engineering department seems to be prioritizing Intel AI tech. Team Red has already released XDNA on desktop platforms—with its Ryzen 8000G APU family—and the "Hawk Point" 8040 series is nearing a retail launch, but these processors (plus 7040) remain unsupported by Microsoft's DirectML API. An interesting AMD community blog entry was posted two weeks—news outlets have been slow to pick up on its relevance.

Intel NPU activity can be monitored in Windows Task Manager (see screenshot below), and an upcoming update will add competing AMD parts to the mix. Joel Hruska's Team Red community blog post reveals that NPU monitoring for Ryzen 8040 series processors is due soon: " As AI PCs become more popular, there's a growing need for system monitoring tools that can track the performance of the new NPUs (Neural Processing Units) available on select Ryzen 8040 Series mobile processors. A neural processing unit - also sometimes referred to an integrated or on-die AI engine -- can improve battery life by offloading AI tasks that would otherwise be performed on the CPU or GPU. AMD has been working with Microsoft to enable MCDM (Microsoft Compute Driver Model) infrastructure on the AMD NPU (Neural Processing Unit)-enabled Ryzen 8040 Series of mobile processors. MCDM is a derivative of Windows Display Driver Model (WDDM) that is targeting non-GPU, compute devices, such as the NPU. MCDM enables NPUs to make use of the existing GPU device management infrastructure, including scheduling, power management, memory management, and performance debugging with tools such as the Task Manager. MCDM serves as a fundamental layer, ensuring the smooth execution of AI workloads on NPU devices."

Colorful Resurrects the Colorfire Brand for AMD Ryzen-powered Gaming Notebooks

Colorful is now exclusively a GeForce RTX graphics card vendor, but it had a brief stint with AMD Radeon under the separate Colorfire brand. This brand is reportedly making it back, but not for graphics cards. Colorful isn't just selling graphics cards and motherboards, but also has a growing line of gaming notebooks. Apparently, the Colorfire brand will denote notebooks powered by AMD Ryzen mobile processors. The discrete GPUs are still GeForce RTX 40-series. The news emerged from a regulatory filing by Colorful's notebook ODM, Clevo, which is a well known notebook manufacturer for several brands. The filings speak of the Colorfire MEOW R15 24, and the MEOW R16 24, which presumably feature 15-inch 16:9 and 16-inch 16:10 displays, respectively.

Both the Colorfire notebooks are powered by AMD Ryzen 8040 series "Hawk Point" mobile processors with full Ryzen AI enablement, while their discrete graphics options include GeForce RTX 4060 series and RTX 4070 series Laptop GPUs. The listings also mention at 180 W power supply for the MEOW R15 24; and a 230 W one for the MEOW R16 24, which seems to tally well with a combination of a Ryzen 8040HS series 45 W-class processor, and a GeForce RTX 4060/4070 series GPU with configured total graphics power in the 130 W to 160 W range.

AMD Readies Ryzen 8000GE Line of 35W Desktop APUs

AMD's small but fledgling Ryzen 8000 line of Socket AM5 desktop APUs is about to grow, with the addition of four new low-power SKUs, under the Ryzen 8000GE line. These chips come with a TDP of 35 W compared to the 65 W of the regular 8000G APUs, and a lowered PPT (package power tracking) value, making them energy-efficient variants. To be clear, these are not AMD's 8000-series APUs meant for the commercial desktop market, for that the company has the Ryzen PRO 8000 series and Ryzen PRO 7000 series.

The Ryzen 8000GE series are meant to square off against Intel's 14th Gen Core T-series SKUs that have processor base power values of 35 W, and significantly lower maximum turbo power values than the regular processor models. To carve out these chips, AMD has lowered the clock speeds and TDP compared to the regular 8000G series. Since the underlying 4 nm "Hawk Point" silicon achieves fairly good clocks in its 35 W HS-segment notebook processors, one can expect reasonably good boost residency with the 8000GE desktop chips.

AMD Ryzen 7 8700G Gets 5 GHz All-core OC and 3.30 GHz iGPU OC in Separate Feats

AMD Ryzen 7 8700G continues to be the favorite new toy for overclockers and enthusiasts. Der8auer succeeded in de-lidding the chip (removing its IHS), to reveal the monolithic "Hawk Point" silicon underneath. By default, the chip uses soldered TIM, but with the IHS removed and sTIM residue cleaned off, the chip could be prepared for direct die cooling, through liquid metal TIM. This feat enabled load temperatures to drop from 85°C to just over 60°C. This enabled a 5.00 GHz all-core overclock for the chip's 8 "Zen 4" CPU cores.

Also over the last week, SkatterBencher succeeded in getting the iGPU engine clock of the 8700G to 3.30 GHz, which is 50 MHz higher than the slider limit for Precision Boost Overdrive. SkatterBencher's report says that an 8700G can have its power limits raised all the way up to 170 W. The 3.30 GHz iGPU overclock was supported by a core voltage of 1.25 V (which is high considering the tight vCore limits AMD sets for its APUs). The increased power limits and clock speeds result in a 22.31% iGPU performance increase when averaged over 14 tests.

AMD Ryzen 8000G Desktop APUs Don't Support ECC Memory

AMD's newly announced Ryzen 8000G "Hawk Point" desktop APUs do not support ECC memory, contrary to what the specifications on the AMD website had initially shown, Reddit users found out. The company has since quietly edited its product pages to remove the bit about ECC support. For the overwhelming majority of desktop client use cases, including enthusiast PCs, ECC memory support is irrelevant. That said, the memory controllers of "Phoenix" in Ryzen PRO 7000 mobile processors for commercial notebooks support ECC memory, and so it stands to reason that upcoming Ryzen PRO models for both commercial desktops and notebooks might feature it.

The AMD Ryzen 7 8700G and Ryzen 5 8600G are based on the 4 nm "Hawk Point" monolithic silicon, with a more overclocker-friendly set of DDR5 memory controllers than the ones found in the Ryzen 7000 "Raphael" processors. Besides support for several high-frequency DDR5 modes, the memory controller technically supports ECC (at least "Phoenix" does, on the Ryzen PRO 7000 mobile processors). The memory controller also supports a maximum of 256 GB of memory, or 64 GB dual-rank memory modules per slot. It also supports 24 GB and 48 GB DIMM densities.

Tianbo GOD88 Mini PC Listed in China, Sports Ryzen 7 8845HS APU & "Cyberpunk" Livery

Tianbo has prepared a very an intriguing Cyberpunk 2077-themed Mini PC for the Chinese gaming hardware market—the JD.com listing (as reported by VideoCardz) showcases black and white enclosures with a sci-fi aesthetic and plenty of RGB lighting courtesy of the slimline internal cooling solution's illuminated 9 cm fan. It is not immediately clear whether CD Projekt and R. Talsorian Games have jointly approved the GOD88 Mini PC's prominent usage of their Cyberpunk title/logo/font. The specification sheet and accompanying imagery place emphasis on the Cyber GOD88's APU of choice: an AMD Ryzen 7 8845HS mobile processor—this sits at second place within Team Red's recently launched 8040 "Hawk Point" series, their Ryzen 9 8945HS chip takes principal position here.

The GOD88's Ryzen 7 8845HS APU is no slouch when compared to the Ryzen 9 sibling—it runs the same 8-core/16-thread configuration, with a 5.1 GHz max boost (only trailing behind by 100 MHz). The spec sheet mentions a configurable TDP of 35 - 54 W. Tianbo's Mini PC is sold as a barebones system, according to the JD.com product page—customers are expected to plug in their own choice of RAM and storage. Dual-channel DDR5-5600 memory is supported, while the cramped interior can accommodate a single full-sized M.2 2280 PCIe 4×4 SSD. The Tianbo GOD88 "High Performance" Cyberpunk Mini PC will be open to pre-orders (via JD.com) on February 5—barebones pricing is set at 2688 RMB (~$378.50).

AMD Ryzen 7 8700G AI Performance Enhanced by Overclocked DDR5 Memory

We already know about AMD Ryzen 7 8700G APU's enjoyment of overclocked memory—early reviews demonstrated the graphical benefits granted by fiddling with "iGPU engine clock and the processor's memory frequency." While gamers can enjoy a boosted integrated graphics solution that is comparable in performance 1080p stakes to a discrete Radeon RX 6500 XT GPU, AI enthusiasts are eager to experiment with the "Hawk Point" pat's Radeon 780M IGP and Neural Processing Unit (NPU)—the first generation Ryzen XDNA inference engine can unleash up to 16 AI TOPs. One individual, chi11eddog, posted their findings through social media channels earlier today, coinciding with the official launch of Ryzen 8000G processors. The initial set of results concentrated on the Radeon 780M aspect; NPU-centric data may arrive at a later date.

They performed quick tests on AMD's freshly released Ryzen 7 8700G desktop processor, combined with an MSI B650 Gaming Plus WiFi motherboard and two sticks of 16 GB DDR5-4800 memory. The MSI exclusive "Memory Try It" feature was deployed further up in the tables—this assisted in achieving and gauging several "higher system RAM frequency" settings. Here is chi11eddog's succinct interpretation of benchmark results: "7600 MT/s is 15% faster than 4800 MT/s in UL Procyon AI Inference Benchmark and 4% faster in GIMP with Stable Diffusion." The processor's default memory state is capable of producing 210 Float32 TOPs, according to chi11eddog's inference chart. The 6000 MT/s setting produces a 7% improvement over baseline, while 7200 MT/s drives proceedings to 11%—the flagship APU's Radeon 780M iGPU appears to be quite dependent on bandwidth. Their GIMP w/ Stable Diffusion benchmarks also taxed the integrated RDNA 3 graphics solution—again, it was deemed to be fairly bandwidth hungry.

AMD Releases Preliminary XDNA Linux Driver

AMD's Ryzen 7040 "Phoenix" mobile APUs debuted last year with Ryzen AI capabilities (via onboard Xilinx IP), thanks to the fitting of an on-board NPU—Team Red's first generation XDNA AI Engine received immediate support on Windows platforms. Naturally, Linux users expressed frustration about being left out in the cold—later on in the year, AMD put some feelers out (as reported by Phoronix), and gauged interest in a potential Linux deployment of Ryzen AI. Fast forward to January 2024, we see movement with an initial release on open platforms—according to Michael Larabel's latest article: "More than 1,000 requests for Linux support were logged following that October statement and since then I've been hearing quietly of AMD working on Linux support... Well, there's now an open-source but currently out-of-tree driver available. "

AMD's GitHub has been updated with the "first public code drop of the XDNA Linux driver." According to System Requirements, the entry point "to run AI applications (test machine) on an Ryzen AI processor" is Phoenix silicon, as expected. Ryzen 8040 "Hawk Point" is presumably on the support list, since it shares the same basic underpinnings—albeit with greater NPU performance. One of AMD's GitHub authors has teased that "Strix" will also be supported in the future—second generation XDNA NPUs are expected to drop later this year. Targets for GFX1150 and GFX1151 were uncovered earlier this week—"Strix Point" and "Strix Point Halo" (respectively) are codenames for next generation Team Red APUs.

AMD Ryzen 7 8700G & Ryzen 5 8600G APUs Geekbenched

AMD announced its Ryzen 8000G series of Zen 4-based desktop APUs earlier this month, with an official product launch date: January 31. The top models within this range are the "Hawk Point" Ryzen 7 8700G and Ryzen 5 8600G processors—Olrak29_ took to social media after spotting pre-release examples popping up on the Geekbench Browser database. It is highly likely that evaluation samples are in the hands of reviewers, and more benchmarked results are expected to be uploaded over the next week and a half. The Ryzen 7 8700G (w/ Radeon 780M Graphics) was benched on an ASUS ROG STRIX B650-A GAMING WIFI board with 32 GB (6398 MT/s) of DDR5 system memory. Leaked figures appeared online last weekend, originating from an Ryzen 5 8600G (w/ Radeon 760M Graphics) paired with an MSI B650 GAMING PLUS WIFI (MS-7E26) motherboard and 32 GB (6400 MT/s) of DDR5 RAM.

The Geekbench 6 results reveal that the Ryzen 7 8700G and Ryzen 5 8600G APUs are slightly less performant than "Raphael" Ryzen 7000 non-X processors—not a massive revelation, given the underlying technological similarities between these AMD product lines. Evaluations could change with the publication of official review data, but the 8000G series is at a natural disadvantage here—lower core clock frequencies and smaller L3 cache designations are the likely culprits. The incoming APUs are also somewhat hobbled with PCIe support only reaching 4.0 standards. VideoCardz, Tom's Hardware and Wccftech have taken the time to compile the leaked Geekbench 6 results into handy comparison charts—very much worth checking out.

AMD Ryzen 7 8840U APU Benched in GPD Win Max 2 Handheld

GPD has disclosed to ITHome that a specification refresh of its Win Max 2 handheld/mini-laptop gaming PC is incoming—this model debuted last year with Ryzen 7040 "Phoenix" APUs sitting in the driver's seat. A company representative provided a sneak peek of an upgraded device that sports a Team Red Ryzen 8040 series "Hawk Point" mobile processor, and a larger pool of system memory (32 GB versus the 2023 model's 16 GB). The refreshed GPD Win Max 2's Ryzen 7 8840U APU was compared to the predecessor's Ryzen 7 7840U in CPU-Z benchmarks (standard and AX-512)—the results demonstrate a very slight difference in performance between generations.

The 8040 and 7040 APUs share the same "Phoenix" basic CPU design (8-cores + 16-threads) based on the prevalent "Zen 4" microarchitecture, plus an integration of AMD's Radeon 780M GPU. The former's main upgrade lies in its AI-crunching capabilities—a deployment of Team Red's XDNA AI engine. Ryzen 8040's: "NPU performance has been increased to 16 TOPS, compared to 10 TOPS of the NPU on the 'Phoenix' silicon. AMD is taking a whole-of-silicon approach to AI acceleration, which includes not just the NPU, but also the 'Zen 4' CPU cores that support the AVX-512 VNNI instruction set that's relevant to AI; and the iGPU based on the RDNA 3 graphics architecture, with each of its compute unit featuring two AI accelerators, components that make the SIMD cores crunch matrix math. The whole-of-silicon performance figures for "Phoenix" is 33 TOPS; while 'Hawk Point' boasts of 39 TOPS. In benchmarks by AMD, 'Hawk Point' is shown delivering a 40% improvement in vision models, and Llama 2, over the Ryzen 7040 "Phoenix" series."

CPU-Z Devs Add Support for Intel Arrow Lake & AMD Hawk Point CPUs

Yesterday's CPU-Z update—now version 2.09—brings support for unreleased next generation Intel and AMD processors. PC hardware sleuths have combed through the freeware app's mid-January changelog—we first see "improved support" for Intel's recently launched 14th Generation Meteor Lake mobile CPU series, while the same line also mentions "preliminary support" for Team Blue's Arrow Lake desktop processor family. The latter is hotly anticipated to launch at the tail-end of 2024, so it is intriguing to see CPU-Z's development team getting familiar with Intel's mainstream 15th gen microarchitecture.

The main competition also makes an appearance further down—AMD's "Hawk Point and Hawk Point 2 (Zen 4/Zen 4c)" CPU families are present, although the changelog does not clarify whether this is preliminary support (or full blown). "Hawk Point" seems to be a very light refresh of their proceeding "Phoenix" product line, with some extra NPU "oomph" sprinkled in. The rumor mill has Team Red's Ryzen 8040 Series of mobile parts marked down for a first quarter 2024 launch. Version 2.09 also adds support for NVIDIA GeForce RTX 4070 SUPER (AD104-350-A1) GPUs. We expect to see the higher-up models joining in on the fun, with upcoming CPU-Z updates.

MINISFORUM Unveils V3 AMD Tablet

MINISFORUM unveiled a high-end tablet convertible based on the Windows 11 x64 platform. Called simply the V3 AMD Tablet, this 3-in-1 convertible can be used as a 14-inch tablet, or combined with a dock that adds a keyboard, trackpad, and a stand. The tablet measures 318 mm x 213.8 mm x mm 9.8 mm (WxDxH), weighing 946 g. Its 14-inch 16:10 aspect-ratio display offers a 2560 x 1600 pixels resolution, with 165 Hz refresh rate, 100% DCI-P3 coverage, and 500 nits maximum brightness. This display is backed by a sensitive touchscreen that supports MPP 2.6 SLA and sensitivity suitable for a natural handwriting stylus.

Connectivity includes Wi-Fi 6E with Bluetooth 5.3, a USB-C V-Link (DP in), two 40 Gbps USB4, a fingerprint reader, and 4-pole headset jack. Under the hood, the MINISFORUM V3 is powered by an AMD Ryzen 7 8040U series "Hawk Point" processor, paired with 32 GB of LPDDR5-6400 memory, and a 2 TB M.2 Gen 4 NVMe SSD. The SoC has a 28 W configured TDP, and MINISFORUM has innovated a four flat copper heatpipe, dual fan cooling solution. The tablet also has a 4-speaker setup and multi-directional microphone. The front camera is 2 MP with full Windows Hello compatibility, while the rear cam is 5 MP. Powering it all is a 50.82 Wh battery, and a 65 W USB-PD power source over a type-C connector. Windows 11 Pro 23H2 with Ryzen AI enablement comes pre-installed. The company didn't reveal pricing.

AMD Ryzen 7 8700G Confirmed to Feature Maxed Out Radeon 780M Clocked at 2.90 GHz

Hot on the heels of yesterday's leak revealing that the Ryzen 5 8600G Socket AM5 desktop APU features a Radeon 760M iGPU with 8 CU, we're getting to know that the top of the line Ryzen 7 8700G comes with the maxed out Radeon 780M. The 8700G is a Socket AM5 APU based on the 4 nm "Hawk Point" or "Phoenix" silicon (unclear at this point).

The Ryzen 7 8700G features an 8-core/16-thread CPU based on the "Zen 4" microarchitecture, with a base frequency of 4.20 GHz, and a maximum boost frequency of 5.10 GHz. Each of the 8 CPU cores features a 1 MB L2 cache, and they share a 16 MB L3 cache. The Radeon 780M iGPU features 12 compute units (CU), amounting to 768 stream processors. The iGPU engine clock boosts up to 2.90 GHz. While all Ryzen 7000 desktop processors come with integrated graphics, AMD does not consider them to be APUs—processors with overpowered iGPUs that can be used for entry-level gaming besides high-resolution entertainment.

AMD Ryzen 5 8600G to Feature Radeon 760M Graphics with 8 CU, 5.00 GHz Maximum CPU Boost

AMD's upcoming Ryzen 5 8600G Socket AM5 desktop APU will feature the truncated Radeon 760M integrated graphics, and not the previously believed Radeon 780M, or the full iGPU configuration present on the silicon. At this point, there are still conflicting reports on which exact silicon the Ryzen 8000G desktop APUs are even based on, with some of the older reports and Geekbench detecting 8600G engineering samples to be based on "Phoenix," and some of the newer reports suggesting that it's based on "Hawk Point." Both "Phoenix" and "Hawk Point" are nearly identical, except for the latter to feature a faster NPU.

The Ryzen 5 8600G is configured with a 6-core/12-thread CPU based on the "Zen 4" microarchitecture, with 1 MB of L2 cache per core, and 16 MB of shared L3 cache. The CPU base frequency is set to a healthy 4.35 GHz, and maximum CPU boost frequency of 5.00 GHz. These CPU clocks are very similar to those of the mobile Ryzen 5 7640H (which has a base frequency of 4.30 GHz, but the same 5.00 GHz boost), but in case of the 8600G, the 65 W TDP and possible 90 W PPT should help with boost frequency residency. The Radeon 760M gets 8 out of 12 RDNA3 compute units physically present on the silicon, giving it 512 stream processors. Geekbench detects an engine clock (GPU clock) of 2.80 GHz, compared to the 2.60 GHz of the Radeon 760M on the Ryzen 5 7640H. The 8600G ES was running on an MSI MEG X670E Ace motherboard, with 32 GB of dual-channel DDR5-6000 memory.

GIGABYTE Releases AGESA 1.1.0.1a AM5 Motherboard BIOS Updates, Suggests 8700G Based on "Hawk Point," Not "Phoenix"

GIGABYTE released UEFI firmware (BIOS) updates for its Socket AM5 motherboards encapsulating the AMD AGESA ComboAM5 PI 1.1.0.1a microcode. This latest version of AGESA has sparked speculation that some of AMD's upcoming Ryzen 8000G desktop APUs are in fact based on the newer "Hawk Point" silicon, and not "Phoenix." AMD released its Ryzen 8040 series "Hawk Point" mobile processors earlier this month, with a faster NPU that results in an up to 40% increase in AI interference performance over that of "Phoenix." "Hawk Point" is essentially identical to "Phoenix," including its first generation XDNA architecture based NPU, however the NPU's clock speed has been dialed up. If AMD is building some of its Ryzen 8000G desktop APU models on "Hawk Point" instead of "Phoenix," then we have our first solid hint that AMD is bringing Ryzen AI to the desktop platform, and that the Ryzen 8000G will end up being the first desktop processors with an NPU.

AMD is expected to be building at least two APU models based on the "Hawk Point" silicon, the Ryzen 7 8700G, and the Ryzen 5 8600G. The lower models, namely the 8500G and Ryzen 3 8300G, are expected to be based on the smaller "Phoenix 2" silicon, with a hybrid CPU that combines two "Zen 4" cores with up to four "Zen 4c" cores. The "Zen 4c" cores may feature an identical instruction set architecture (ISA) and IPC to the regular "Zen 4" cores, but have tighter Vcore limits, and operate at lower clock speeds. This makes the two available "Zen 4" cores the de facto "performance" cores, and AMD flags them as UEFI CPPC "preferred cores," ensuring the OS guides a bulk of its processing traffic to them. Both "Phoenix" and "Hawk Point" feature an identical CPU setup, with up to eight "Zen 4" cores.

Geekom Readies Mini PCs Powered by Intel "Meteor Lake" and AMD "Hawk Point"

Mini PC designer Geekom is bring three innovative desktops to the 2024 International CES, based on the very latest mobile processors by Intel and AMD. These boxes are hinged on MoDT (mobile on desktop) hardware, meaning that energy efficient mobile processors are crammed into compact desktop cases, and wired out with all the connectivity they can put out. The three mini PC models Geekom is launching includes the IT14 Pro, the A8 Max, and the APro8 Max. The Geekcom IT14 Pro comes in a 0.7-liter chassis (about the size of a NUC), and is powered by an Intel Core Ultra 7 155H "Meteor Lake" processor configured with 6P+8E+2LP cores, or 16-core/22-thread. The desktop relies entirely on the maxed out Arc iGPU with all its 8 Xe cores enabled (128 EU). The NPU is also enabled. The company didn't reveal the memory, storage, or WLAN configuration of this desktop, yet.

The A8 Max is based on a similar 1-liter class chassis, but uses an AMD Ryzen 7 8840HS or Ryzen 9 8940HS "Hawk Point" processor, both of which are 8-core/16-thread "Zen 4," and configured with the full Radeon 780M iGPU available (12 CU or 768 stream processors). The star attraction here is the updated Ryzen AI NPU, which drives up the AI inference performance of these chips to 39 TOPS, compared to 34 TOPS of the Intel "Meteor Lake" chips. The APro8 Max is a based on a physically larger chassis that looks a bit like a game console. It's based on mostly the same hardware as the A8 Max, but with an added Radeon RX 7600M XT discrete GPU, which should give it the ability to offer maxed out AAA gaming at 1080p, or power productivity workloads at 4K UHD. We shoud know more about these three in Vegas next month.

Microsoft's Next-Gen Xbox for 2028 to Combine AMD Zen 6 and RDNA5 with a Powerful NPU and Cloud Integration

Microsoft Xbox Series X/S, their hardware refreshes, and variants, will reportedly be the company's mainstay all the way up until 2028, the company disclosed in its documents filed as part of its anti-trust lawsuit with the FTC. In a presentation slide titled "From "Zero Microsoft" to "Full Microsoft," the company explains how its next gen Xbox, scheduled for calendar year (CY) 2028, will see a full convergence of Microsoft co-developed hardware, software, and cloud compute services, into a powerful entertainment system. It elaborates on this in another slide, titled "Cohesive Hybrid Compute," where it states the company's vision to be the development of "a next generation hybrid game platform capable of leveraging the combined power of the client and cloud to deliver deeper immersion and entirely new classes of game experiences."

From the looks of it, Microsoft fully understands the creator economy that has been built over the gaming industry, and wants to develop its next-gen console to target exactly this—a single device from which people can play, stream, and create content from—something that's traditionally reserved for gaming desktop PCs. Game streamers playing on consoles usually have an entire creator PC setup handling the production and streaming side of things. Keeping this exact use-case in mind, Microsoft plans to "enable new levels of performance beyond the capabilities of the client hardware alone," by which it means that not only will the console rely on its own hardware—which could be jaw-dropping powerful as you'll see—but also leverage cloud compute services from Microsoft.
Return to Keyword Browsing
Apr 29th, 2024 14:36 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts