News Posts matching #Foundry

Return to Keyword Browsing

Intel 20A Node Cancelled for Foundry Customers, "Arrow Lake" Mainly Manufactured Externally

Intel has announced the cancellation of its 20A node for Foundry customers, as well as shifting majority of Arrow Lake production to external foundries. The tech giant will instead focus its resources on the more advanced 18A node while relying on external partners for Arrow Lake production, likely tapping TSMC or Samsung for their 2 nm nodes. The decision follows Intel's successful release of the 18A Process Design Kit (PDK) 1.0 in July, which garnered positive feedback from the ecosystem, according to the company. Intel reports that the 18A node is already operational, booting operating systems and yielding well, keeping the company on track for a 2025 launch. This early success has enabled Intel to reallocate engineering resources from 20A to 18A sooner than anticipated. As a result, the "Arrow Lake processor family will be built primarily using external partners and packaged by Intel Foundry".

The 20A node, while now cancelled for Arrow Lake, has played a crucial role in Intel's journey towards 18A. It served as a testbed for new techniques, materials, and transistor architectures essential for advancing Moore's Law. The 20A node successfully integrated both RibbonFET gate-all-around transistor architecture and PowerVia backside power delivery for the first time, providing valuable insights that directly informed the development of 18A. Intel's decision to focus on 18A is also driven by economic factors. With the current 18A defect density already at D0 <0.40, the company sees an opportunity to optimize its engineering investments by transitioning now. However, challenges remain, as evidenced by recent reports of Broadcom's disappointment in the 18A node. Despite these hurdles, Intel remains optimistic about the future of its foundry services and the potential of its advanced manufacturing processes. The coming months will be crucial as the company works to demonstrate the capabilities of its 18A node and secure more partners for its foundry business.

Intel Considers Sale of Altera Business Amid Restructuring Plans, Foundry Business to Stay

Intel is reportedly exploring the sale of its Altera business, a move guided by CEO Pat Gelsinger as part of broader restructuring efforts. Acquired by Intel in 2015 for $16.7 billion, Altera, formerly known as the Programmable Solutions Group, has been a profitable segment. However, with Intel facing financial strain due to extensive spending, the company is now considering divesting its FPGA business to recoup capital. Currently, Altera operates as a separate entity within Intel, relying on the tech giant for R&D, sales, marketing, and support. Gelsinger is expected to propose the sale at a board meeting scheduled for mid-September, where he will outline his vision for Intel's future. This restructuring could also affect other parts of Intel's operations, including its Foundry business.

While previous reports suggested that Intel might spin off its Foundry unit or sell it to industry leaders like TSMC or Samsung, the latest information indicates that Intel plans to retain this division, albeit with scaled-back expansion efforts. The $32 billion factory in Germany, for example, may be scrapped, along with other capital-intensive projects, and other capital expansions may also be put on hold. Pat Gelsinger's vision still needs to be finalized and is still in the drafting phase, so until the mid-September board meeting, we have to wait to gain more information.

Report: Intel Could Spin Out Foundry Business or Cancel Some Expansion Plans to Control Losses

According to a recent report from Bloomberg, Intel is in talks with investment banks about a possible spin-out of its foundry business, as well as scraping some existing expansion plans to cut losses. As the report highlights, sources close to Intel noted that the company is exploring various ways to deal with the recent Q2 2024 earnings report. While Intel's revenues are in decline, they are still high. However, the profitability of running its business has declined so much that the company is now operating on a net loss, with an astonishing $1.61 billion in the red. CEO Pat Gelsinger is now exploring various ways to control these losses and make the 56-year-old giant profitable again. Goldman Sachs and Morgan Stanley are reportedly advising Intel about its future moves regarding the foundry business and overall operations.

The Intel Foundry unit represents the biggest consumer of the company's funds, as the expansion plans across the US and Europe are costing Intel billions of US Dollars. Even though the company receives various state subsidies to build semiconductor manufacturing facilities, it still has to put much of its capital to work. Given that the company is running tight on funds, some of these expansion plans that are not business-critical may get scraped. Additionally, running the foundry business is also turning out to be rather costly, with Q2 2024 recording a negative 65.5% operating margin. Separating Intel Product and Intel Foundry may be an option, or even selling the foundry business as a whole is on the table. Whatever happens next is yet to be cleared up. During the Deutsche Bank Technology Conference on Thursday, Pat Gelsinger also noted that "It's been a difficult few weeks" for Intel, with many employees getting laid off to try to establish new cost-saving measures.

Intel 18A Powers On, Panther Lake and Clearwater Forest Out of the Fab and Booting OS

Intel today announced that its lead products on Intel 18A, Panther Lake (AI PC client processor) and Clearwater Forest (server processor), are out of the fab and have powered-on and booted operating systems. These milestones were achieved less than two quarters after tape-out, with both products on track to start production in 2025. The company also announced that the first external customer is expected to tape out on Intel 18A in the first half of next year.

"We are pioneering multiple systems foundry technologies for the AI era and delivering a full stack of innovation that's essential to the next generation of products for Intel and our foundry customers. We are encouraged by our progress and are working closely with customers to bring Intel 18A to market in 2025." -Kevin O'Buckley, Intel senior vice president and general manager of Foundry Services

Intel Reports Q2-2024 Financial Results; Announces $10 Billion Cost Reduction Plan, Shares Fall 20%+

Intel Corporation today reported second-quarter 2024 financial results. "Our Q2 financial performance was disappointing, even as we hit key product and process technology milestones. Second-half trends are more challenging than we previously expected, and we are leveraging our new operating model to take decisive actions that will improve operating and capital efficiencies while accelerating our IDM 2.0 transformation," said Pat Gelsinger, Intel CEO. "These actions, combined with the launch of Intel 18A next year to regain process technology leadership, will strengthen our position in the market, improve our profitability and create shareholder value."

"Second-quarter results were impacted by gross margin headwinds from the accelerated ramp of our AI PC product, higher than typical charges related to non-core businesses and the impact from unused capacity," said David Zinsner, Intel CFO. "By implementing our spending reductions, we are taking proactive steps to improve our profits and strengthen our balance sheet. We expect these actions to meaningfully improve liquidity and reduce our debt balance while enabling us to make the right investments to drive long-term value for shareholders."

Samsung Electronics Announces Results for Second Quarter of 2024

Samsung Electronics today reported financial results for the second quarter ended June 30, 2024. The Company posted KRW 74.07 trillion in consolidated revenue and operating profit of KRW 10.44 trillion as favorable memory market conditions drove higher average sales price (ASP), while robust sales of OLED panels also contributed to the results.

Memory Market Continues To Recover; Solid Second Half Outlook Centered on Server Demand
The DS Division posted KRW 28.56 trillion in consolidated revenue and KRW 6.45 trillion in operating profit for the second quarter. Driven by strong demand for HBM as well as conventional DRAM and server SSDs, the memory market as a whole continued its recovery. This increased demand is a result of the continued AI investments by cloud service providers and growing demand for AI from businesses for their on-premise servers.

Intel Names Naga Chandrasekaran to Lead Foundry Manufacturing and Supply Chain

Intel Corporation today announced the appointment of Dr. Naga Chandrasekaran as chief global operations officer, executive vice president and general manager of Intel Foundry Manufacturing and Supply Chain organization. Chandrasekaran joins Intel from Micron, where he served as senior vice president for Technology Development. He will be a member of Intel's executive leadership team and report to CEO Pat Gelsinger.

Chandrasekaran succeeds Keyvan Esfarjani, who has decided to retire from Intel after nearly 30 years of dedicated service. Esfarjani's distinguished career set a strong foundation for Intel Foundry, and his leadership in global supply chain resilience and manufacturing excellence has helped to position Intel's business for long-term success. He will remain with Intel through the end of the year to ensure a seamless transition.

Samsung Electronics To Provide Turnkey Semiconductor Solutions With 2nm GAA Process and 2.5D Package to Preferred Networks

Samsung Electronics, a world leader in advanced semiconductor technology, today announced that it will provide turnkey semiconductor solutions using the 2-nanometer (nm) foundry process and the advanced 2.5D packaging technology Interposer-Cube S (I-Cube S) to Preferred Networks, a leading Japanese AI company.

By leveraging Samsung's leading-edge foundry and advanced packaging products, Preferred Networks aims to develop powerful AI accelerators that meet the ever-growing demand for computing power driven by generative AI.

Samsung Showcases AI-Era Vision and Latest Foundry Technologies at SFF 2024

Samsung Electronics, a world leader in advanced semiconductor technology, today unveiled its latest foundry innovations and outlined its vision for the AI era during Samsung Foundry Forum (SFF) U.S., an annual event held at the company's Device Solutions America headquarters in San Jose, California. Under the theme "Empowering the AI Revolution," Samsung announced its reinforced process technology roadmap, including two new cutting-edge nodes—SF2Z and SF4U—as well as its integrated Samsung AI Solutions platform harnessing the unique strengths of its Foundry, Memory and Advanced Package (AVP) businesses.

"At a time when numerous technologies are evolving around AI, the key to its implementation lies in high-performance, low-power semiconductors," said Dr. Siyoung Choi, President and Head of Foundry Business at Samsung Electronics. "Alongside our proven GAA process optimized for AI chips, we plan to introduce integrated, co-packaged optics (CPO) technology for high-speed, low-power data processing, providing our customers with the one-stop AI solutions they need to thrive in this transformative era."

Intel and Apollo Agree to Joint Venture Related to Intel's Fab 34 in Ireland

Intel Corporation (Nasdaq: INTC) and Apollo (NYSE: APO) today announced a definitive agreement under which Apollo-managed funds and affiliates will lead an investment of $11 billion to acquire from Intel a 49% equity interest in a joint venture entity related to Intel's Fab 34. The transaction represents Intel's second Semiconductor Co-Investment Program (SCIP) arrangement. SCIP is an element of Intel's Smart Capital strategy, a funding approach designed to create financial flexibility to accelerate the company's strategy, including investing in its global manufacturing operations, while maintaining a strong balance sheet.

Located in Leixlip, Ireland, Fab 34 is Intel's leading-edge high-volume manufacturing (HVM) facility designed for wafers using the Intel 4 and Intel 3 process technologies. To date, Intel has invested $18.4 billion in Fab 34. This transaction allows Intel to unlock and redeploy to other parts of its business a portion of this investment while continuing the build-out of Fab 34. As part of its transformation strategy, Intel has committed billions of dollars of investments to regaining process leadership and building out leading-edge wafer fabrication and advanced packaging capacity globally.

AMD Wants to Tap Samsung Foundry for 3 nm GAAFET Process

According to a report by KED Global, Korean chipmaking giant Samsung is ramping up its efforts to compete with global giants like TSMC and Intel. The latest partnership on the horizon is AMD's collaboration with Samsung. AMD is planning to utilize Samsung's cutting-edge 3 nm technology for its future chips. More specifically, AMD wants to utilize Samsung's gate-all-around FETs (GAAFETs). During ITF World 2024, AMD CEO Lisa Su noted that the company intends to use 3 nm GAA transistors for its future products. The only company offering GAAFETs on a 3 nm process is Samsung. Hence, this report from KED gains more credibility.

While we don't have any official information, AMD's utilization of a second foundry as a manufacturing partner would be a first for the company in years. This strategic move signifies a shift towards dual-sourcing, aiming to diversify its supply chain and reduce dependency on a single manufacturer, previously TSMC. We still don't know what specific AMD products will use GAAFETs. AMD could use them for CPUs, GPUs, DPUs, FPGAs, and even data center accelerators like Instinct MI series.

Samsung Could Start 1nm Mass Production Sooner Than Expected

Samsung Foundry business is set to announce its technology roadmap and plans to strengthen the foundry ecosystem at the Foundry and SAFE Forum in Silicon Valley from June 12 to 13. Notably, Samsung is expected to advance its 1 nm process mass production plan, originally scheduled for 2027, to 2026. This move could look like a surprise since recent rumors (denied by Samsung) emerged about HBM3 and HBM3E chips running too hot and failing to be validated by NVIDIA.

Previously, Samsung successfully mass-produced the world's first 3 nm wafer foundry in June 2022. The company plans to start mass production of its second-generation 3 nm process in 2024 and 2 nm process in 2025. Speculations suggest Samsung may integrate these nodes and potentially begin mass-producing 2 nm chips as early as the second half of 2024. In comparison, rival TSMC aims to reach the A16 node (1.6 nm) in 2027 and start mass production of its 1.4 nm process around 2027-2028.
Samsung Foundry

This Week in Gaming (Week 18)

As we go from April to May, we have something of a void of new game releases, with the biggest release being a game that puts you in charge of a factory. As for the rest of this coming week's releases, you can look forward to doing some farming, working as a detective, cosplaying as an alien, working in a lab and finishing the week in office with a party royale.

Foundry / This week's major release / Thursday 2 May / Early Access
Foundry is a first-person (first-robot?) factory builder with complete creative freedom set in a procedurally generated and infinite voxel world. Land on an unexplored planet and design a giant automated robot production facility under the watchful direction of your AI friend, Carl. Steam Link

Intel Outlines New Financial Reporting Structure

Intel Corporation today outlined a new financial reporting structure that is aligned with the company's previously announced foundry operating model for 2024 and beyond. This new structure is designed to drive increased cost discipline and higher returns by providing greater transparency, accountability and incentives across the business. To support the new structure, Intel provided recast operating segment financial results for the years 2023, 2022 and 2021. The company also shared a targeted path toward long-term growth and profitability of Intel Foundry, as well as clear goals for driving financial performance improvement and shareholder value creation.

"Intel's differentiated position as both a world-class semiconductor manufacturer and a fabless technology leader creates significant opportunities to drive long-term sustainable growth across these two complementary businesses," said Pat Gelsinger, Intel CEO. "Implementing this new model marks a key achievement in our IDM 2.0 transformation as we hone our execution engine, stand up the industry's first and only systems foundry with geographically diverse leading-edge manufacturing capacity, and advance our mission to bring AI Everywhere."

Intel Redefines the Foundry for an Era of AI

Artificial intelligence isn't just driving headlines and stock valuations. It's also "pushing the boundaries of silicon technology, packaging technology, the construction of silicon, and the construction of racks and data centers," says Intel's Bob Brennan. "There is an insatiable demand," Brennan adds. Which is great timing since his job is to help satisfy that demand.

Brennan leads customer solutions engineering for Intel Foundry, which aims to make it as easy and fast as possible for the world's fabless chipmakers to fabricate and assemble their chips through Intel factories. "We are engaged from architecture to high-volume manufacturing—soup to nuts—and we present the customer with a complete solution," Brennan asserts.

US Government to Announce Massive Grant for Intel's Arizona Facility

According to the latest report by Reuters, the US government is preparing to announce a multi-billion dollar grant for Intel's chip manufacturing operations in Arizona next week, possibly worth more than $10 billion. US President Joe Biden and Commerce Secretary Gina Raimondo will make the announcement, which is part of the 2022 CHIPS and Science Act aimed at expanding US chip production and reducing dependence on China and Taiwan manufacturing. The exact amount of the grant has yet to be confirmed, but rumors suggest it could exceed $10 billion, making it the most significant award yet under the CHIPS Act. The funding will include grants and loans to bolster Intel's competitive position and support the company's US semiconductor manufacturing expansion plans. This comes as a surprise just a day after the Pentagon reportedly refused to invest $2.5 billion in Intel as a part of a secret defense grant.

Intel has been investing significantly in its US expansion, recently opening a $3.5 billion advanced packaging facility in New Mexico, supposed to create extravagant packaging technology like Foveros and EMIB. The chipmaker is also expanding its semiconductor manufacturing capacity in Arizona, with plans to build new fabs in the state. Arizona is quickly becoming a significant hub for semiconductor manufacturing in the United States. In addition to Intel's expansion, Taiwan Semiconductor Manufacturing Company (TSMC) is also building new fabs in the state, attracting supply partners to the region. CHIPS Act has a total funding capacity of $39 billion allocated for semiconductor production and $11 billion for research and development. The Intel grant will likely cover the production part, as Team Blue has been reshaping its business units with the Intel Product and Intel Foundry segments.

TSMC Aiming to Recruit Approximately 6000 New Workers

Taiwan's Commercial Times has published coverage of a newly launched TSMC recruitment drive—proceedings kicked off last weekend with company representatives heading to the National Taiwan University campus. On the second of March, TSMC set up an outdoor booth on the grounds of Taipei's public research university—where the national comprehensive institute organized a Talent Recruitment Enterprise Expo. Unsurprisingly, TSMC recruiters are seeking potential "talents with high enthusiasm for semiconductors." Ctee's reporter found out that Taiwan's premier foundry is expecting to: "recruit approximately 6,000 new colleagues in Taiwan in 2024, including engineers and technicians." TSMC is reportedly responding to business growth and technology development demands—so much so, that its native manufacturing plants require a fresh influx of workers.

According to Ctee's report, TSMC's March recruitment tour is due to snake through Taiwan and then head over to mainland China: "Tsinghua University, National Cheng Kung University, National Yang-Ming Jiaotong University, Central China University, Zhongxing University, Zhongshan, National Chung Cheng University, Beijing University of Science and Technology, etc., totaling 19 physical activities and four online talent recruitment briefings." A parallel "2024 DNA Summer Internship Program" has also been rolled out: "inviting interested students to join and use internships to personally experience the environment and culture of TSMC." The company's growing global layout also provides opportunities for new employees to work overseas—the article highlights TSMC's newly opened semiconductor fabrication plant in Kumamoto Prefecture, Japan as the preferred choice for "internal employees." The multinational firm's Arizona facilities did not get a shout out, despite recent good news. Reports from mid-2023 suggest that TSMC's core values are at odds with North American work culture.

Samsung Foundry Renames 3 nm Process to 2 nm Amid Competition with Intel

In a move that could intensify competition with Intel in the cutting-edge chip manufacturing space, Samsung Foundry has reportedly decided to rebrand its second-generation 3 nm-class fabrication technology, previously known as SF3, to a 2 nm-class manufacturing process called SF2. According to reports from ZDNet, the renaming of Samsung's SF3 to SF2 is likely an attempt by the South Korean tech giant to simplify its process nomenclature and better compete against Intel Foundry, at least visually. Intel is set to roll out its Intel 20A production node, a 2 nm-class technology, later this year. The reports suggest that Samsung has already notified its customers about the changes in its roadmap and the renaming of SF3 to SF2. Significantly, the company has reportedly gone as far as re-signing contracts with customers initially intended to use the SF3 production node.

"We were informed by Samsung Electronics that the 2nd generation 3 nm [name] is being changed to 2 nm," an unnamed source noted to ZDNet. "We had contracted Samsung Foundry for the 2nd generation 3 nm production last year, but we recently revised the contract to change the name to 2 nm." Despite the name change, Samsung's SF3, now called SF2, has not undergone any actual process technology alterations. This suggests that the renaming is primarily a marketing move, as using a different process technology would require customers to rework their chip designs entirely. Samsung intends to start manufacturing chips based on the newly named SF2 process in the second half of 2024. The SF2 technology, which employs gate-all-around (GAA) transistors that Samsung brands as Multi-Bridge-Channel Field Effect Transistors (MBCFET), does not feature a backside power delivery network (BSPDN), a significant advantage of Intel's 20A process. Samsung Foundry has not officially confirmed the renaming.

Samsung Foundry Reportedly Producing 2 nm Prototypes for Qualcomm

Smartphone chipset industry watchdogs believe that the Samsung 3 nm GAA process did not meet customer expectations, due to alleged yield issues. TSMC is seemingly victorious in this segment, as reports suggest that a next-generation 3 nm node production goal of "100,000 monthly wafers by the end of 2024" has been set. Three days ago, Samsung Foundry revealed that it is working on a very advanced SF2 GAAFET process—press outlets in South Korea propose that the manufacturing giant is hoping to outmuscle its main rival in a future 2 nm node category. Tuesday's press introduction stated that a development partnership is set: "to deliver optimized next generation ARM Cortex -X CPU developed on Samsung Foundry's latest Gate-All-Around (GAA) process technology."

A Sedaily article posits that the company's cutting-edge manufacturing tech has already attracted interest from notable parties: "Samsung Electronics is taking advantage of these advantages to win orders for the 2 nm project. Samsung Electronics took its first step by winning an order to produce a 2 nm AI accelerator from Preferred Networks (PFN), Japan's largest AI company. Qualcomm, the world's largest system semiconductor design company, has entered into discussions with Samsung Electronics' System LSI Division, which designs high-performance chips, to produce 2 nm prototypes." December 2023 news reports suggested that Samsung leadership was considering a 2 nm wafer price discount—in order to stay competitive with competing foundry services. It is possible that Qualcomm is evaluating the 2 nm SF2 GAAFET process for a distant Snapdragon 8 "Gen 5" chipset, while Samsung LSI could be working on a 2 nm "Exynos 2600" SoC design.

Intel Foundry Services (IFS) and Cadence Design Systems Expand Partnership on SoC Design

Intel Foundry Services (IFS) and Cadence Design Systems Inc. today announced a multiyear strategic agreement to jointly develop a portfolio of key customized intellectual property (IP), optimized design flows and techniques for Intel 18A process technology featuring RibbonFET gate-all-around transistors and PowerVia backside power delivery. Joint customers of the companies will be able to accelerate system-on-chip (SoC) project schedules on process nodes from Intel 18A and beyond while optimizing for performance, power, area, bandwidth and latency for demanding artificial intelligence, high performance computing and premium mobile applications.

"We're very excited to expand our partnership with Cadence to grow the IP ecosystem for IFS and provide choice for customers," said Stuart Paann, Intel senior vice president and general manager of IFS. "We will leverage Cadence's world-class portfolio of leading IP and advanced design solutions to enable our customers to deliver high-volume, high-performance and power-efficient SoCs on Intel's leading-edge process technologies."

SMIC Concerned About Financial Performance in 2024

Semiconductor Manufacturing International Corporation (SMIC) posted better than expected fourth quarter 2023 financial tallies, but issued a warning with a downward revisement of near future gross margin expectations. According to DigiTimes Asia and TrendForce, China's leading pure-play semiconductor foundry has experienced an overall decline in net profit due to various cited factors including: "the industry downturn, weak market demand, high industry inventory, and fierce competition among peers, all contributing to reduced capacity utilization and decreased wafer shipment for the group." The DigiTimes report focuses mainly on a significant SMIC shares plunge—stock prices are reported to have dropped by ~20% in early 2024, indicating a loss of confidence in the foundry's prospects.

TrendForce laid out the financial nitty gritty: "SMIC International saw a revenue increase of over 3.5% to more than USD 1.678 billion, marking the only quarter of revenue growth last year. Net profit plummeted by 54.7% to nearly USD 175 million. The gross margin of 16.4% was almost halved compared to the same period in 2022 and experienced a significant decline from the previous three quarters, reaching its lowest point of the year. In the full year of 2023, SMIC International experienced a revenue decline of over 13% to USD 6.3 billion, with a net profit decrease of 50.4% to USD 900 million. The gross margin was approximately halved to 19.3%." Many industry watchdogs believed that SMIC was in a comfortable position, thanks to an uptick in demand for natively developed AI GPUs—their flagship Shanghai plants are reportedly churning out 7 nm wafers for Huawei's Ascend 910B model. Insiders also claim that high profile smartphone clients are pushing for 5 nm production lines—a significant challenge for the foundry's existing collection of (less than cutting-edge) equipment.

TSMC Overtakes Intel and Samsung to Become World's Largest Semiconductor Maker by Revenue

Taiwan Semiconductor Manufacturing Company (TSMC) has reached a significant milestone, overtaking Intel and Samsung to become the world's largest semiconductor maker by revenue. According to Taiwanese financial analyst Dan Nystedt, TSMC earned $69.3 billion in revenue in 2023, surpassing Intel's $63 billion and Samsung's $58 billion. This is a remarkable achievement for the Taiwanese chipmaker, which has historically lagged behind Intel and Samsung in terms of revenue despite being the world's largest semiconductor foundry. TSMC's meteoric rise has been fueled by the increased demand for everything digital - from PCs to game consoles - during the coronavirus pandemic in 2020, and AI demand in the previous year. With its cutting-edge production capabilities allowing it to manufacture chips using the latest process technologies, TSMC has pulled far ahead of Intel and Samsung and can now charge a premium for its services.

This is reflected in its financials. For the 6th straight quarter, TSMC's Q4 2023 revenue of $19.55 billion also beat Intel's $15.41 billion and Samsung's $16.42 billion chip division revenue. As the world continues its rapid transformation in the AI era of devices, TSMC looks set to hold on to its top position for the foreseeable future. Its revenue and profits will likely continue to eclipse those of historical giants like Intel and Samsung. However, a big contender is Intel Foundry Services, which is slowly starting to gain external customers. If IFS takes off and new customers start adopting Intel as their foundry of choice, team blue could regain leadership in the coming years.

Intel Foundry Services Get 18A Order: Arm-based 64-Core Neoverse SoC

Faraday Technology Corporation, a Taiwanese silicon IP designer, has announced plans to develop a new 64-core system-on-chip (SoC) utilizing Intel's most advanced 18A process technology. The Arm-based SoC will integrate Arm Neoverse compute subsystems (CSS) to deliver high performance and efficiency for data centers, infrastructure edge, and 5G networks. This collaboration brings together Faraday, Arm, and Intel Foundry Services. Faraday will leverage its ASIC design and IP solutions expertise to build the SoC. Arm will provide the Neoverse compute subsystem IP to enable scalable computing. Intel Foundry Services will manufacture the chip using its cutting-edge 18A process, which delivers one of the best-in-class transistor performance.

The new 64-core SoC will be a key component of Faraday's upcoming SoC evaluation platform. This platform aims to accelerate customer development of data center servers, high-performance computing ASICs, and custom SoCs. The platform will also incorporate interface IPs from the Arm Total Design ecosystem for complete implementation and verification. Both Arm and Intel Foundry Services expressed excitement about working with Faraday on this advanced Arm-based custom silicon project. "We're thrilled to see industry leaders like Faraday and Intel on the cutting edge of Arm-based custom silicon development," said an Arm spokesperson. Intel SVP Stuart Pann said, "We are pleased to work with Faraday in the development of the SoC based on Arm Neoverse CSS utilizing our most competitive Intel 18A process technology." The collaboration represents Faraday's strategic focus on leading-edge technologies to meet evolving application requirements. With its extensive silicon IP portfolio and design capabilities, Faraday wants to deliver innovative solutions and break into next-generation computing design.

Intel Reportedly Selects TSMC's 2 Nanometer Process for "Nova Lake" CPU Generation

A Taiwan Economic Daily news article proposes that a couple of high profile clients are considering TSMC's 2 nanometer process—Apple is widely believed to be the first customer to join the foundry's queue for cutting edge services. The report posits that Intel is also signed up on the Taiwanese firm's 2 nm reservation list—TSMC is expected to start production in 2025—insiders reckon that Team Blue's "Nova Lake" CPU family is the prime candidate here. Its CPU tile is alleged to utilize TSMC 2 nm node. Intel's recent "Core" processor roadmaps do not display any technologies beyond 2025—many believe that "Nova Lake" is pencilled in for a loose 2026 launch window, perhaps within the second half of the year.

The existence of "Nova Lake" was revealed late last year by HWiNFO patch notes—a short entry mentioned preliminary support for the family's integrated GPU. Intel is engaged in hyping up of its own foundry's 20A and 18A processes, but remain reliant on TSMC plants for various bits of silicon. Industry tipsters reckon that aspects of "Lunar Lake" CPUs are based on the Taiwanese foundry's N3B node. Team Blue Corporation and United Microelectronics Corporation (UMC) announced a new development partnership last week, but initial offerings will arrive on a relatively passé "12-nanometer semiconductor process platform." TSMC's very advanced foundry services seem to be unmatched at this juncture.

Intel Opens Fab 9 Foundry in New Mexico

Today, Intel celebrated the opening of Fab 9, its cutting-edge factory in Rio Rancho, New Mexico. The milestone is part of Intel's previously announced $3.5 billion investment to equip its New Mexico operations for the manufacturing of advanced semiconductor packaging technologies, including Intel's breakthrough 3D packaging technology, Foveros, which offers flexible options for combining multiple chips that are optimized for power, performance and cost.

"Today, we celebrate the opening of Intel's first high-volume semiconductor operations and the only U.S. factory producing the world's most advanced packaging solutions at scale. This cutting-edge technology sets Intel apart and gives our customers real advantages in performance, form factor and flexibility in design applications, all within a resilient supply chain. Congratulations to the New Mexico team, the entire Intel family, our suppliers, and contractor partners who collaborate and relentlessly push the boundaries of packaging innovation," said Keyvan Esfarjani, Intel executive vice president and chief global operations officer.
Return to Keyword Browsing
Sep 16th, 2024 09:41 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts