News Posts matching #Ice Lake

Return to Keyword Browsing

Intel Scraps 10nm for Desktop, Brazen it Out with 14nm Skylake Till 2022?

In a shocking piece of news, Intel has reportedly scrapped plans to launch its 10 nm "Ice Lake" microarchitecture on the client desktop platform. The company will confine its 10 nm microarchitectures, "Ice Lake" and "Tiger Lake" to only the mobile platform, while the desktop platform will see derivatives of "Skylake" hold Intel's fort under the year 2022! Intel gambles that with HyperThreading enabled across the board and increased clock-speeds, it can restore competitiveness with AMD's 7 nm "Zen 2" Ryzen processors with its "Comet Lake" silicon that offers core-counts of up to 10.

"Comet Lake" will be succeeded in 2021 by the 14 nm "Rocket Lake" silicon, which somehow combines a Gen12 iGPU with "Skylake" derived CPU cores, and possibly increased core-counts and clock speeds over "Comet Lake." It's only 2022 that Intel will ship out a truly new microarchitecture on the desktop platform, with "Meteor Lake." This chip will be built on Intel's swanky 7 nm EUV silicon fabrication node, and possibly integrate CPU cores more advanced than even "Willow Cove," possibly "Golden Cove."

Microsoft Unveils First Intel "Lakefield" Device and Surface Lineup with 10th Gen Core

Today, at a launch event in New York City, Microsoft previewed the Surface Neo, a category-defining device co-engineered with Intel. The dual-screen device will be powered by Intel's unique processor, code-named "Lakefield," that features an industry-first architecture combining a hybrid CPU with Intel's Foveros 3D packaging technology. It offers device-makers more flexibility to innovate on design, form factor and experience.

"The innovation we've achieved with Lakefield gives our industry partners the ability to deliver on new experiences, and Microsoft's Neo is trailblazing a new category of devices. Intel is committed to pushing the boundaries of computing by delivering key technology innovations for partners across the ecosystem," said Gregory Bryant, Intel executive vice president and general manager of the Client Computing Group.

Intel Iris Plus Graphics G7 iGPU Beats AMD RX Vega 10: Benchmarks

Intel is taking big strides forward with its Gen11 integrated graphics architecture. Its performance-configured variant, the Intel Iris Plus Graphics G7, featured in the Core i7-1065G7 "Ice Lake" processor, is found to beat AMD Radeon RX Vega 10 iGPU, found in the Ryzen 7 2700U processor ("Raven Ridge"), by as much as 16 percent in 3DMark 11, a staggering 23 percent in 3DMark FireStrike 1080p. Notebook Check put the two iGPUs through these, and a few game tests to derive an initial verdict that Intel's iGPU has caught up with AMD's RX Vega 10. AMD has since updated its iGPU incrementally with the "Picasso" silicon, providing it with higher clock speeds and updated display and multimedia engines.

The machines tested here are the Lenovo Ideapad S540-14API for the AMD chip, and Lenovo Yoga C940-14IIL with the i7-1065G7. The Iris Plus G7 packs 64 Gen11 execution units, while the Radeon RX Vega 10 has 640 stream processors based on the "Vega" architecture. Over in the gaming performance, and we see the Intel iGPU 2 percent faster than the RX Vega 10 at Bioshock Infinite at 1080p, 12 percent slower at Dota 2 Reborn 1080p, and 8 percent faster at XPlane 11.11.

Intel Adds More L3 Cache to Its Tiger Lake CPUs

InstLatX64 has posted a CPU dump of Intel's next-generation 10 nm CPUs codenamed Tiger Lake. With the CPUID of 806C0, this Tiger Lake chip runs at 1000 MHz base and 3400 MHz boost clocks which is lower than the current Ice Lake models, but that is to be expected given that this might be just an engineering sample, meaning that production/consumer revision will have better frequency.

Perhaps one of the most interesting findings this dump shows is the new L3 cache configuration. Up until now Intel usually put 2 MB of L3 cache per each core, however with Tiger Lake, it seems like the plan is to boost the amount of available cache. Now we are going to get 50% more L3 cache resulting in 3 MB per core or 12 MB in total for this four-core chip. Improved cache capacity can result in additional latency because of additional distance data needs to travel to get in and out of cache, but Intel's engineers surely solved this problem. Additionally, full AVX512 support is present except avx512_bf which supports bfloat16 floating-point variation found in Cooper Lake Xeons.

AMD Updates Roadmaps to Lock RDNA2 and Zen 3 onto 7nm+, with 2020 Launch Window

AMD updated its technology roadmaps to reflect a 2020 launch window for its upcoming CPU and graphics architectures, "Zen 3" and RDNA2. The two will be based on 7 nm+ , which is AMD-speak for the 7 nanometer EUV silicon fabrication process at TSMC, that promises a significant 20 percent increase in transistor-densities, giving AMD high transistor budgets and more clock-speed headroom. The roadmap slides however hint that unlike the "Zen 2" and RDNA simultaneous launch on 7th July 2019, the next-generation launches may not be simultaneous.

The slide for CPU microarchitecture states that the design phase of "Zen 3" is complete, and that the microarchitecture team has already moved on to develop "Zen 4." This means AMD is now developing products that implement "Zen 3." On the other hand, RDNA2 is still in design phase. The crude x-axis on both slides that denotes year of expected shipping, too appears to suggest that "Zen 3" based products will precede RDNA2 based ones. "Zen 3" will be AMD's first response to Intel's "Comet Lake-S" or even "Ice Lake-S," if the latter comes to fruition before Computex 2020. In the run up to RDNA2, AMD will scale up RDNA a notch larger with the "Navi 12" silicon to compete with graphics cards based on NVIDIA's "TU104" silicon. "Zen 2" will receive product stack additions in the form of a new 16-core Ryzen 9-series chip later this month, and the 3rd generation Ryzen Threadripper family.

Intel Says Its Upcoming Gen12 GPUs Will Feature Biggest Architecture Change In A Decade

Intel is slowly realizing plans to "one up" its GPU game starting from first 10 nm Ice Lake CPUs that feature Gen11 graphics, equipping users of integrated GPUs with much more performance than they previously got. Fortunately, Intel doesn't plan to stop there. Thanks to the recent pull request found on GitLab Mesa repository, we can now expect to receive biggest GPU performance bump in over a decade with the arrival of Gen12 based GPUs, found on next generation Tiger Lake processors.

In this merge request, Francisco Jerez, member of Intel's open source Linux graphics team, stated the following: "Gen12 is planned to include one of the most in-depth reworks of the Intel EU ISA since the original i965. The encoding of almost every instruction field, hardware opcode and register type needs to be updated in this merge request. But probably the most invasive change is the removal of the register scoreboard logic from the hardware, which means that the EU will no longer guarantee data coherency between register reads and writes, and will require the compiler to synchronize dependent instructions anytime there is a potential data hazard..."

TechPowerUp GPU-Z v2.25.0 Released

TechPowerUp today released the latest version of TechPowerUp GPU-Z, the definitive graphics subsystem information, diagnostic, and monitoring utility. Version 2.25.0 adds several new features, support for more GPUs, and fixes various bugs. To begin with, you'll notice that the main screen displays a second row of APIs supported by your graphics card. These include Vulkan, DirectX Raytracing, DirectML, and OpenGL. The last one in particular help you figure out if your graphics drivers have been supplied by Microsoft of your computer's OEM (and lack OpenGL or Vulkan ICDs). Among the new GPUs supported are Quadro P2200, Quadro RTX 4000 Mobile, Quadro T1000 Mobile; AMD Radeon Pro WX 3200, Barco MXRT 7600, 780E Graphics, HD 8330E; and Intel Gen11 "Ice Lake."

With GPU-Z 2.25.0, we've improved AMD Radeon "Navi" support even further, by making the clock-speed measurement more accurate, and displaying base, gaming, and boost clocks in the "Advanced" tab. A workaround is added for the AMD bug that causes fan-speeds to lock when idle fan-stop is engaged on custom-design "Navi" graphics cards; and a faulty "65535 RPM" fan-speed reading for "Navi." A BSOD caused in QEMU/KVM machines by MSR register access has also been fixed. Grab it from the link below.

DOWNLOAD: TechPowerUp GPU-Z 2.25.0
The change-log follows.

LGA 4189 is the Latest Socket for Intel's Next Generation of Xeon CPUs

TE Connectivity, the maker of various kinds of connectivity solutions for computer systems, has released its latest iteration of the LGA socket for the next generation of Xeon Scalable CPUs. Being validated by Intel, the LGA 4189-4 and LGA 4189-5 are going to power the next generation of 10 nm Xeon CPUs, based on the Ice Lake architecture, and up to 56-core 2nd generation Xeon Scalable CPUs. While there are two models of the socket, TE Connectivity didn't reveal what the differences are between them. Socket P4 (LGA 4189-4) and P5 (LGA 4189-5) also feature exactly the same pin count, 0.9906 mm hex pitch and 2.7 mm SP height, so we can only speculate that the "4" or "5" in the revision is supposed to indicate details like higher power delivery capability or support for Ice Lake CPUs.

In addition to providing a new socket for Ice Lake, these sockets have support for PCI-Express Gen 4.0 and eight-channel memory (supported memory configurations are vendor dependent), meaning that we are getting two more memory channels than previous Xeon CPUs with a faster and newer PCIe standard.

AMD "Renoir" APU to Support LPDDR4X Memory and New Display Engine

AMD's next-generation "Renoir" APU, which succeeds the company's 12 nm "Picasso," will be the company's truly next-generation chip to feature an integrated graphics solution. It's unclear as of now, if the chip will be based on a monolithic die, or if it will be a multi-chip module of a 7 nm "Zen 2" chiplet paired with an enlarged I/O controller die that has the iGPU. We're getting confirmation on two key specs - one, that the iGPU will be based on the older "Vega" graphics architecture, albeit with an updated display engine to support the latest display standards; and two, that the processor's memory controller will support the latest LPDDR4X memory standard, at speeds of up to 4266 MHz DDR. In comparison, Intel's "Ice Lake-U" chip supports LPDDX4X up to 3733 MHz.

Code-lines pointing toward "Vega" graphics with an updated display controller mention the new DCN 2.1, found in AMD's new "Navi 10" GPU. This controller supports resolutions of up to 8K, DSC 1.2a, and new resolutions of 4K up to 240 Hz and 8K 60 Hz over a single cable, along with 30 bits per pixel color. The multimedia engine is also suitably updated to VCN 2.1 standard, and provides hardware-accelerated decoding for some of the newer video formats, such as VP9 and H.265 at up to 90 fps at 4K, and 8K up to 24 fps, and H.264 up to 150 fps at 4K. There's no word on when "Renoir" comes out, but a 2020 International CES unveil is likely.

Intel Releases Graphics Drivers with Integer Upscaling - Only Available on Ice Lake

Intel over the weekend posted Graphics Software 25.20.100.7155, which delivers the much touted integer upscaling feature, branded as "Retro Scaling" by the company. The feature is a global toggle in the Graphics Command Center, which when enabled, upscales low-resolution retro games in a nearest-neighbor pixel multiplication model that looks better, when compared to classic bilinear upscaling, which alters the color data of multiplied pixels, causing the upscaled image to look blurry. This is a godsend for those playing old games on emulators, or even some of the newer indie games that retain a retro aesthetic.

Here's the catch - the feature is only available for Intel's Gen11 iGPU, found in the company's 10 nm "Ice Lake" processors. Intel currently ships "Ice Lake" only in its low-voltage and very low z-height packages, targeting notebooks and convertibles. The older Gen9.5 GPUs don't get access to the feature. The only other company with such a feature is NVIDIA, and even it restricts integer upscaling to only its latest "Turing" GPUs. Both NVIDIA and Intel leverage programmable scaling filters, instead of taking the programmable shader route. Intel is marking the feature as "beta" for now. Grab the drivers from the link below.

DOWNLOAD: Intel Graphics Software 25.20.100.7155 DCH

Intel Launches First 10th Gen Core Processors: Redefining the Next Era of Laptop Experiences

Today, Intel officially launched 11 new, highly integrated 10th Gen Intel Core processors designed for remarkably sleek 2 in 1s and laptops. The processors bring high-performance artificial intelligence (AI) to the PC at scale, feature new Intel Iris Plus graphics for stunning entertainment and enable the best connectivity with Intel Wi-Fi 6 (Gig+) and Thunderbolt 3. Systems are expected from PC manufacturers for the holiday season.

"These 10th Gen Intel Core processors shift the paradigm for what it means to deliver leadership in mobile PC platforms. With broad-scale AI for the first time on PCs, an all-new graphics architecture, best-in-class Wi-Fi 6 (Gig+) and Thunderbolt 3 - all integrated onto the SoC, thanks to Intel's 10nm process technology and architecture design - we're opening the door to an entirely new range of experiences and innovations for the laptop."
-Chris Walker, Intel corporate vice president and general manager of Mobility Client Platforms in the Client Computing Group

Intel Starts Shipping 10 nm Ice Lake CPUs to OEMs

During its second quarter earnings call, Intel announced that it has started shipping of 10th generation "Core" CPUs to OEMs. Making use of 10 nm lithography, the 10th generation of "Core" CPUs, codenamed Ice Lake, were qualified by OEMs earlier in 2019 in order to be integrated into future products. Ice Lake is on track for holiday season 2019, meaning that we can expect products on-shelves by the end of this year. That is exciting news as the 10th generation of Core CPUs is bringing some exciting micro-architectural improvements along with the long awaited and delayed Intel's 10nm manufacturing process node.

The new CPUs are supposed to get around 18% IPC improvement on average when looking at direct comparison to previous generation of Intel CPUs, while being clocked at same frequency. This time, even regular mobile/desktop parts will get AVX512 support, alongside VNNI and Cryptography ISA extensions that are supposed to bring additional security and performance for the ever increasing number of tasks, especially new ones like Neural Network processing. Core configurations will be ranging from dual core i3 to quad core i7, where we will see total of 11 models available.

Intel "Comet Lake" Not Before 2020, "Ice Lake-S" Not Before Q3-2020, Roadmap Suggests

Earlier this week, news of Intel's 10th generation Core "Comet Lake" processors did rounds as the company's short-term response to AMD's 3rd generation Ryzen processors. According to slides leaked to the web by Hong Kong-based tech publication XFastest, "Comet Lake" isn't Intel's short-term reaction to "Zen 2," but rather all it has left to launch. These processors won't launch before 2020, the slide suggests, meaning that AMD will enjoy a free rein over the processor market until the turn of the year, including the all-important Holday shopping season.

More importantly, the slide suggests that "Comet Lake" will have a market presence spanning Q1 and Q2 2020, meaning that the 10 nm "Ice Lake" won't arrive on the desktop platform until at least Q3 2020. It's likely that the LGA1200 platform which debuts with "Comet Lake" will extend to "Ice Lake," so consumers aren't forced to buy a new motherboard within a span of six months. The platform diagram put out in another slide junks the idea of an on-package MCM of the processor and PCH dies (which was likely ripped off from the "Ice Lake-Y" MCM platform diagram).

Intel Internal Memo Reveals that even Intel is Impressed by AMD's Progress

Today an article was posted on Intel's internal employee-only portal called "Circuit News". The post, titled "AMD competitive profile: Where we go toe-to-toe, why they are resurgent, which chips of ours beat theirs" goes into detail about the recent history of AMD and how the company achieved its tremendous growth in recent years. Further, Intel talks about where they see the biggest challenges with AMD's new products, and what the company's "secret sauce" is to fight against these improvements.
The full article follows:

Intel to Cut Prices of its Desktop Processors by 15% in Response to Ryzen 3000

Intel is embattled in the client-segment desktop processor business, with AMD's imminent launch of its 3rd generation Ryzen desktop processors. Intel's 9th generation Core processors may lose their competitiveness to AMD's offerings, and are expected to get relieved by the company's "Ice Lake" desktop processors only in 2020. Until then, Intel will market its processors through price-cuts, promotions, bundles, and focusing on their gaming prowess. The company will refresh its HEDT (high-end desktop) processor lineup some time in Q3-2019. According to Taiwan-based industry observer DigiTimes citing sources in the motherboard industry, Intel's immediate response to 3rd generation Ryzen will be a series of price-cuts to products in its client-segment DIY retail channel.

According to these sources, prices of 9th generation Core processors could be cut by a minimum of 10 percent, and a maximum of 15 percent, varying by SKUs. This could see prices of popular gaming/enthusiast SKUs such as the Core i9-9900K, the i7-9700K, and the i5-9600K, drop by anywhere between $25 to $75. AMD is launching the Ryzen 9 3900X to compete with the i9-9900K, the Ryzen 7 3800X to compete with the i7-9700K, and the Ryzen 5 3600X to take on the i5-9600K. The three SKUs, according to AMD's internal testing, match the Intel chips at gaming, and beat them at content-creation tasks. At the heart of 3rd generation Ryzen processors is AMD's new Zen 2 microarchitecture, which brings significant IPC gains. AMD is also increasing core-counts on its mainstream desktop platform with the introduction of the Ryzen 9 family of 12-core and 16-core processors in the AM4 package.

Intel "Ice Lake" IPC Best-Case a Massive 40% Uplift Over "Skylake," 18% on Average

Intel late-May made its first major disclosure of the per-core CPU performance gains achieved with its "Ice Lake" processor that packs "Sunny Cove" CPU cores. Averaged across a spectrum of benchmarks, Intel claims a best-case scenario IPC (instructions per clock) uplift of a massive 40 percent over "Skylake," and a mean uplift of 18 percent. The worst-case scenario sees its performance negligibly below that of "Skylake." Intel's IPC figures are derived entirely across synthetic benchmarks, which include SPEC 2016, SPEC 2017, SYSMark 2014 SE, WebXprt, and CineBench R15. The comparison to "Skylake" is relevant because Intel has been using essentially the same CPU core in the succeeding three generations that include "Kaby Lake" and "Coffee Lake."

A Chinese tech-forum member with access to an "Ice Lake" 6-core/12-thread sample put the chip through the CPU-Z internal benchmark (test module version 17.01). At a clock-speed of 3.60 GHz, the "Ice Lake" chip allegedly achieved a single-core score of 635 points. To put this number into perspective, a Ryzen 7 3800X "Matisse" supposedly needs to run at 4.70 GHz to match this score, and a Core i7-7700K "Kaby Lake" needs to run at 5.20 GHz. Desktop "Ice Lake" processors are unlikely to launch in 2019. The first "Ice Lake" processors are 4-core/8-thread chips designed for ultraportable notebook platforms, which come out in Q4-2019, and desktop "Ice Lake" parts are expected only in 2020.

ADATA Shows Off a JEDEC-compliant 32GB Dual-rank DIMM That Isn't "Double Capacity"

Last year, with the introduction of the Intel Z390 chipset, there was a spate of so-called "double capacity DIMMs" or DC DIMMs, tall memory modules with two rows of DRAM chips, which added up to 32 GB per DIMM. You needed a Z390 platform and a 9th generation Core processor that supported up to 128 GB of memory, to use these things. With the introduction of 16 Gb DDR4 DRAM chips by both Micron and Samsung, JEDEC-compliant 32 GB unbuffered DIMMs of standard height are finally possible, and ADATA put together the first of these, shown off at Computex 2019.

The AD4U2666732GX16 is a 32-gigabyte dual-rank unbuffered DIMM made using 16 Gb chips supplied by Micron Technology. The modules tick at JEDEC-standard DDR4-2666 speeds, at a module voltage of 1.2 Volts. ADATA didn't disclose timings. The 16 Gb DRAM chips are made by Micron in an advanced (3rd generation) 10 nm-class silicon fabrication process to achieve the desired transistor-density. 32 GB DIMMs are expected to hit critical-mass in 2H-2019/2020, with the advent of AMD's 3rd generation Ryzen "Matisse," and Intel's "Ice Lake-S" desktop processors. Memory manufacturers are also expected to put out speedy and highly-compatible single-rank 16-gigabyte DIMMs using 16 Gb chips, which could finally make 32 GB dual-channel the mainstream memory configuration, moving up from half a decade of 2x 8 GB.

Intel 10th Generation Core Case-badges Revealed

Intel laid rest to speculation that post 9th generation, it could replace its Core brand with something else. The 10th generation Core processors, built around the 10 nm "Ice Lake" microachitecture, will feature the first noteworthy IPC increments since "Skylake" thanks to their new "Sunny Cove" CPU cores. These will also feature DLBoost, a fixed-function matrix-multiplication hardware that speeds up deep-neural net building and training by 5x, as well as certain AVX-512 instructions. The cores will be optimized to cope with 2.4 Gbps 802.11ax Wi-Fi and faster Ethernet standards. The first of these chips will target mobile computing platforms, and will be quad-core parts like the dies pictured below. To save notebook PCB real-estate, Intel will put the processor and PCH dies into a multi-chip module. It will be quite a wait for the desktop implementation, but at least you know what their case-badges look like.

Intel "Sapphire Rapids" Brings PCIe Gen 5 and DDR5 to the Data-Center

As if the mother of all ironies, prior to its effective death-sentence dealt by the U.S. Department of Commerce, Huawei's server business developed an ambitious product roadmap for its Fusion Server family, aligning with Intel's enterprise processor roadmap. It describes in great detail the key features of these processors, such as core-counts, platform, and I/O. The "Sapphire Rapids" processor will introduce the biggest I/O advancements in close to a decade, when it releases sometime in 2021.

With an unannounced CPU core-count, the "Sapphire Rapids-SP" processor will introduce DDR5 memory support to the data-center, which aims to double bandwidth and memory capacity over the DDR4 generation. The processor features an 8-channel (512-bit wide) DDR5 memory interface. The second major I/O introduction is PCI-Express gen 5.0, which not only doubles bandwidth over gen 4.0 to 32 Gbps per lane, but also comes with a constellation of data-center-relevant features that Intel is pushing out in advance as part of the CXL Interconnect. CXL and PCIe gen 5 are practically identical.

Intel Drivers Reveal 400, 495 Series Chipsets for Comet Lake, Ice Lake - New Year, New Socket, Same 14 nm Process

Data extracted from Intel's latest Server Chipset Driver (10.1.18010.8141) mentions support for new chipsets, which will bring about compatibility for the company's upcoming Comet Lake chips. Comet Lake, if you remember, is Intel's latest gasp in the 14 nm process for CPUs, and should bring up to 10 cores to the consumer segment. The increase in maximum number of cores will naturally be Intel's justification for the need for new chipsets and sockets, due to "electrical incompatibilities" and increased requirements in the power delivery subsystem.

If you're looking for the latest and greatest changes to Intel's architecture and manufacturing process, you'll have to wait for Ice Lake, for which the 495 series chipset brings compatibility. But for that one, you'll have to wait until 2020. Let's see what AMD's Ryzen 2 brings to the table against Intel's current (and up to 10 nm Comet Lake) offerings. Even excluding platform longevity, AMD's architecture and core density really has been giving Intel a run for its money.

Intel "Tiger Lake" Architecture Combines Willow Cove CPU Cores and Xe iGPU

Even as Intel banks on 10 nm "Ice Lake" to pull it out of the 14 nm dark ages, the company is designing a fascinating new monolithic processor SoC die that succeeds it. Codenamed "Tiger Lake," and slated to debut in 2020, this die packs "Willow Cove" CPU cores and an iGPU based on Intel's Xe architecture, not Gen11. "Willow Cove" CPU cores are more advanced than the "Sunny Cove" cores "Ice Lake" packs, featuring a redesigned on-die cache, additional security features, and transistor optimization yielded from the newer 10 nm+ silicon fabrication process.

Intel is already boasting of 1 TFLOP/s compute power of the Gen11 iGPU on "Ice Lake," so it's logical to predict that the Xe based iGPU will be significantly faster. It will also support the latest display standards. The "next-gen I/O" referenced by Intel could be faster NVMe, Thunderbolt, and USB standards that leverage the bandwidth doubling brought about by PCI-Express gen 4.0. Here's the catch: much like "Ice Lake," the new "Tiger Lake" chip will get a mobile debut as Tiger Lake-Y or Tiger Lake-U, and desktop processors could follow later, possibly even 2021, depending on how much pressure it faces from AMD.

Intel Switches Gears to 7nm Post 10nm, First Node Live in 2021

Intel's semiconductor manufacturing business has had a terrible past 5 years as it struggled to execute its 10 nanometer roadmap forcing the company's processor designers to re-hash the "Skylake" microarchitecture for 5 generations of Core processors, including the upcoming "Comet Lake." Its truly next-generation microarchitecture, codenamed "Ice Lake," which features a new CPU core design called "Sunny Cove," comes out toward the end of 2019, with desktop rollouts expected 2020. It turns out that the 10 nm process it's designed for, will have a rather short reign at Intel's fabs. Speaking at an investor's summit on Wednesday, Intel put out its silicon fabrication roadmap that sees an accelerated roll-out of Intel's own 7 nm process.

When it goes live and fit for mass production some time in 2021, Intel's 7 nm process will be a staggering 3 years behind TSMC, which fired up its 7 nm node in 2018. AMD is already mass-producing CPUs and GPUs on this node. Unlike TSMC, Intel will implement EUV (extreme ultraviolet) lithography straightaway. TSMC began 7 nm with DUV (deep ultraviolet) in 2018, and its EUV node went live in March. Samsung's 7 nm EUV node went up last October. Intel's roadmap doesn't show a leap from its current 10 nm node to 7 nm EUV, though. Intel will refine the 10 nm node to squeeze out energy-efficiency, with a refreshed 10 nm+ node that goes live some time in 2020.

Intel to Use 5-digit Processor Model Numbering with 10th Gen?

A lot of us could be wondering how Intel could number its client-segment processors after the i9-9980XE, or the 9th generation Core in general, and hoping for a major branding change or at least a change in the model numbering scheme. It turns out, Intel will brazen it out with a 5-digit model number and stick to the current scheme. Going by this scheme, the successor to the Core i7-9700K could be the Core i7-10700K, for example. Intel jumped from 3-digit to 4-digit as it transitioned from 1st gen Core to 2nd gen as it ran out of 3-digit numbers with the Core i7-9xx. It's now running out of 4-digit numbers.

Evidence of 5-digit number surfaced when Thai enthusiast TUM_Apisak tweeted a screenshot of a UL Benchmarks Systeminfo page describing an unreleased Core i5-10210U, which is probably a mobile processor based on the 10 nm "Ice Lake-U" silicon slated for late-2019. With a nominal clock-speed of 1.60 GHz and "reported" speed of 2.10 GHz, the Turbo Boost frequency of this 4-core/8-thread chip is rated at almost 3.80 GHz. Japanese enthusiast Komachi Ensaka confirmed this with three other model numbers: i3-10110U, i5-10510U, and i7-10710U.

Intel 10nm Ice Lake to Quantitatively Debut Within 2019

Intel put out interesting details about its upcoming 10 nanometer "Ice Lake" CPU microarchitecture rollout in its recent quarterly financial results call. The company has started qualification of its 10 nm "Ice Lake" processors. This involves sending engineering samples to OEMs, system integrators and other relevant industry partners, and getting the chips approved for their future product designs. The first implementation of "Ice Lake" will not be a desktop processor, but rather a low-power mobile SoC designed for ultraportables, codenamed "Ice Lake-U." This SoC packs a 4-core/8-thread CPU based on the "Sunny Cove" core design, and Gen11 GT2 integrated graphics with 64 execution units and nearly 1 TFLOP/s compute power. This SoC will also support WiFi 6 and LPDDR4X memory.

Intel CEO Bob Swan also remarked that the company has doubled its 10 nm yield expectations. "On the [10 nm] process technology front, our teams executed well in Q1 and our velocity is increasing," he said, adding "We remain on track to have volume client systems on shelves for the holiday selling season. And over the past four months, the organization drove a nearly 2X improvement in the rate at which 10nm products move through our factories." Intel is prioritizing enterprise over desktop, as "Ice Lake-U" will be followed by "Ice Lake-SP" Xeon rollout in 2020. There was no mention of desktop implementations such as "Ice Lake-S." Intel is rumored to be preparing a stopgap microarchitecture for the desktop platform to compete with AMD "Matisse" Zen 2 AM4 processors, codenamed "Comet Lake." This is essentially a Skylake 10-core die fabbed on existing 14 nm++ node. AMD in its CES keynote announced an achievement of per-core performance parity with Intel, so it could be interesting to see how Intel hopes 10 "Skylake" cores match up to 12-16 "Zen 2" cores.

Intel Reports First-Quarter 2019 Financial Results

Intel Corporation today reported first-quarter 2019 financial results. "Results for the first quarter were slightly higher than our January expectations. We shipped a strong mix of high performance products and continued spending discipline while ramping 10nm and managing a challenging NAND pricing environment. Looking ahead, we're taking a more cautious view of the year, although we expect market conditions to improve in the second half," said Bob Swan, Intel CEO. "Our team is focused on expanding our market opportunity, accelerating our innovation and improving execution while evolving our culture. We aim to capitalize on key technology inflections that set us up to play a larger role in our customers' success, while improving returns for our owners."

In the first quarter, the company generated approximately $5.0 billion in cash from operations, paid dividends of $1.4 billion and used $2.5 billion to repurchase 49 million shares of stock. In the first quarter, Intel achieved 4 percent growth in the PC-centric business while data-centric revenue declined 5 percent.
Return to Keyword Browsing