News Posts matching #Ice Lake

Return to Keyword Browsing

Intel Introduces new Security Technologies for 3rd Generation Intel Xeon Scalable Platform, Code-named "Ice Lake"

Intel today unveiled the suite of new security features for the upcoming 3rd generation Intel Xeon Scalable platform, code-named "Ice Lake." Intel is doubling down on its Security First Pledge, bringing its pioneering and proven Intel Software Guard Extension (Intel SGX) to the full spectrum of Ice Lake platforms, along with new features that include Intel Total Memory Encryption (Intel TME), Intel Platform Firmware Resilience (Intel PFR) and new cryptographic accelerators to strengthen the platform and improve the overall confidentiality and integrity of data.

Data is a critical asset both in terms of the business value it may yield and the personal information that must be protected, so cybersecurity is a top concern. The security features in Ice Lake enable Intel's customers to develop solutions that help improve their security posture and reduce risks related to privacy and compliance, such as regulated data in financial services and healthcare.

Intel 10 nm Ice Lake-SP Server Processors Reportedly Delayed

Intel 10 nm products have seen massive delays over the years, and Intel has built many IPs on the new node, however, not many of them have seen the light of the day due to problems the company has experienced with the manufacturing of the new node. That has caused delays in product shipments in the past, meaning that the time for 10 nm is just ahead. According to the latest DigiTimes Taiwan report, we have information that Intel is going to delay its Ice Lake-SP server processors manufactured on a 10 nm node. And it is going to be a whole quarter late according to the report. Instead of launching in Q4 this year, we can expect to see new processors in Q1 of 2021. It is yet unknown whatever the launch will happen at the beginning of Q1 or its end, however, we will report on it as we hear more information.

Update: DigiTimes has also released another report regarding server shipments. It is reported that server vendors are decelerating the shipments as they are making fewer orders in Q4 to wait for the new Intel CPUs. Judging by this move, the demand for these new processors is going to be rather high and the supply chain is preparing slowly for it.

Intel Whitley Platform for Xeon "Ice Lake-SP" Processors Pictured

Here's is the first schematic of Intel's upcoming "Whitley" enterprise platform for the upcoming Xeon Scalable "Ice Lake-SP" processors, courtesy momomo_us. The platform sees the introduction of the new LGA4189 socket necessitated by Intel increasing the memory channels per socket to 8, compared to 6 of the current-gen "Cascade Lake-SP." The new platform also sees the introduction of PCI-Express gen 4.0 bus, with each socket putting out up to 64 PCI-Express gen 4.0 CPU-attached lanes. This are typically wired out as three x16 slots, two x8 slots, an x4 chipset bus, and a CPU-attached 10 GbE controller.

The processor supports up to 8 memory channels running at DDR4-3200 with ECC. The other key component of the platform is the Intel C621A PCH. The C621A talks to the "Ice Lake-SP" processor over a PCI-Express 3.0 x4 link, and appears to retain gen 3.0 fabric from the older generation C621. momomo_us also revealed that the 10 nm "Ice Lake-SP" processor could have TDP of up to 270 W.

Intel Xeon Scalable "Ice Lake-SP" 28-core Die Detailed at Hot Chips - 18% IPC Increase

Intel in the opening presentation of the Hot Chips 32 virtual conference detailed its next-generation Xeon Scalable "Ice Lake-SP" enterprise processor. Built on the company's 10 nm silicon fabrication process, "Ice Lake-SP" sees the first non-client and non-mobile deployment of the company's new "Sunny Cove" CPU core that introduces higher IPC than the "Skylake" core that's been powering Intel microarchitectures since 2015. While the "Sunny Cove" core itself is largely unchanged from its implementation in 10th Gen Core "Ice Lake-U" mobile processors, it conforms to the cache hierarchy and tile silicon topology of Intel's enterprise chips.

The "Ice Lake-SP" die Intel talked about in its Hot Chips 32 presentation had 28 cores. The "Sunny Cove" CPU core is configured with the same 48 KB L1D cache as its client-segment implementation, but a much larger 1280 KB (1.25 MB) dedicated L2 cache. The core also receives a second fused multiply/add (FMA-512) unit, which the client-segment implementation lacks. It also receives a handful new instruction sets exclusive to the enterprise segment, including AVX-512 VPMADD52, Vector-AES, Vector Carry-less Multiply, GFNI, SHA-NI, Vector POPCNT, Bit Shuffle, and Vector BMI. In one of the slides, Intel also detailed the performance uplifts from the new instructions compared to "Cascade Lake-SP".

Intel 8-core "Tiger Lake-H" Coming in 2021: Leaked Compal Document

Intel is preparing to launch an 8-core mobile processor based on its 10 nm "Tiger Lake" microarchitecture, according to a corporate memo by leading notebook OEM Compal, which serves major notebook brands such as Acer. The memo was drafted in May, but unearthed by momomo_us. Compal expects Intel to launch the 8-core "Tiger Lake-H" processor in Q1 2021. This is big, as it would be the first large 10 nm client-segment silicon that goes beyond 4 cores. The company's first 10 nm client silicon, "Ice Lake," as well as the "Tiger Lake-U" silicon that's right around the corner, feature up to 4 cores. As an H-segment part, the new 8-core processor could target TDPs in the range of 35-45 W, and notebooks in the "conventional thickness" form-factor, as well as premium gaming notebooks and mobile workstations.

The 8-core "Tiger Lake-H" silicon is the first real sign of Intel's 10 nm yields improving. Up until now, Intel confined 10 nm to the U- and Y-segments (15 W and below), addressing only ultra-portable form-factors. Even here, Intel launched U-segment 14 nm "Comet Lake" parts at competitive prices, to take the market demand off "Ice Lake-U." The H-segment has been exclusively held by "Comet Lake-H." Intel is planning to launch "Ice Lake-SP" Xeon processors later this year, but like all server parts, these are high-margin + low-volume parts. Compal says Intel will refresh the H-segment with a newer 8-core "Comet Lake-H" part in the second half of 2020, possibly to bolster the high-end against the likes of AMD's Ryzen 9 4900H. Later in 2021, Intel is expected to introduce its 10 nm "Alder Lake" processor, including a mobile variant. These processors will feature Hybrid technology, combining "Golden Cove" big CPU cores with "Gracemont" small ones.

Intel Ice Lake-SP Processors Get Benchmarked Against AMD EPYC Rome

Intel is preparing to launch its next-generation for server processors and the next in line is the Ice Lake-SP 10 nm CPU. Featuring a Golden Cove CPU and up to 28 cores, the CPU is set to bring big improvements over the past generation of server products called Cascade Lake. Today, thanks to the sharp eye of TUM_APISAK, we have a new benchmark of the Ice Lake-SP platform, which is compared to AMD's EPYC Rome offerings. In the latest GeekBench 4 score, appeared an engineering sample of unknown Ice Lake-SP model with 28 cores, 56 threads, a base frequency of 1.5 GHz, and a boost of 3.19 GHz.

This model was put in a dual-socket configuration that ends up at a total of 56 core and 112 threads, against a single 64 core AMD EPYC 7442 Rome CPU. The dual-socket Intel configuration scored 3424 points in the single-threaded test, where AMD configuration scored notably higher 4398 points. The lower score on Intel's part is possibly due to lower clocks, which should improve in the final product, as this is only an engineering sample. When it comes to the multi-threaded test, Intel configuration scored 38079 points, where the AMD EPYC system did worse and scored 35492 points. The reason for this higher result is unknown, however, it shows that Ice Lake-SP has some potential.

Intel Ice Lake Xeons Feature Slower Frequency Ramp Up

As we approach the launch of the Intel's Ice Lake-SP Xeon processors, which will be the company's first 10 nm product for servers, we find more details on the ways CPU operates and today's discovery is an interesting one. In the latest patch submitted to Linux kernel by Intel's engineers, we find out that Intel Ice Lake Xeons have a slower frequency ramp up, meaning that there could be some latency added. However, the engineers have patched this and it should perform as expected. The patch is described as the following: "On ICX platform, the CPU frequency will slowly ramp up when woken up from C-states deeper than/equals to C1E. Although this feature does save energy in many cases this might also cause unexpected result. For example, workload might get unstable performance due to the uncertainty of CPU frequency. Besides, the CPU frequency might not be locked to specific level when the CPU utilization is low."
Intel Ice Lake

Intel Ice Lake CPUs Have a System Crashing Bug

Intel CPUs have been rather notorious for system bugs recently. Starting from 2018's Spectre and Meltdown which used speculative execution to exploit systems, the string of new vulnerabilities just continued to this day. Recently we had CrossTalk exploit which represents a threat to cloud providers, where one user could compromise another just by using the same CPU from which the virtual instances are powered. These types of exploits are even more dangerous than ones that require local access, as that is already dangerous by itself. A lot of these issues are said to be ironed out by Intel's new microarchitecture designs like Ice Lake, Tiger Lake, and future revisions.

However, it seems like Intel is encountering some problems with even the latest Ice Lake CPUs when it comes to system bugs. JetBrains, a Czech provider of software development tools has a Java programming language development environment called IntelliJ integrated development environment. It was recently reported that on MacBook Air 2020 and Microsoft Surface Pro models equipped with 10th generation Intel Ice Lake CPUs, IntelliJ IDE causes system restart or a complete OS crash. In the report, the CPU ran in a Linux VM that isolates itself from MacOS so the macOS XNU kernel is not to blame. In the report thread, another user running Windows on Microsoft Surface Pro experienced the crash as well.
Intel Ice Lake CPU

Possible Intel "Ice Lake-SP" 24-core Xeon Processor Surfaces on Geekbench Database

Intel plans to update its Xeon Scalable server processor family this year with the new "Ice Lake-SP" microarchitecture. Built on the 10 nm+ silicon fabrication process, "Ice Lake-SP" is a high- thru extreme core-count monolithic silicon that features "Sunny Cove" CPU cores that introduce the first real IPC increases over "Skylake." A 24-core/48-thread processor likely based on this silicon surfaced on the Geekbench database, where it posted some impressive numbers given its low clock speeds.

The processor comes with an identification string "GenuineIntel Family 6 Model 106 Stepping 4," with a nominal clock speed of 2.20 GHz, and boost frequency of 2.90 GHz, which points to the possibility of this being an engineering sample. Besides clock speeds and core counts, some basic hardware specs were detected by Geekbench 4. For starters, the processor has an L1D cache size of 48 KB and L1I cache size of 32 KB, which is similar to the client-segment "Ice Lake-U" silicon based Core i7-1065G7, and confirms that this processor uses "Sunny Cove" cores. "Cascade Lake" and "Skylake" cores use 32 KB L1D caches. Also, the dedicated L2 cache per core is 1.25 MB, up from the 1 MB L2 caches on "Cascade Lake." Client-segment "Ice Lake" chips use 512 KB L2 caches. The shared L3 cache is 36 MB (or 1.5 MB slice per core), which loosely aligns with the cache balance of Intel's server and HEDT processors. In this bench run, the processor is backed by 256 GB of memory, of an unknown type or configuration. In the three bench runs, the setup scores roughly 4100 points single-core, and roughly 42000 points multi-core.

Intel Reassures Investors of its Server Processor Roadmap: Ice Lake-SP in 2020, Sapphire Rapids in 2021

Intel's Investor Relations head Trey Campbell, in a "fire-side chat" with top investors at the Cowen Virtual Technology Media and Telecom Conference, reaffirmed Intel's commitment to its server processor roadmap. Intel is on course to introducing its 10 nm Xeon "Ice Lake-SP" enterprise processor family by the end of 2020, and "Sapphire Rapids" sometime within 2021.

"Ice Lake-SP" processor will introduce the new "Whitley" platform, with a new 4,189-pin LGA socket, which leverages PCI-Express gen 4.0. While retaining the DDR4 memory standard, the memory interface has been broadened to 8-channel, and reference memory clock speeds are expected to be increased to DDR4-3200. The company's "Sapphire Rapids" processor is expected to shake up the market, as it introduces next-generation I/O, when it launches alongside the "Eagle Stream" platform in 2021. The processor will be built on the refined 10 nm+ silicon fabrication node, feature "Willow Cove" CPU cores, and I/O feature set that sees the introduction of DDR5 memory standard, and PCI-Express gen 5.0.

Intel "Elkhart Lake" Atom Processor Surfaces on Chinese Components Marketplace, "Tremont" Meets Gen11

Intel's next-generation Atom processor is codenamed "Elkhart Lake." Built on the 10 nm silicon fabrication process, the chip combines up to four CPU cores based on the "Tremont" microarchitecture, with an iGPU based on the Gen11 architecture, and a single-channel memory interface that supports DDR4 and LPDDR4. Differentiation of the processor include 2-core and 4-core CPU variants, and TDP variants spanning 6 W, 9 W, and 12 W. "Tremont" is a lightweight CPU core by Intel that lacks AVX capabilities. Besides "Elkhart Lake," the core is featured in the "Lakefield" Core heterogenous processors as the their low-power cores.

Chinese electronics B2B marketplace CogoBuy.com has the processor listed, although without listing out any processor model numbers. The marketplace is accepting RFQs (requests for quotations) for bulk purchase of these BGA chips on trays, without listing prices. Also listed is an "industrial variant" of the chip, which has an increased TJmax of 110 °C (compared to 105 °C of the standard variant). The Gen11 iGPU wasn't detailed, but it's likely to have a lower execution unit count than the variant found on "Ice Lake" processors, while retaining its display- and media-engines (ability to pull 8K60 displays).

Intel Tiger Lake Processor Spotted with Boost of 5 GHz

Intel is preparing to launch its next-generation Tiger Lake lineup of processors for the middle of 2020. The processors are based on the new "Willow Cove" CPU core, which supposedly brings even more IPC gains compared to previous "Golden Cove" CPU cores found in Ice Lake processors. The Tiger Lake lineup will use Intel's advanced 10 nm+ manufacturing process. This alone should bring some gains in frequency compared to the 10 nm Ice Lake processor generation, which was spotting a maximum of 4.1 GHz boost frequency on 28 W TDP model named Core i7-1068NG7. This processor is labeled as the highest-performing Ice Lake parts available today and the best 10 nm products available so far from Intel.

Thanks to the popular hardware leaker Rogame, we have evidence that the gains from 10 nm+ manufacturing process are real and that Tiger Lake will show us an amazing boost frequency of 5 GHz. In the benchmark, an unknown OEM laptop was spotted running the benchmark with a Tiger Lake CPU. This CPU is a 4 core, 8 threaded model with a base frequency of 2.3 GHz and a surprising boost frequency of 5 GHz. This information should, of course, be taken with a grain of salt until we get more information about the Tiger Lake lineup and their specifications.
Intel Tiger Lake Benchmark Report

Intel Showcases Ice Lake iGPU Performance in Premiere Pro 14.2

As we reported earlier this week, the release of Adobe Premiere Pro 14.2 brought GPU acceleration to select NVIDIA and AMD GPUs taking advantage of NVIDIA's NVENC chips to boost encoding and decoding speeds. Intel has now showcased the improvements to encoding and decoding with Intel Quick Sync Video (QSV) on 11th generation iGPUs found in mobile Ice Lake chips with Adobe Premiere Pro 14.2.

Compared to the previous 9th generation graphics found in Skylake and Kabylake CPUs the new 11th generation iGPUs perform anywhere from 49-82% better. While impressive, these performance gains can only be found on limited low power 10 nm mobile chips with a maximum of four cores and are yet to arrive on desktop platforms.

Intel Gen12 Xe iGPU Twice as Fast as Gen11, Enters AMD Vega iGPU Territory

Intel Xe graphics architecture makes its commercial debut as an iGPU solution in the company's upcoming "Tiger Lake" mobile processors. The iGPU can be configured along three tiers, with GT1 featuring 48 execution units (EUs), GT2 80 EUs, and GT3 leading the pack with 96 EUs, all within a 15 W envelope (for the total chip). There's a higher tier still of GT3 that comes with higher boost frequencies, tapping into the chip's overall increased 28 W TDP, but this variant of "Tiger Lake" could likely be an Apple-exclusive like its "Ice Lake" based predecessor.

NotebookCheck compiled a 3DMark FireStrike comparison between the various tiers of the Xe iGPU, and compared it to the Gen11 iGPU found with current-generation "Ice Lake-U" processors. The graph doesn't put out scores, but relative performance. Apparently, the 48 EU version of Gen12 Xe is a little over twice as fast as Gen11 GT1, and faster than even the 64 EU Gen11 GT2. The Gen12 GT2 with 80 EUs is around 1.7x faster than the Gen11 GT2 (64 EU). The 96 EU GT3 trim is over twice as fast, and its 28 W variant faster still. These performance give Gen12 a shot against AMD's Radeon Vega-based iGPU solution found in "Renoir." AMD has slimmed the number of CUs down to 8 (512 SP) with "Renoir," down from 11 CUs in the previous generation, compensating for it with higher GPU engine clocks.

Intel Apparently Reserving 28 W Ice Lake Mobile Chips for Apple, Removes Entries from ARK

The idea of an ARK is to preserve that which enters it; however, the legend on the basis of arks and their concept must've slipped Intel's internal memos. The company has de-listed a previously detailed Ice Lake mobile CPU from its database - the Core i7-1068G7 - which was a 28 W part available for system integrators to build machines around. That part was special, because it was - then - the only 28 W part listed for mobile Ice Lake, with the rest of the CPU lineup having configurable TDPs between 12 W and 25 W - thus having a lesser maximum theoretical performance due to reduced TDP.

In its stead, Intel has entered a new, Core i7-1068NG7 (yes, the same naming with an extra N), which places this as an Apple-exclusive CPU, according to the folks over at Notebookcheck. Besides this entry, Intel has also listed the i5-1038NG7, which also features a 28 W TDP that's higher than the other available CPUs for other system integrators. If this is true, then Intel is reserving its cream-of-the-crop CPUs for Apple. Since the California-based company wouldn't be using parts with worse thermal and power consumption figures than what's available for others, the only answer to how these products came to being is that they are binned CPUs with better than average characteristics. Intel could be doing this to keep Apple happy even as the California-based company is well on its way to eschew its dependence on x86 with a fully internally-developed ARM CPU.

Intel Core i7-1185G7 "Tiger Lake" Ships with 4.70 GHz Turbo Boost Speeds

Intel spoke of a "double digit percentage performance growth generation on generation" at its product reveal for "Tiger Lake" along the sidelines of its CES event. We now have a theory as to how they arrived at that. The company's 11th generation Core "Tiger Lake" processor, scheduled to launch sometime mid-2020, could bring about big gains in per-core performance for the ultraportable segment. PC enthusiast MebiuW, who has had a high hit-rate with Intel leaks, revealed that the flagship "Tiger Lake" part, the Core i7-1185G7, could ship with a CPU Turbo Boost speed of 4.70 GHz, a steep increase from the 3.90 GHz of the top current "Ice Lake" part, the i7-1065G7. The increased clock speeds, coupled with the more advanced "Willow Cove" CPU cores appear to be the 11th generation chip's value proposition.

GDP Win Max is an 8-inch Gaming Laptop with Intel's Ice Lake CPU

GDP, a company specializing in the creation of tiny laptops designed for gaming, has just announced the latest addition to its family of tiny notebooks - the GDP Win Max gaming laptop. This model is an 8-inch gaming laptop packing a lot for its size. On the outside, this laptop is equipped with joysticks on both sides, so there is even an option to directly play games using these joysticks instead of the built-in keyboard. The display of the device is an IPS screen that features a 1280×800 resolution, resulting in a 16:10 aspect ratio of the display. What's more important, however, is what is under the hood of the small body.

It is powered by Intel's latest Ice Lake CPU - the Intel Core i5-1035G7. Being a 4 core/ 8 threaded CPU with Gen11 Iris Plus 940 graphics it is accompanied by 16 GB of LPDDR4X RAM and 512 GB SSD. GDP has provided some of the benchmark results of this configuration which you can check out below, however, please take these with a grain of salt. As far as I/O goes, this small laptop is rather well equipped with plenty of ports. There is one Thunderbolt 3 port to connect to external GPU is it is needed. There is one USB Type-C 3.1 Gen2 port and two USB Type-A 3.1 Gen1 ports for the connection of external peripherals. If you wish to connect the laptop to the outside screen, there are options of HDMI, USB Type-C or Thunderbolt 3 ports for connection. A welcome addition to I/O is the inclusion of the RJ45 connector, meaning that if you have access to ethernet you can easily plug it into this laptop.
GDP Win Max GDP Win Max GDP Win Max Benchmarks GDP Win Max Benchmarks

ASUS Leaks PRIME Z490-P and Z490-A Motherboards for Intel's 10th Gen

ASUS has inadvertently leaked images of their upcoming PRIME Z490-P and Z490-A motherboards, which will accompany the introduction of Intel's 10th Gen "Ice Lake" CPUs. As is usual with Intel, the new generation CPU release will be met with a new chipset launch, of which ASUS apparently has finalized designs: the company has uploaded Z490 pictures on their current Z390 PRIME webpage.

Like with previous ASUS designs, the PRIME Z490-P seems to target budget-conscious users, with a reduced feature set including a no-frills VRM heatsink design (which means the VRM itself isn't a top-tier one) and a pretty basic on-board sound processor. The motherboard still packs 2x M.2 slots and 2x PCIe 3.0 x16 slots, though the rest of the expansion slots are of the 1x kind (4x slots in total). The Z490-A, though, boasts of a more premium construction, with oversized heatsinks (including for at least one of the M.2 slots) and 3x PCIe 3.0 x16 slots alongside 3x Pcie 3.0 1x slots. The sound processing subsystem has also been clearly beefed up in comparison.
ASUS PRIME Z490-P ASUS PRIME Z490-A

Intel 10nm Product Lineup for 2020 Revealed: Alder Lake and Ice Lake Xeons

A leaked Intel internal slide surfaced on Chinese social networks, revealing five new products the company will build on its 10 nm silicon fabrication process. These include the "Alder Lake" heterogenous desktop processor, "Tiger Lake" mobile processor, "Ice Lake" based Xeon Scalable enterprise processors, DG1 discrete GPU, and "Snow Ridge" 5G base-station SoC. Some, if not all of these products, will implement Intel's new 10 nm+ silicon fabrication node that is expected to go live within 2020.

"Alder Lake" is a desktop processor that implements Intel's new heterogenous x86 core design that's making its debut with "Lakefield." The chip features up to 8 larger "Willow Cove" or "Golden Cove" CPU cores, and up to 8 smaller "Tremont" or "Gracemont" cores. This 8-big/8-small combo lets the chip achieve TDP targets around 80 Watts. Next up is "Tiger Lake," Intel's next-generation mobile processor family succeeding "Ice Lake." This microarchitecture implements "Willow Cove" CPU cores in a homogeneous setup, alongside Xe architecture based integrated graphics. "Ice Lake-SP" is Intel's next enterprise architecture that places mature "Sunny Cove" CPU cores in extreme core-count dies. Lastly, there's "Snow Ridge," an SoC purpose built for 5G base-stations. Image quality notwithstanding, these slides don't appear particularly new, and it's likely that COVID-19 has destabilized the roadmap. For instance, "Alder Lake," and "Ice Lake-SP" are expected to be 10 nm++ chips, a node that doesn't go live before 2021.

Trio of Intel 10th Gen "Ice Lake" NG Processors Show Up on Intel Website

Three new 10th generation Core "Ice Lake-U" notebook processors surfaced on Intel website with a curious new nomenclature, possibly ahead of their "Q2-2020" launch. The three follow the processor model numbering convention of 10x0NGy, where x denotes the key model differentiator, and y the iGPU tier differentiator. Among the three parts are the Core i7-1060NG7, the Core i5-1030NG7, and the Core i3-1000NG4. The i5-1060NG7 and i5-1030NG7 are 10-Watt parts and feature 4-core/8-thread "Sunny Cove" CPUs, while the i3-1000NG4 packs a 2-core/4-thread "Sunny Cove" CPU, and is rated at 9 W TDP.

What sets the Core i5 apart from the Core i7, besides CPU clock speeds, are L3 cache sizes: 8 MB for the Core i7, and 6 MB for the i5. The Core i3 packs 4 MB. With an eye clearly on ultra-portable notebooks, these chips only feature dual-channel LPDDR4 memory interfaces, with memory clock speeds of up to 3733 MT/s. The i7-1060NG7 CPU ticks at 1.20 GHz and up to 3.80 GHz Turbo Boost; while the i5-1030NG7 runs between 1.10 GHz to 3.50 GHz. The i3-1000NG4 is clocked 1.10 GHz with 3.20 GHz Turbo Boost. The Core i7 and Core i5 parts pack an identical Gen11 iGPU: Iris Plus clocked between 300 MHz to 1.10 GHz for the i7 and up to 1.05 GHz for the i5. The Core i3 features 300-900 MHz iGPU clock speeds and fewer execution units.

Microsoft DirectX 12 Ultimate: Why it Helps Gamers Pick Future Proof Graphics Cards

Microsoft Thursday released the DirectX 12 Ultimate logo. This is not a new API with any new features, but rather a differentiator for graphics cards and game consoles that support four key modern features of DirectX 12. This helps consumers recognize the newer and upcoming GPUs, and tell them apart from some older DirectX 12 capable GPUs that were released in the mid-2010s. For a GPU to be eligible for the DirectX 12 Ultimate logo, it must feature hardware acceleration for ray-tracing with the DXR API; must support Mesh Shaders, Variable Rate Shading (VRS), and Sampler Feedback (all of the four). The upcoming Xbox Series X console features this logo by default. Microsoft made it absolutely clear that the DirectX 12 Ultimate logo isn't meant as a compatibility barrier, and that these games will work on older hardware, too.

As it stands, the "Navi"-based Radeon RX 5000 series are "obsolete", just like some Turing cards from the GeForce GTX 16-series. At this time, the only shipping product which features the logo is NVIDIA's GeForce RTX 20-series and the TITAN RTX, as they support all the above features.

Intel Core i5-L16G7 is the first "Lakefield" SKU Appearance, Possible Prelude to New Nomenclature?

Intel Core i5-L16G7 is the first commercial SKU that implements Intel's "Lakefield" heterogenous x86 processor architecture. This 5-core chip features one high-performance "Sunny Cove" CPU core, and four smaller "Tremont" low-power cores, with an intelligent scheduler balancing workloads between the two core types. This is essentially similar to ARM big.LITTLE. The idea being that the device idles most of the time, when lower-powered CPU cores can hold the fort; performance cores kick in only when really needed, until which time they remain power-gated. Thai PC enthusiast TUM_APISAK discovered the first public appearance of the i5-L16G7 in an unreleased Samsung device that has the Userbenchmark device ID string "SAMSUNG_NP_767XCL."

Clock speeds of the processor are listed as "1.40 GHz base, with 1.75 GHz turbo," but it's possible that the two core types have different clock-speed bands, just like the cores on big.LITTLE SoCs. Other key components of "Lakefield" include an iGPU based on the Gen11 graphics architecture, and an LPDDR4X memory controller. "Lakefield" implements Foveros packaging, in which high-density component dies based on newer silicon fabrication nodes are integrated with silicon interposers based on older fabrication processes, which facilitate microscopic high-density wiring between the dies. In case of "Lakefield," the Foveros package features a 10 nm "compute field" die sitting atop a 22 nm "base field" interposer.

Intel Unveils Xe DG1-SDV Graphics Card, Demonstrates Intent to Seriously Compete in the Gaming Space

At a media event on Wednesday, Intel invited us to check out their first working modern discrete graphics card, the Xe DG1 Software Development Vehicle (developer-edition). Leading the event was our host Ari Rauch, Intel Vice President and General Manager for Graphics Technology Engineering and dGPU Business. Much like gruff developer-editions of game consoles released to developers several quarters ahead of market launch, the DG1-SDV allows software developers to discover and learn the Xe graphics architecture, and develop optimization processes for their current and future software within their organizations. We walked into the event expecting to see a big ugly PCB with a bare fan-heatsink and a contraption that sort-of looks like a graphics card; but were pleasantly surprised with what we saw: a rather professional product design.

What we didn't get at the event, through, was a juicy technical breakdown of the Xe graphics architecture, and its various components that add up to the GPU. We still left pleasantly surprised for what we were shown: it works! The DG1-SDV is able to play games at 1080p, even if they are technically lightweight titles like "Warframe," and aren't maxing out settings. The SDV is a 15.2 cm-long graphics card that relies on the PCI-Express slot for power entirely (and hence pulling less than 75 W).

Alienware Shows Off Concept UFO - a Portable, Tablet-like Mini PC

At CES 2020, Dell's gaming-inspired division, Alienware, had a handful of new products to showcase. Among these, we found a new product that is still in development called the Concept UFO. The UFO is a concept product that hints a new development strategy for gaming PCs, and that is a portability first approach. Inspired by Nintendo's Switch console, this computer puts gaming PCs on the go. Designed to be a handheld based solution, this PC is based on Windows 10 operating system so you can be sure that all of your existing game libraries are also playable on it as well.

Having an Intel processor as its base, the Concept UFO uses Intel's iGPU to power an 8-inch display of unknown resolution. While we don't know which architecture is powering the UFO, we speculate that Ice Lake is behind it. Our speculation is based on an assumption that, if the concept is capable of playing games, Alienware would put as high-performance iGPU as possible, and such performance is currently only found inside Intel's Ice Lake processors, in form of Intel Iris Plus integrated graphics. Frank Azor of AMD tweeted a question if anyone would like to see this product come with new AMD 4000 series of Ryzen mobile processors, so we could be in for a surprise, given that final specifications are not determined. Ryzen 4000 series would represent a perfect choice as it offers a lot of CPU and GPU power in a mere 15 W TDP package, however, we don't know what solution will be present in the end.

Intel CPU Based on New Architecture Leaks

Today Intel's CPU based on yet unannounced architecture got revealed in the SiSoft benchmark database. Featuring six cores and twelve threads running at 3 GHz, it appears like a regular 14 nm CPU that's already available, however, when digging through the details, many things are revealed. The newly submitted CPU has a different L2 cache configuration from previous CPU offerings, with this chip featuring 1.25 MB of L2 cache per core, it is unlike anything else Intel currently offers. Ice Lake mobile chips feature 512 KB, while the highest amount of L2 cache is currently present on i9-10980XE, which features 1 MB of L2.

It is unknown where this CPU fits in the whole 14/10 nm lineup, as we don't know if this is an iteration of 10 nm Tiger Lake or the rumored 14 nm Rocket Lake CPU. All we know is that this CPU features new architecture compared to Skylake iterations that are currently being used, judging by L2 cache bump, which usually happens on new architectures. The platform used for benchmarking this CPU was SuperMicro X12DAi-N SMC X12 dual-socket motherboard, which featured two of these new CPUs for a total of 12 cores and 24 threads.
Return to Keyword Browsing