News Posts matching #Zen 5

Return to Keyword Browsing

AMD Expected to Increase Microcode Size for Future Processor Technologies

Phoronix has recently uncovered an intriguing Linux update, with kernel improvements being prepared to handle greater microcode payloads—they believe that "future AMD CPUs will be getting larger microcode patches." The timing could suggest that upcoming Zen 5 processors will be likely candidates to meet new requirements: "Right now the Linux kernel has a maximum microcode patch size for AMD CPUs that is three times the kernel's page size (typically 4K). But with a patch (published on July 20) that will "increase substantially" to eight times the page size. The increase is intentionally quite a magnitude larger in order to avoid future patches further having to bump the patch size limit in later generations." Earlier this month, some GitHub entries demonstrated that AMD engineers had patched Linux 6.5 with updates for "Family 26" (1Ah) CPU enablement," which Phoronix believes to be for next-gen platforms (Zen 5): "It's also not elaborated on why the CPU microcode size will be increasing. In any event the simple patch to bump the AMD CPU microcode limit is now out for review. It's also marked for back-porting to existing stable kernel versions."

AMD "Strix Point" Zen 5 Monolithic Silicon has a 12-core CPU?

It looks like the monolithic silicon that succeeds "Phoenix," codenamed "Strix Point," will finally introduce an increase in CPU core counts for the thin-and-light and ultraportable mobile platforms. "Strix Point" is codename for the next-generation APU die being developed at AMD, which, according to a leaked MilkyWay@Home benchmark result, comes with a 12-core/24-thread CPU.

The silicon is identified by MilkyWay@Home with the OPN "AMD Eng Sample: 100-000000994-03_N," and CPU identification string "AuthenticAMD Family 26 Model 32 Stepping 0 -> B20F00." The "Strix Point" CPU could be the second time AMD has increased CPU core-counts per CCX. From "Zen 3" onward, the company increased the cores per CCX from 4 to 8, allowing a single "Zen 3" CCX on the "Cezanne" monolithic silicon to come with 8 cores. It's highly likely that with "Zen 5," the company is increasing the cores/CCX to 12, and that "Strix Point" has one of these CCXs.

FinalWire Releases AIDA64 v6.90

FinalWire Ltd. today announced the immediate availability of AIDA64 Extreme 6.90 software, a streamlined diagnostic and benchmarking tool for home users; the immediate availability of AIDA64 Engineer 6.90 software, a professional diagnostic and benchmarking solution for corporate IT technicians and engineers; the immediate availability of AIDA64 Business 6.90 software, an essential network management solution for small and medium scale enterprises; and the immediate availability of AIDA64 Network Audit 6.90 software, a dedicated network audit toolset to collect and manage corporate network inventories. The new AIDA64 update supports the latest AMD and Intel CPU platforms as well as the new graphics and GPGPU computing technologies by AMD, Intel and nVIDIA.

DOWNLOAD: FinalWire AIDA64 Extreme v6.90

AMD Starts Software Enablement of Zen 5 Processors

According to the Linux Kernel Mailing List, AMD started to enable next-generation processors by submitting patches to the Linux kernel. Codenamed Family 1Ah or Family 26 in decimal notation, the set of patches corresponds to the upcoming AMD Zen 5 core, which is the backbone of the upcoming Ryzen 8000 series processors. The patches have a few interesting notes, namely few of them being: added support for the amd64_edac (Error Detection and Correction) module and temperature monitoring; added PCI IDs for these models covering 00h-1Fh and 20h; added required support in k10temp driver.

The AMD EDAC driver also points out that the Zen 5 server CPUs will max out with 12-channel memory. Codenames 0-31 correspond to next-generation EPYC, while 40 to 79 are desktop and laptop SKUS. Interestingly, these patches are just the start, as adding PCI IDs and temperature drivers are basic enablement. With the 2024 launch date nearing, we expect to see more Linux kernel enablement efforts, especially with more complicated parts of the kernel.

Possible AMD Ryzen Zen 5 Prototype CPU Emerges from Online Databases

AMD made its upcoming Ryzen 8000 CPU series official earlier this week during a "Meet the Experts" presentation - a roadmap demonstrates that this next-generation "Zen 5" + "Navi 3.5" mainstream desktop processor lineup is expected to arrive in 2024. Leaked information (from last month) points to "Granite Ridge" being AMD's codename for the upcoming processor product range, with high-end examples maxing out at 16 CPU cores across two CCDs. Benchleaks has recently spotted a pair of curious looking AMD engineering samples - entries have appeared on the einstein@home and LHC@home distributed computing platforms.

The mystery SKU seems to be a prototype CPU model that sports 8 cores and 16 threads - the AMD product number (OPN) for this unit is "00-000001290-11_N" which does not correspond to anything currently on the market. A Family ID of 26 is specified - Benchleaks theorizes that this number assignment is "Zen 5" specific - given that the existing Family 25 (19H) identifier was assigned to Zen 3 and 4. It should be noted that one of AMD's alleged test systems appears to have been running unreleased graphics hardware - a non-specific Radeon unit (with 12 GB of VRAM) is mentioned within einstein@home's information dump, this could be a potential mid-range RX 7000-series card. A Radeon RX 7900 GRE GPU with an unusually low video memory allocation of 16 GB is listed in LHC@home's entry.

AMD Confirms Zen 5 will Get Ryzen 8000 Series Branding, "Navi 3.5" Graphics in 2024

AMD in one of its Meet the Experts presentations to the retail channel vendors, confirmed that the next-generation "Zen 5" architecture will see its desktop part branded under the Ryzen 8000 series. The company has known to skip a thousand-number sequence each generation for its mainstream-desktop series, the way it skipped Ryzen 4000 series nomenclature between the "Zen 2" based Ryzen 3000 "Vermeer" and "Zen 3" based Ryzen 5000 Vermeer; and more recently, between "Vermeer" and the "Zen 4" based Ryzen 7000 "Raphael," which makes this an interesting development. AMD's next-generation mainstream-desktop processor is expected to be codenamed "Granite Ridge," it will feature up to 16 "Zen 5" CPU cores across up to two CCDs. The processor I/O (and its 6 nm cIOD) is expected to be largely carried over, except that it could be upgraded with support for higher DDR5 memory speeds.

Another major disclosure is the very first mention of "Navi 3.5" This implies an incremental to the "Navi 3.0" generation (Radeon RX 7000 series, RDNA3 graphics architecture), which could even be a series-wide die-shrink to a new foundry node such as TSMC 4 nm, or even 3 nm; which scoops up headroom to dial up clock speeds. AMD probably finds its current GPU product stack in a bit of a mess. While the "Navi 31" is able to compete with NVIDIA's high-end SKUs such as the RTX 4080, and the the company expected to release slightly faster RX 7950 series to have a shot at the RTX 4090; the company's performance-segment, and mid-range GPUs may have wildly missed their performance targets to prove competitive against NVIDIA's AD104-based RTX 4070 series, and AD106-based RTX 4060 series; with its recently announced RX 7600 being based on older 6 nm foundry tech, and performing a segment lower than the RTX 4060 Ti.

AMD Ryzen 8000 "Granite Ridge" Zen 5 Processor to Max Out at 16 Cores

AMD's next-generation Ryzen 8000 "Granite Ridge" desktop processor based on the "Zen 5" microarchitecture, will continue to top out at 16-core/32-thread as the maximum CPU core-count possible, says a report by PC Games Hardware. The processor will retain the chiplet design of the current Ryzen 7000 "Raphael" processor, with two 8-core "Zen 5" CCDs, and one I/O die. It's very likely that AMD will reuse the same 6 nm client I/O die (cIOD) as "Raphael," just the way it used the same 12 nm cIOD between Ryzen 3000 "Matisse" and Ryzen 5000 "Vermeer;" but with updates that could enable higher DDR5 memory speeds. Each of the up to two "Eldora" Zen 5 CCDs has 8 CPU cores, with 1 MB of dedicated L2 cache per core, and 32 MB of shared L3 cache. The CCDs are very likely to be built on the TSMC 3 nm EUV silicon fabrication process.

Perhaps the most interesting aspect of the PCGH leak would have to be the TDP numbers being mentioned, which continue to show higher-performance SKUs with 170 W TDP, and lower tiers with 65 W TDP. With its CPU core-counts not seeing increases, AMD would bank on not just the generational IPC increase of its "Zen 5" cores, but also max out performance within the power envelope of the new node, by dialing up clock speeds. AMD could ride out 2023 with its Ryzen 7000 "Zen 4" processors on the desktop platform, with "Granite Ridge" slated to enter production only by Q1-2024. The company could update its product stack in the meantime, perhaps even bring the 4 nm "Phoenix" monolithic APU silicon to the Socket AM5 desktop platform. Ryzen 8000 is expected to retain full compatibility with existing Socket AM5, and AMD 600-series chipset motherboards.

Report Suggests AMD Ryzen Threadripper 8000 "Shimada Peak" HEDT CPUs Prepped for 2025 Launch

DigiTimes has been informed that many of TSMC's customers are likely to postpone usage of the foundry's 3 nm process node into 2024 or beyond, due to a slowdown in the PC hardware market - insider sources suggest that AMD will be sticking with 4 nm and 6 nm nodes for many of its future CPU lineups. The next generation Zen 5-based family is expected to launch in 2024 - which aligns with information issued by AMD via financial reports - a roadmap (based on DigiTime's findings) points to AMD offering a range of mainstream desktop (Granite Ridge) and laptop/mobile CPUs (Fire Range).

No high-end desktop (HEDT) options are marked for release in 2024, and DigiTimes reckons that AMD is planning to release Zen 5-based Ryzen Threadripper processors in the following year. The codename for the Ryzen Threadripper 8000-series seems to be "Shimada Peak" and industry experts think that these HEDT CPUs will eventually succeed the Threadripper "Storm Peak" 7000 family (due for launch later in 2023) - a shared socket design is also a likelihood due to AMD wanting to stretch out the lifespan of mounting connection standards by avoiding costly decisions - their sTRX4/SP3r3 socket only survived for one generation.

AMD Zen 5 "Nirvana" and Zen 6 "Morpheus" Core Codenames Leaked, Confirm Foundry Nodes

An AMD engineer inadvertently leaked the core codenames of the company's upcoming "Zen 5" and "Zen 6" microarchitectures. It's important to understand here what has been leaked. "Zen 5" and "Zen 6" are microarchitecture names, just like the current "Zen 4" and past "Zen 3" or older. AMD uses codenames for the CCD (CPU complex dies) based on these microarchitectures, which it shares between Ryzen client and EPYC enterprise processors. For example, the CCD codename for "Zen 3" is "Brekenridge," and for "Zen 4" it is "Durango." AMD also uses codenames for the CPU cores themselves. "Zen 3" CPU cores are codenamed "Cerebrus," and "Zen 4" CPU cores "Persphone." And now, the leak:

The CCD based on the upcoming "Zen 5" microarchitecture is codenamed "Eldora," and the "Zen 5" CPU core itself is codenamed "Nirvana." There's no codename for the CCD based on "Zen 6," but its CPU cores are codenamed "Morpheus." The "Zen 5" microarchitecture will be based on the 3 nm EUV foundry node; while "Zen 6" will be 2 nm EUV. The engineer in the screenshot is contributing to the power-management technology behind "Zen 5" and "Zen 6," and states that their work on "Zen 5" spanned January-December of 2022, which means the development phase of the next "Zen" architecture is probably complete, and the architecture is undergoing testing and refinement. It's also claimed that work on at least the power-management aspect of "Zen 6" has started from January 2023.

Tenstorrent Tech Talk Reveals Hints of AMD's "Zen 5" Performance

Tenstorrent hosted their "Nerds Talking to Nerds About RISC-V" event this week in India where a dozen high profile industry experts hosted technical talks and panels about every facet of the RISC-V landscape and future. Among these are some familiar names to anyone who's been keeping up on the CPU industry; Raja Koduri of his own AI Generative Gaming startup company, Lars Bergstrom of Google, Naveed Sherwani of Rapid Silicon, and of course Jim Keller the CEO of Tenstorrent itself. On the first day of the event a mere 42 minutes into the YouTube live stream during his keynote talk, Jim Keller is providing an overview of Tenstorrent's latest silicon design goals. He presents a slide showing a wide comparison of various competitor's integer performance in SPEC CPU 2017 INT wherein a raw performance value for AMD's yet released "Zen 5" is listed, as well as the operating frequency and TDP of the supposed sample.

The slide shows all of AMD's recent architectures starting with the original "Zen" (Naples) and the improvements each successive generation has made. Also shown is one of Intel's latest "Sapphire Rapids" Xeons, a projected performance point of NVIDIA's in-house CPU architecture "Grace", Amazon's "Graviton" series with a projected result for "Graviton 3," and Tenstorrent's own 8-wide RISC-V architecture as it currently performs in their labs. While all of these are fascinating results in their own right, we're going to narrow in on the "Zen 4" (Genoa) and "Zen 5" results. We can see from the Frequency and TDP charts that "Zen 4" is clocked at 3.8 GHz as it's equal to the Xeon Platinum 8480+ (which itself boosts to 3.8 GHz in light threaded workloads such as this) so is therefore likely a variant of EPYC 9354 or 9454 with its TDP configured at the minimum 240 W. The unnamed "Zen 5" CPU is shown to be running at around 4.0 GHz with the same 240 W TDP, a tiny 5% bump in core clock, while delivering a substantial 30% jump in performance. The most interesting detail here is that nowhere is it listed—as with "Grace" and "Graviton 3"—that this is a projected result.

AMD Speeds Up Development of "Zen 5" to Thwart Intel Xeon "Emerald Rapids"?

In no mood to cede its market-share growth to Intel, AMD has reportedly decided to accelerate the development of its next-generation "Zen 5" microarchitecture for debut within 2023. In its mid-2022 presentations, AMD had publicly given "Zen 5" a 2024 release date. This is part of a reading-in-between the lines for a recent GIGABYTE press release announcing server platforms powered by relatively low-cost Ryzen desktop processors. The specific sentence from that release reads "The next generation of AMD Ryzen desktop processors that will come out later this year will also be supported on this AM5 platform, so customers who purchase these servers today have the opportunity to upgrade to the Ryzen 7000 series successor."

While the GIGABYTE press release speaks of a next-generation Ryzen desktop processor, it stands to reason that it is referencing an early release of "Zen 5," and since AMD shares the CPU complex dies (CCDs) between its Ryzen client and EPYC server processors, the company is looking at a two-pronged upgrade to its processor lineup, with its next-generation EPYC "Turin" processor competing with Xeon Scalable "Emerald Rapids," and Ryzen "Granite Ridge" desktop processors taking on Intel's Core "Raptor Lake Refresh" and "Meteor Lake-S" desktop processors. It is rumored that "Zen 5" is being designed for the TSMC 3 nm node, and could see an increase in CPU core count per CCD, up from the present 8. TSMC 3 nm node goes into commercial mass-production in the first half of 2023 as the TSMC N3 node, with a refined N3E node slated for the second half of the year.

AMD Confirms Optical-Shrink of Zen 4 to the 4nm Node in its Latest Roadmap

AMD in its Ryzen 7000 series launch event shared its near-future CPU architecture roadmap, in which it confirmed that the "Zen 4" microarchitecture, currently on the 5 nm foundry node, will see an optical-shrink to the 4 nm process in the near future. This doesn't necessarily indicate a new-generation CCD (CPU complex die) on 4 nm, it could even be a monolithic mobile SoC on 4 nm, or perhaps even "Zen 4c" (high core-count, low clock-speed, for cloud-compute); but it doesn't rule out the possibility of a 4 nm CCD that the company can use across both its enterprise and client processors.

The last time AMD hyphenated two foundry nodes for a single generation of the "Zen" architecture, was with the original (first-generation) "Zen," which debuted on the 14 nm node, but was optically shrunk and refined on the 12 nm node, with the company designating the evolution as "Zen+." The Ryzen 7000-series desktop processors, as well as the upcoming EPYC "Genoa" server processors, will ship with 5 nm CCDs, with AMD ticking it off in its roadmap. Chronologically placed next to it are "Zen 4" with 3D Vertical Cache (3DV Cache), and the "Zen 4c." The company is planning "Zen 4" with 3DV Cache both for its server- and desktop segments. Further down the roadmap, as we approach 2024, we see the company debut the future "Zen 5" architecture on the same 4 nm node, evolving into 3 nm on certain variants.

AMD's Second Socket AM5 Ryzen Processor will be "Granite Ridge," Company Announces "Phoenix Point"

AMD in its 2022 Financial Analyst Day presentation announced the codename for the second generation of Ryzen desktop processors for Socket AM5, which is "Granite Ridge." A successor to the Ryzen 7000 "Raphael," the next-generation "Granite Ridge" processor will incorporate the "Zen 5" CPU microarchitecture, with its CPU complex dies (CCDs) built on the 4 nm silicon fabrication node. "Zen 5" will feature several core-level designs as detailed in our older article, including a redesigned front-end with greater parallelism, which should indicate a much large execution stage. The architecture could also incorporate AI/ML performance enhancements as AMD taps into Xilinx IP to add more fixed-function hardware backing the AI/ML capabilities of its processors.

The "Zen 5" microarchitecture makes its client debut with Ryzen "Granite Ridge," and server debut with EPYC "Turin." It's being speculated that AMD could give "Turin" a round of CPU core-count increases, while retaining the same SP5 infrastructure; which means we could see either smaller CCDs, or higher core-count per CCD with "Zen 5." Much like "Raphael," the next-gen "Granite Ridge" will be a series of high core-count desktop processors that will feature a functional iGPU that's good enough for desktop/productivity, though not gaming. AMD confirmed that it doesn't see "Raphael" as an APU, and that its definition of an "APU" is a processor with a large iGPU that's capable of gaming. The company's next such APU will be "Phoenix Point."

AMD Makes 3DV Cache a Part of its Long-term Roadmap, Announces Genoa-X and Siena

AMD in its recent interview with TechPowerUp had asserted that 3D Vertical Cache (or 3DV Cache), isn't a one-off technology and that it would be a continual part of its roadmap. In its 2022 Financial Analyst Day presentation, the company confirmed this, by announcing variants of its CPU chiplets that have 3DV Cache, extending to both the upcoming "Zen 4" microarchitecture, and the upcoming "Zen 5," which it unveiled today.

EPYC "Genoa" is codename for the upcoming line of server processors based on the "Zen 4" CPU microarchitecture, with CPU core-counts of up to 96-core/192-thread. These feature the standard "Zen 4" CCD. The company hasn't yet announced the last-level cache (L3 cache) size of the standard "Zen 4" CCD. The company will launch the EPYC "Genoa-X" processor, which much like the EPYC "Milan-X," will incorporate 3DV Cache, with a stacked L3 cache die on top of the chiplet. "Genoa-X" is slated for a 2023 debut.

AMD Announces the "Zen 5" Microarchitecture and EPYC "Turin" Processor on 4nm

AMD in its Financial Analyst Day 2022 presentation, unveiled its next-generation "Zen 5" CPU microarchitecture. The company's latest CPU microarchitecture roadmap also confirms that variants of its "Zen 4" CCDs with 3D Vertical Cache (3DV Cache) are very much in the works, and there will be variants of the EPYC "Genoa" processors with 3DV Cache, besides standard ones.

AMD stated that it completed the design goal of the current "Zen 3" architecture, by building it on both 7 nm and 6 nm nodes (the latter being the client "Rembrandt" processor). The new "Zen 4" architecture will debut on the 5 nm node (TSMC N5), and could see a similar optical shrink to the newer 4 nm node somewhere down the line, although AMD wouldn't specify whether it's on the enterprise segment, or client. The next-gen "Zen 5" architecture will debut on 4 nm, and see an optical shrink to 3 nm on some future product.

AMD Ryzen 8000 Series Processors Based on Zen 5 Architecture Reportedly Codenamed "Granite Ridge"

Today, we have talked about AMD's upcoming Raphael lineup of processors in the article you can find here. However, it seems like the number of leaks on AMD's plans just keeps getting greater. Thanks to the "itacg" on Weibo, we have learned that AMD's Ryzen 8000 desktop series of processors are reportedly codenamed as Granite Ridge. This new codename denotes the Zen 5 based processors, manufactured on TSMC's 3 nm (N3) node. Another piece of information is that AMD's Ryzen 8000 series APUs are allegedly called Strix Point, and they also use the 3 nm technology, along with a combination of Zen 5 and Zen 4 core design IPs. We are not sure how this exactly works out, so we have to wait to find out more.

AMD Zen 5 "Strix Point" Processors Rumored To Feature big.LITTLE Core Design

AMD launched the 7 nm Zen 3 microarchitecture which powers Ryzen 5000 processors in late 2020, we expect AMD to follow this up with a Zen 3+ on 6 nm later this year and a 5 nm Zen 4 in 2022. We are now beginning to receive the first rumors about the 3 nm Zen 5 architecture which is expected to launch in 2024 in Ryzen 8000 series products. The architecture is reportedly known as "Strix Point" and will be manufactured on TSMC's 3 nm node with a big.LITTLE core design similar to the upcoming Intel Alder Lake and the Apple M1. The Strix Point lineup will consist exclusively of APUs and could feature up to 8 high-performance and 4 low-performance cores which would be less than what Intel plans to offer with Alder Lake. AMD has allegedly already set graphics performance targets for the processors and that they will bring significant changes to the memory subsystem but with rumors for a product 3 years away from launch take them with a healthy dose of skepticism.

Distant Blips on the AMD Roadmap Surface: Rembrandt and Raphael

Several future AMD processor codenames across various computing segments surfaced courtesy of an Expreview leak that's largely aligned with information from Komachi Ensaka. It does not account for "Matisse Refresh" that's allegedly coming out in June-July as three gaming-focused Ryzen socket AM4 desktop processors; but roadmap from 2H-2020 going up to 2022 sees many codenames surface. To begin with, the second half of 2020 promises to be as action packed as last year's 7/7 mega launch. Over in the graphics business, the company is expected to debut its DirectX 12 Ultimate-compliant RDNA2 client graphics, and its first CDNA architecture-based compute accelerators. Much of the processor launch cycle is based around the new "Zen 3" microarchitecture.

The server platform debuting in the second half of 2020 is codenamed "Genesis SP3." This will be the final processor architecture for the SP3-class enterprise sockets, as it has DDR4 and PCI-Express gen 4.0 I/O. The EPYC server processor is codenamed "Milan," and combines "Zen 3" chiplets along with an sIOD. EPYC Embedded (FP6 package) processors are codenamed "Grey Hawk."
Return to Keyword Browsing
Jun 17th, 2024 14:21 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts