News Posts matching #x86

Return to Keyword Browsing

Intel Announces New Mobile Lunar Lake Core Ultra 200V Series Processors

Intel today launched its most efficient family of x86 processors ever, the Intel Core Ultra 200V series processors. They deliver exceptional performance, breakthrough x86 power efficiency, a massive leap in graphics performance, no-compromise application compatibility, enhanced security and unmatched AI compute. The technology will power the industry's most complete and capable AI PCs with more than 80 consumer designs from more than 20 of the world's top manufacturing partners, including Acer, ASUS, Dell Technologies, HP, Lenovo, LG, MSI and Samsung. Pre-orders begin today with systems available globally on-shelf and online at over 30 global retailers starting Sept. 24. All designs featuring Intel Core Ultra 200V series processors and running the latest version of Windows are eligible to receive Copilot+ PC features as a free update starting in November.

"Intel's newest Core Ultra processors set the industry standard for mobile AI and graphics performance, and smash misconceptions about x86 efficiency. Only Intel has the scale through our partnerships with ISVs and OEMs, and the broader technology ecosystem, to provide consumers with a no-compromise AI PC experience."
--Michelle Johnston Holthaus, Intel executive vice president and general manager of the Client Computing Group

Intel Announces Deployment of Gaudi 3 Accelerators on IBM Cloud

IBM and Intel announced a global collaboration to deploy Intel Gaudi 3 AI accelerators as a service on IBM Cloud. This offering, which is expected to be available in early 2025, aims to help more cost-effectively scale enterprise AI and drive innovation underpinned with security and resiliency. This collaboration will also enable support for Gaudi 3 within IBM's watsonx AI and data platform. IBM Cloud is the first cloud service provider (CSP) to adopt Gaudi 3, and the offering will be available for both hybrid and on-premise environments.

"Unlocking the full potential of AI requires an open and collaborative ecosystem that provides customers with choice and accessible solutions. By integrating Gaudi 3 AI accelerators and Xeon CPUs with IBM Cloud, we are creating new AI capabilities and meeting the demand for affordable, secure and innovative AI computing solutions," said Justin Hotard, Intel executive vice president and general manager of the Data Center and AI Group.

Intel Dives Deep into Lunar Lake, Xeon 6, and Gaudi 3 at Hot Chips 2024

Demonstrating the depth and breadth of its technologies at Hot Chips 2024, Intel showcased advancements across AI use cases - from the data center, cloud and network to the edge and PC - while covering the industry's most advanced and first-ever fully integrated optical compute interconnect (OCI) chiplet for high-speed AI data processing. The company also unveiled new details about the Intel Xeon 6 SoC (code-named Granite Rapids-D), scheduled to launch during the first half of 2025.

"Across consumer and enterprise AI usages, Intel continuously delivers the platforms, systems and technologies necessary to redefine what's possible. As AI workloads intensify, Intel's broad industry experience enables us to understand what our customers need to drive innovation, creativity and ideal business outcomes. While more performant silicon and increased platform bandwidth are essential, Intel also knows that every workload has unique challenges: A system designed for the data center can no longer simply be repurposed for the edge. With proven expertise in systems architecture across the compute continuum, Intel is well-positioned to power the next generation of AI innovation." -Pere Monclus, chief technology officer, Network and Edge Group at Intel.

Tachyum Builds Last FPGA Prototypes Batch Ahead of Tape-Out

Tachyum today announced the final build of its Prodigy FPGA emulation system in advance of chip production and general availability next year. As part of the announcement, the company is also ending its purchase program for prototype systems that was previously offered to commercial and federal customers.

These last hardware FPGA prototype units will ensure Tachyum hits its extreme-reliability test targets of more than 10 quadrillion cycles prior to tape-out and before the first Prodigy chips hit the market. Tachyum's software emulation system - and access to it - is expanding with additional availability of open-source software ported ahead of Prodigy's upstreaming.

Qualcomm Snapdragon X Elite Mini-PC Dev Kit Arrives at $899

Qualcomm has started accepting preorders for its Snapdragon Dev Kit for Windows, based on the Snapdragon X Elite processor. Initially announced in May, the device is now available for preorder through Arrow at a competitive price point of $899. Despite its relatively high cost compared to typical mini PCs, it undercuts most recent laptops equipped with Snapdragon X processors, making it an attractive option for both developers and power users alike. Measuring a mere 199 x 175 x 35 mm, it comes equipped with 32 GB of LPDDR5x RAM, a 512 GB NVMe SSD, and support for the latest Wi-Fi 7 and Bluetooth 5 technologies. The connectivity options are equally robust, featuring three USB4 Type-C ports, two USB 3.2 Type-A ports, an HDMI output, and an Ethernet port.

This mini PC's heart lies the Snapdragon X Elite (X1E-00-1DE) processor. This chip houses 12 Oryon CPU cores capable of reaching speeds up to 3.8 GHz, with a dual-core boost potential of 4.3 GHz. The processor also integrates Adreno graphics, delivering up to 4.6 TFLOPS of performance, and a Hexagon NPU capable of up to 45 TOPS for AI tasks. While similar to its laptop counterpart, the X1E-84-100, this version is optimized for desktop use. It can consume up to 80 watts of power, enabling superior sustained performance without the constraints of battery life or heat dissipation typically associated with mobile devices. This dev kit is made primarily to optimize x86-64 software to run on the Arm platform; hence, removing the power limit is beneficial for translating the code to Windows on Arm. The Snapdragon Dev Kit for Windows ships with a 180 W power adapter and comes pre-installed with Windows 11, making it ready for immediate use upon arrival.

Intel Core Ultra 200V "Lunar Lake" CPUs Arrive on September 3rd

Intel has officially confirmed the upcoming Core Ultra 200V "Lunar Lake" CPU generation is arriving on September 3rd. The official media alert states: "Ahead of the IFA 2024 conference, join Michelle Johnston Holthaus, Intel executive vice president and general manager of the Client Computing Group, and Jim Johnson, senior vice president and general manager of the Client Business Group, and Intel partners as they launch the next generation of Intel Core Ultra processors, code-named Lunar Lake. During the livestreamed event, they will reveal details on the new processors' breakthrough x86 power efficiency, exceptional core performance, massive leaps in graphics performance and the unmatched AI computing power that will drive this and future generations of Intel products."

With IFA happening in Berlin from September 6th to 10th, Intel's Lunar Lake launch is also happening in Berlin just a few days before, on September 3rd at 6 p.m. CEST (9 a.m. PDT). We expect to see nine SKUs: Core Ultra 9 288V, Core Ultra 7 268V, Core Ultra 7 266V, Core Ultra 7 258V, Core Ultra 7 256V, Core Ultra 5 238V, Core Ultra 5 236V, Core Ultra 5 228V, and Core Ultra 5 226V. All of the aforementioned models feature four P-cores and four E-cores, with varying Xe2 GPU core counts and clocks. We also expect to see Intel present its design wins and upcoming Lunar Lake devices like laptops during the launch.
Intel Core Ultra 200V Lunar Lake

Qualcomm Snapdragon X "Copilot+" AI PCs Only Accounted for 0.3% of PassMark Benchmark Runs

The much-anticipated revolution in AI-powered personal computing seems to be off to a slower start than expected. Qualcomm's Snapdragon X CPUs, touted as game-changers in the AI PC market, have struggled to gain significant traction since their launch. Recent data from PassMark, a popular benchmarking software, reveals that Snapdragon X CPUs account for a mere 0.3% of submissions in the past 30 days. This is a massive contrast to the 99.7% share held by traditional x86 processors from Intel and AMD, which raises questions about the immediate future of ARM-based PCs. The underwhelming adoption comes despite bold predictions from industry leaders. Qualcomm CEO Cristiano Amon had projected that ARM-based CPUs could capture up to 50% of the Windows PC market by 2029. Similarly, ARM's CEO anticipated a shift away from x86's long-standing dominance.

However, it turns out that these PCs are primarily bought for the battery life, not their AI capabilities. Of course, it's premature to declare Arm's Windows venture a failure. The AI PC market is still in its infancy, and upcoming mid-tier laptops featuring Snapdragon X Elite CPUs could boost adoption rates. A lot of time still needs to pass before the volume of these PCs reaches millions of units shipped by x86 makers. The true test will come with the launch of AMD's Ryzen AI 300 and Intel's Lunar Lake CPUs, providing a clearer picture of how ARM-based options compare in AI performance. As the AI PC landscape evolves, Qualcomm faces mounting pressure. NVIDIA's anticipated entry into the market and significant performance improvements in next-generation x86 processors from Intel and AMD pose a massive challenge. The coming months will be crucial in determining whether Snapdragon X CPUs can live up to their initial hype and carve out a significant place in the AI PC ecosystem.

AMD Zen 6 to Cram Up to 32 CPU Cores Per CCD

AMD's future "Zen 6" CPU microarchitecture is rumored to cram up to 32 cores per CCD (CPU complex die), or the common client/server chiplet with the CPU cores, according to Kepler_L2, a reliable source with hardware leaks. At this point it's not clear if they are referring to the regular "Zen 6" CPU core, or the physically compacted "Zen 6c" core meant for high core-count cloud server processors. The current pure "Zen 4c" CCD found in EPYC "Bergamo" processor packs 16 cores across two 8-core CCX (CPU core complexes) that share a 16 MB L3 cache among the 8 cores within the CCX. The upcoming "Zen 5c" CCD will pack 16 cores, but in a single 16-core CCX that shares 32 MB of L3 cache among the 16 cores for improved per-core cache access. "Zen 6" is expected to double this to 32 cores per CCD.

The 32-core CCD powered by "Zen 6" (likely Zen 6c), might take advantage of process improvements to double the core-count. At this point, it's not clear if this jumbo CCD features a single large CCX with all 32 cores sharing a large L3 cache; or if it's using two 16-core CCX that shares, say, 32 MB of L3 cache among the 16 cores. What's clear with this leak, though, is that AMD is looking to continue ramping up CPU core counts per socket. Data-centers and cloud customers seem to love this, and AMD is the only x86 processor maker in a serious competition with Arm-based server processor manufacturers such as Ampere, to increase significantly increase core counts per socket with each generation.

AMD Hits Highest-Ever x86 CPU Market Share in Q1 2024 Across Desktop and Server

AMD has reached a significant milestone, capturing a record-high share of the X86 CPU market in the first quarter of 2024, according to the latest report from Mercury Research. This achievement marks a significant step forward for the chipmaker in its long battle against rival Intel's dominance in the crucial computer processor space. The surge was fueled by strong demand for AMD's Ryzen and EPYC processors across consumer and enterprise markets. The Ryzen lineup's compelling price-to-performance ratio has struck a chord with gamers, content creators, and businesses seeking cost-effective computing power without sacrificing capabilities. It secured AMD's 23.9% share, an increase from the previous Q4 of 2023, which has seen a 19.8% market share.

The company has also made major inroads on the data center front with its EPYC server CPUs. AMD's ability to supply capable yet affordable processors has enabled cloud providers and enterprises to scale operations on AMD's platform. Several leading tech giants have embraced EPYC, contributing to AMD's surging server market footprint. Now, it is at 23.6%, a significant increase over the past few years, whereas AMD was just above 10% four years ago in 2020. AMD lost some share to Intel on the mobile PC front due to the Meteor Lake ramp, but it managed to gain a small percentage of the market share of client PCs. As AMD rides the momentum into the second half of 2024, all eyes will be on whether the chipmaker can sustain this trajectory and potentially claim an even larger slice of the x86 CPU pie from Intel in the coming quarters.
Below, you can see additional graphs of mobile PC and client PC market share.

AMD Expands Commercial AI PC Portfolio to Deliver Leadership Performance Across Professional Mobile and Desktop Systems

Today, AMD announced new products that will expand its commercial mobile and desktop AI PC portfolio, delivering exceptional productivity and premium AI and connectivity experiences to business users. The new AMD Ryzen PRO 8040 Series are the most advanced x86 processors built for business laptops and mobile workstations. In addition, AMD also announced the AMD Ryzen PRO 8000 Series desktop processor, the first AI enabled desktop processor for business users, engineered to deliver cutting-edge performance with low power consumption.

With AMD Ryzen AI built into select models, AMD is further extending its AI PC leadership. By leveraging the CPU, GPU, and dedicated on-chip neural processing unit (NPU), new Ryzen AI-powered processors provide more dedicated AI processing power than previous generations, with up to 16 dedicated NPU TOPS (Trillions of Operations Per Second) and up to 39 total system TOPS. Commercial PCs equipped with new Ryzen AI-enabled processors will help transform user experience, offering next-gen performance for AI-enabled collaboration, content creation, and data and analytics workloads. With the addition of AMD PRO technologies, IT managers can unlock enterprise-grade manageability features to simplify IT operations and complete PC deployment faster across the organization, built-in security features for chip-to-cloud defense from sophisticated attacks, as well as unprecedented stability, reliability and platform longevity for enterprise software.

Report: Global PC Shipments Return to Growth and Pre-Pandemic Volumes in the First Quarter of 2024

After two years of decline, the worldwide traditional PC market returned to growth during the first quarter of 2024 (1Q24) with 59.8 million shipments, growing 1.5% year over year, according to preliminary results from the International Data Corporation (IDC) Worldwide Quarterly Personal Computing Device Tracker. Growth was largely achieved due to easy year-over-year comparisons as the market declined 28.7% during the first quarter of 2023, which was the lowest point in PC history. In addition, global PC shipments finally returned to pre-pandemic levels as 1Q24 volumes rivaled those seen in 1Q19 when 60.5 million units were shipped.

With inflation numbers trending down, PC shipments have begun to recover in most regions, leading to growth in the Americas as well as Europe, the Middle East, and Africa (EMEA). However, the deflationary pressures in China directly impacted the global PC market. As the largest consumer of desktop PCs, weak demand in China led to yet another quarter of declines for global desktop shipments, which already faced pressure from notebooks as the preferred form factor.

Google Launches Arm-Optimized Chrome for Windows, in Time for Qualcomm Snapdragon X Elite Processors

Google has just released an Arm-optimized version of its popular Chrome browser for Windows PCs. This new version is designed to take full advantage of Arm-based devices' hardware and operating system, promising users a faster and smoother browsing experience. The Arm-optimized Chrome for Windows has been developed in close collaboration with Qualcomm, ensuring that Chrome users get the best possible experience on current Arm-compatible PCs. Hiroshi Lockheimer, Senior Vice President at Google, stated, "We've designed Chrome browser to be fast, secure, and easy to use across desktops and mobile devices, and we're always looking for ways to bring this experience to more people." Early testers of the Arm-optimized Chrome have reported significant performance improvements compared to the x86-emulated version. The new browser is rolling out starting today and will be available on existing Arm devices, including PCs powered by Snapdragon 8cx, 8c, and 7c processors.

Shortly, Chrome will receive an even more performant chip boost with Qualcomm's upcoming Snapdragon X Elite SoC launch. Cristiano Amon, President and CEO of Qualcomm, expressed his excitement about the collaboration, saying, "As we enter the era of the AI PC, we can't wait to see Chrome shine by taking advantage of the powerful Snapdragon X Elite system." Qualcomm's Snapdragon X Elite devices are expected to hit the market in mid-2024 with "dramatic performance improvement in the Speedometer 2.0 benchmark" on reference hardware. Being one of the most essential applications, getting a native Chrome build to run on Windows-on-Arm is a significant step for the platform, promising more investment from software makers.

Zhaoxin KX-7000 8-Core CPU Gets Geekbenched

Zhaoxin finally released its oft-delayed KX-7000 CPU series last December—the Chinese manufacturer claimed that its latest "Century Avenue Core" uArch consumer/desktop-oriented range was designed to "deliver double the performance of previous generations." Freshly discovered Geekbench 6.2.2 results indicate that Zhaoxin has succeeded on that front—Wccftech has pored over these figures, generated by an: "entry-level Zhaoxin KX-7000 CPU which has 8 cores, 8 threads, 4 MB of L2, and 32 MB of L3 cache. This chip was running at a base clock of 3.0 GHz and a boost clock of 3.3 GHz which is below its standard 3.6 GHz boost profile."

The new candidate was compared to Zhaoxin's previous-gen KX-U6780A and KX-6000G models. Intel's Core i3-10100F processor was thrown in as a familiar Western point of reference. The KX-7000 scored: "823 points in single-core, and 3813 points in multi-core tests. For comparisons, the Intel's Comet Lake CPU with 4 cores and 8 threads plus a boost of up to 4.3 GHz offers a much higher score. It's around 75% faster in single and 17% faster in multi-core tests within the same benchmark." The higher clock speeds, doubled core counts and TDPs do deliver "twice the performance" when compared to direct forebears—mission accomplished there. It is clear that Zhaoxin's latest CPU architecture cannot keep up with a generations old Team Blue design. Loongson's 3A6000 processor is a very promising prospect—reports suggest that this chip is somewhat comparable to mainstream AMD Zen 4 and Intel Raptor Lake products.

Qualcomm AI Hub Introduced at MWC 2024

Qualcomm Technologies, Inc. unveiled its latest advancements in artificial intelligence (AI) at Mobile World Congress (MWC) Barcelona. From the new Qualcomm AI Hub, to cutting-edge research breakthroughs and a display of commercial AI-enabled devices, Qualcomm Technologies is empowering developers and revolutionizing user experiences across a wide range of devices powered by Snapdragon and Qualcomm platforms.

"With Snapdragon 8 Gen 3 for smartphones and Snapdragon X Elite for PCs, we sparked commercialization of on-device AI at scale. Now with the Qualcomm AI Hub, we will empower developers to fully harness the potential of these cutting-edge technologies and create captivating AI-enabled apps," said Durga Malladi, senior vice president and general manager, technology planning and edge solutions, Qualcomm Technologies, Inc. "The Qualcomm AI Hub provides developers with a comprehensive AI model library to quickly and easily integrate pre-optimized AI models into their applications, leading to faster, more reliable and private user experiences."

Huawei's HiSilicon Taishan V120 Server Core Matches Zen 3 Performance

Huawei's new server CPU based on the HiSilicon Taishan V120 core has shown impressive single-threaded performance that matches AMD's Zen 3 architecture in a leaked Geekbench 6 benchmark. The Taishan V120 is likely being manufactured on SMIC's 7 nm process node. The Geekbench 6 result posted on social media does not identify the exact Huawei server CPU model, but speculation points to it being the upcoming Kunpeng 930 chip. In the benchmark, the Taishan V120 CPU operating at 2.9 GHz scored 1527 in the single-core test. This positions it nearly equal to AMD's EPYC 7413 server CPU based on the Zen 3 architecture, which boosts up to 3.6 GHz and which scored 1538 points. It also matches the single-threaded performance of Intel's Coffee Lake-based Xeon E-2136 from 2018, even though that Intel chip can reach 4.5 GHz boost speeds, scoring 1553 points.

The Taishan V120 core first appeared in Huawei's Kirin 9000 smartphone SoC in 2020. Using the core in server CPUs would allow Huawei to achieve competitive single-threaded performance to rival AMD's last-generation EPYC Milan and Intel's older Skylake server chips. Multi-threaded benchmarks will be required to gauge the Kunpeng 930's overall performance fully when it launches. Huawei continues innovating its ARM-based server CPU designs even while facing restrictions on manufacturing and selling chips internationally due to its inclusion on the US Entity List in 2019. The impressive single-threaded results versus leading x86 competitors demonstrate Huawei's resilience and self-reliance in developing homegrown data center technology through its HiSilicon division. More details on the Kunpeng 930 server chip will likely surface later this year, along with server configurations from Chinese OEMs.

Loongson 3A6000 CPU Reportedly Matches AMD Zen 4 and Intel Raptor Lake IPC

China's homegrown Loongson 3A6000 CPU shows promise but still needs to catch up AMD and Intel's latest offerings in real-world performance. According to benchmarks by Chinese tech reviewer Geekerwan, the 3A6000 has instructions per clock (IPC) on par with AMD's Zen 4 architecture and Intel's Raptor Lake. Using the SPEC CPU 2017 processor benchmark, Geekerwan has clocked all the CPUs at 2.5 GHs to compare the raw benchmark results to Zen 4 and Intel's Raptor Lake (Raptor Cove) processors. As a result, the Loongson 3A6000 seemingly matches the latest designs by AMD and Intel in integer results, with integer IPC measured at 4.8, while Zen 4 and Raptor Cove have 5.0 and 4.9, respectively. The floating point performance is still lagging behind a lot, though. This demonstrates that Loongson's CPU design can catching up to global leaders, but still needs further development, especially for floating point arithmetic.

However, the 3A6000 is held back by low clock speeds and limited core counts. With a maximum boost speed of just 2.5 GHz across four CPU cores, the 3A6000 cannot compete with flagship chips like AMD's 16-core Ryzen 9 7950X running at 5.7 GHz. While the 3A6000's IPC is impressive, its raw computing power is a fraction of that of leading x86 CPUs. Loongson must improve manufacturing process technology to increase clock speeds, core counts, and cache size. The 3A6000's strengths highlight Loongson's ambitions: an in-house LoongArch ISA design fabricated on 12 nm achieves competitive IPC to state-of-the-art x86 chips built on more advanced TSMC 5 nm and Intel 7 nm nodes. This shows the potential behind Loongson's engineering. Reports suggest that next-generation Loongson 3A7000 CPUs will use SMIC 7 nm, allowing higher clocks and more cores to better harness the architecture's potential. So, we expect the next generation to set a bar for China's homegrown CPU performance.

AMD Zen 5 Details Emerge with GCC "Znver5" Patch: New AVX Instructions, Larger Pipelines

AMD's upcoming family of Ryzen 9000 series of processors on the AM5 platform will carry a new silicon SKU under the hood—Zen 5. The latest revision of AMD's x86-64 microarchitecture will feature a few interesting improvements over its current Zen 4 that it is replacing, targeting the rumored 10-15% IPC improvement. Thanks to the latest set of patches for GNU Compiler Collection (GCC), we have the patch set that proposes changes taking place with "znver5" enablement. One of the most interesting additions to the Zen 5 over the previous Zen 4 is the expansion of the AVX instruction set, mainly new AVX and AVX-512 instructions: AVX-VNNI, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, and PREFETCHI.

AVX-VNNI is a 256-bit vector version of the AVX-512 VNNI instruction set that accelerates neural network inferencing workloads. AVX-VNNI delivers the same VNNI instruction set for CPUs that support 256-bit vectors but lack full 512-bit AVX-512 capabilities. AVX-VNNI effectively extends useful VNNI instructions for AI acceleration down to 256-bit vectors, making the technology more efficient. While narrow in scope (no opmasking and extra vector register access compared to AVX-512 VNNI), AVX-VNNI is crucial in spreading VNNI inferencing speedups to real-world CPUs and applications. The new AVX-512 VP2INTERSECT instruction is also making it in Zen 5, as noted above, which has been present only in Intel Tiger Lake processor generation, and is now considered deprecated for Intel SKUs. We don't know the rationale behind this inclusion, but AMD sure had a use case for it.

IDC Forecasts Artificial Intelligence PCs to Account for Nearly 60% of All PC Shipments by 2027

A new forecast from International Data Corporation (IDC) shows shipments of artificial intelligence (AI) PCs - personal computers with specific system-on-a-chip (SoC) capabilities designed to run generative AI tasks locally - growing from nearly 50 million units in 2024 to more than 167 million in 2027. By the end of the forecast, IDC expects AI PCs will represent nearly 60% of all PC shipments worldwide.

"As we enter a new year, the hype around generative AI has reached a fever pitch, and the PC industry is running fast to capitalize on the expected benefits of bringing AI capabilities down from the cloud to the client," said Tom Mainelli, group vice president, Devices and Consumer Research. "Promises around enhanced user productivity via faster performance, plus lower inferencing costs, and the benefit of on-device privacy and security, have driven strong IT decision-maker interest in AI PCs. In 2024, we'll see AI PC shipments begin to ramp, and over the next few years, we expect the technology to move from niche to a majority."

Intel Begins APX and AVX10 Enablement in Linux, Setting Foundation for Granite Rapids

Intel has begun rolling out software binaries compiled with support for upcoming Advanced Performance Extensions (APX) and Advanced Vector Extensions 10 (AVX10) instruction set extensions in their Clear Linux distribution, ahead of any processors officially supporting these capabilities launching. Clear Linux is focusing first on optimized APX and AVX10 versions of foundational software libraries like glibc and Python. This builds on Clear Linux's existing support for optimized x86-64-v2, v3, and v4 code paths, leveraging the latest microarchitectural features of each Intel CPU generation. The rationale is to prepare Clear Linux to fully leverage the performance potential of next-generation Intel Xeon server processors, code-named Granite Rapids, expected to launch later this year.

Granite Rapids will introduce AVX10.1/512 instructions as well as the new APX capabilities, which are currently not well documented implementation wise. By rolling out APX/AVX10 support in software now, Clear Linux aims to have an optimized ecosystem ready when the new processors officially ship. Initially, APX and AVX10 support is being added using the existing GCC compiler. Still, Clear Linux notes they will transition to using the upcoming GCC 14 release with more mature support for these instruction sets. The goal is to eventually have many Clear Linux packages compiled with APX/AVX10 code paths to maximize performance on future Intel CPUs. This continues Clear Linux's strategy of leveraging Intel's latest hardware capabilities in software.

Lenovo HPC Infrastructure Powers Pre-Exascale Supercomputer Marenostrum 5 to Enable New Scientific Advances and Solve Global Challenges

Lenovo (HKSE: 992) (ADR: LNVGY) has today announced that the General Purpose Partition of the MareNostrum 5, a new pre-exascale supercomputer running on Lenovo's HPC infrastructure, has been classified as the top x86 general-purpose cluster on the recently published TOP500 list of the most powerful supercomputers globally.

Officially inaugurated at Barcelona Supercomputing Center on December 21st, MareNostrum 5 has been built for the European High Performance Computing Joint Undertaking (EuroHPC JU). The pre-exascale supercomputer will bolster the EU's mission to provide Europe with the most advanced supercomputing technology and accelerate the capacity for artificial intelligence (AI) research, enabling new scientific advances that will help solve global challenges. It aims to empower a wide range of complex HPC-specific applications, from climate research and engineering to material science and earth sciences, adeptly handling tasks that extend beyond the capabilities of cloud computing.

AMD Reshapes Automotive Industry with Advanced AI Engines and Elevated In-Vehicle Experiences at CES 2024

Today, AMD announced it will showcase automotive innovation at CES 2024 and expand its portfolio with the introduction of two new devices, the Versal AI Edge XA adaptive SoC and Ryzen Embedded V2000A Series processor. The devices underscore AMD automotive technology leadership and are designed to serve key automotive focus segments including infotainment, advanced driver safety and autonomous driving. Working alongside a growing automotive partner ecosystem, AMD will demonstrate at CES 2024 the broad range of capabilities and applications for these new devices in automotive solutions available today and in the future.

Versal AI Edge XA adaptive SoCs add an advanced AI Engine, enabling the devices to be further optimized for numerous next-generation advanced automotive systems and applications including: forward cameras, in-cabin monitoring, LiDAR, 4D radar, surround-view, automated parking and autonomous driving. Versal AI Edge XA adaptive SoCs are also the first AMD 7 nm device to be auto-qualified, bringing hardened IP and added security to automotive applications where safety is paramount.

Chinese x86 CPU Maker Zhaoxin Adds Support for "Preferred Cores" to Modernize its Processor Ecosystem

Chinese x86 CPU developer Zhaoxin is working on adding support in the Linux kernel for scheduling optimization on its processors featuring "preferred cores." Similar to asymmetric core designs from Intel and AMD, Zhaoxin's chips may have specific higher-performance cores the OS scheduler should target for critical workloads. To enable this, Zhaoxin has proposed Linux patches leveraging existing ACPI functionality to indicate per-core differences in max frequency or capabilities. The CPUfreq driver is updated to reflect this, allowing the scheduler to favor the designated high-performance cores when assigning threads and processes. This ensures tasks can dynamically take advantage of the faster cores to maximize performance. The approach resembles tuned scheduling, aware of core topology and heterogeneity already found in Intel and AMD processors.

Zhaoxin's patches don't specify which existing or upcoming CPUs will expose preferred core hints. The company likely wants the functionality in place for future server-class products where asymmetric designs make sense for efficiency. The new code contribution reflects Zhaoxin's broader upstreaming effort around Linux kernel support for its Yongfeng server CPU family. Robust open-source foundations are crucial for gaining developer mindshare and data center adoption. Adding sophisticated features like preferred core scheduling indicates that Zhaoxin's chips are maturing from essential x86 compatibility to more refined performance optimization. While still trailing Intel and AMD in cores and clocks, closing the software ecosystem and efficiency gap remains key to competitiveness. Ongoing Linux enablement work is laying the groundwork for more capable Zhaoxin silicon.

Intel Should be Leading the AI Hardware Market: Pat Gelsinger on NVIDIA Getting "Extraordinarily Lucky"

Intel CEO Pat Gelsinger considers NVIDIA "extraordinarily lucky" to be leading the AI hardware industry. In a recent public discussion with the students of MIT's engineering school to discuss the state of the semiconductor industry, Gelsinger said that Intel should be the one to be leading AI, but instead NVIDIA got lucky. We respectfully disagree. What Gelsinger glosses over with this train of thought is how NVIDIA got here. What NVIDIA has in 2023 is the distinction of being one of the hottest tech stocks behind Apple, the highest market share in a crucial hardware resource driving the AI revolution, and of course the little things, like market leadership over the gaming GPU market. What it doesn't have, is access to the x86 processor IP.

NVIDIA has, for long, aspired to be a CPU company, right from its rumored attempt to merge with AMD in the early/mid 2000s, to its stint with smartphone application processors with Tegra, an assortment of Arm-based products along the way, and most recently, its spectacularly unsuccessful attempt to acquire Arm from Softbank. Despite limited luck with the CPU industry, to level up to Intel, AMD, or even Qualcomm and MediaTek; NVIDIA never lost sight of its goal to be a compute hardware superpower, which is why, in our opinion, it owns the AI hardware market. NVIDIA isn't lucky, it spent 16 years getting here.

Zhaoxin Launches KX-7000 Desktop 8-Core x86 Processor to Power China's Ambitions

After years of delays, Chinese chipmaker Zhaoxin has finally launched its long-awaited KX-7000 series consumer CPUs, only one of its kind in China, based on the licensed x86-64 ISA. Zhaoxin claims the new 8-core processors based on "Century Avenue" uArch deliver double the performance of previous generations. Leveraging architectural improvements and 4X more cache, the KX-7000 represents essential progress for China's domestic semiconductor industry. While still likely lagging behind rival AMD and Intel chips in raw speed, the KX-7000 matches competitive specs in areas like DDR5 memory, PCIe 4.0, and USB4 support. For Chinese efforts to attain technological independence, closing feature gaps with foreign processors is just as crucial as boosting performance. Manufactured on a 16 nm process, the KX-7000 does not use the best silicon node available.

Other chip details include out-of-order execution (OoOE), 24 PCIe 4.0 lanes, a 32 MB pool of L3 cache and 4 MB L2 cache, a base frequency of 3.2 GHz, and a boost clock of 3.7 GHz. Interestingly, the CPU also has VT-x, BT-d 2.5, SSE4.2/AVX/AVX2 support, most likely also licensed from the x86 makers Intel and/or AMD. Ultimately, surpassing Western processors is secondary for China next to attaining self-reliance. Instructions like SM encryption catering to domestic data protection priorities underscore how the KX-7000 advances strategic autonomy goals. With its x86 architecture license giving software compatibility and now a vastly upgraded platform, the KX-7000 will raise China's chip capabilities even if it is still trailing rivals' speeds. Ongoing progress closing that performance gap could position Zhaoxin as a mainstream alternative for local PC builders and buyers.

Intel Itanium Reaches End of the Road with Linux Kernel Stopping Updates

Today marks the end of support for Itanium's IA-64 architecture in the Linux kernel's 6.7 update—a significant milestone in the winding-down saga of Intel Itanium. Itanium, initially Intel's ambitious venture into 64-bit computing, faced challenges and struggled throughout its existence. It was jointly developed by Intel and HP but encountered delays and lacked compatibility with x86 software, a significant obstacle to its adoption. When AMD introduced x86-64 (AMD64) for its Opteron CPUs, which could run x86 software natively, Intel was compelled to update Xeon, based on x86-64 technology, leaving Itanium to fade into the background.

Despite ongoing efforts to sustain Itanium, it no longer received annual CPU product updates, and the last update came in 2017. The removal of IA-64 support in the Linux kernel will have a substantial impact since Linux is an essential operating system for Itanium CPUs. Without ongoing updates, the usability of Itanium servers will inevitably decline, pushing the (few) remaining Itanium users to migrate to alternative solutions, which are most likely looking to modernize their product stack.
Return to Keyword Browsing
Sep 15th, 2024 02:34 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts