Zotac GeForce GTX 1660 Ti 6 GB Review 15

Zotac GeForce GTX 1660 Ti 6 GB Review

Temperatures & Fan Noise »

Power Consumption

Power Consumption Testing Details
Improving power efficiency of the GPU architecture has been the key to success for current-generation GPUs. It is also the foundation for low noise levels because any power consumed will turn into heat that has to be moved away from the GPU by its thermal solution. Lower heat output helps improve cost, too, as smaller, cheaper thermal solutions can be used.

For this test, we measure power consumption of only the graphics card via the PCI-Express power connector(s) and PCI-Express bus slot. A Keithley Integra 2700 digital multimeter with 6.5-digit resolution is used for all measurements. Again, these values only reflect the card's power consumption as measured at its DC inputs, not that of the whole system.

We use Metro: Last Light as a standard test for typical 3D gaming usage because it offers the following: very high power draw; high repeatability; is supported on all cards; drivers are actively tested and optimized for it; supports all multi-GPU configurations; test runs in a relatively short time and renders a non-static scene with variable complexity.

Our results are based on the following tests:
  • Idle: Windows 10 sitting at the desktop (1920x1080) with all windows closed and drivers installed. The card is left to warm up in idle mode until power draw is stable.
  • Multi-monitor: Two monitors are connected to the tested card, and both use different display timings. Windows 10 is sitting at the desktop (1920x1080 and 1280x1024) with all windows closed and drivers installed. The card is left to warm up in idle mode until power draw is stable. When using two identical monitors with the same timings and resolution, power consumption will be lower. Our test represents the usage model of many productivity users who have one big screen and a small monitor on the side.
  • Blu-ray Playback: Power DVD 15 Ultra is used at a resolution of 1920x1080 to playback the Batman: The Dark Knight Blu-ray disc with GPU acceleration turned on. Measurements start around timecode 1:19, which has the highest data rates on the BD with up to 40 Mb/s. Playback keeps running until power draw converges to a stable value.
  • Average (Gaming): Metro: Last Light at 1920x1080 because it is representative of a typical gaming power draw. We report the average of all readings (12 per second) while the benchmark is rendering (no title/loading screen). In order to heat up the card, the benchmark is run once first without measuring its power consumption.
  • Peak (Gaming): Same test as Average, but we report the highest single reading during the test.
  • Sustained (Furmark): We use Furmark's Stability Test at 1600x900, 0xAA. This results in very high no-game power-consumption that can typically only be reached with stress-testing applications. We report the highest single reading after a short startup period. Initial bursts during startup are not included as they are too short to be relevant.
Power consumption results of other cards on this page are measurements of the respective reference design.

Non-gaming power consumption is a little bit higher than on other GTX 1660 Ti cards we've tested today, but the differences are slim and barely relevant in real-life.

Gaming power consumption of the GTX 1660 Ti is where it becomes interesting. With only 118 W during gaming, the Zotac GTX GTX 1660 Ti sets a new record for power efficiency. It is 2.5x as efficient as the RX 590 (which uses a 12 nm production process, too). Maximum power draw, even in Furmark, is 121 W only, which suggests the board power limit is set to 120 W (GTX 1660 Ti Default). Such low power consumption means any power supply will run the card just fine.

Next Page »Temperatures & Fan Noise