News Posts matching #GeekBench 5

Return to Keyword Browsing

Apple's M1-Based MacBook Air Benchmarked

When Apple announced that they are going to switch their Mac lineup from Intel-based x86 processors to the custom "Apple Silicon," everyone was wondering how the new processors will look and perform. To everyone's luck, Apple has just a few days ago announced its first Apple Silicon custom processor for MacBook. The M1, as the company calls it, is their first processor designed for higher-power and performance tasks The M1 features eight CPU cores (four high-performance and four-high efficiency) paired with eight cores dedicated to the graphics. On the die, there is also a 16-core neural engine made to accelerate machine learning tasks found in the new applications.

Today, we are getting the first GeekBench 5 CPU benchmarks that showcase just how far Apple has come with its custom design. What we have is the M1 processor found in MacBook Air. This Mac model features a passive cooling system, cooling a CPU with a base frequency of 3.2 GHz. The system scored 1719 points in the single-core result, and 6967 points in the multi-core result. The single-threaded results measure itself with some of the highest-end offerings from Intel and AMD, while the multi-threaded results are very good given the mix and match of small and big cores.

AMD Ryzen 9 5900X, 5950X Also Benchmarked in Geekbench 5

It would seem that a number of players have received their Zen 3 samples, considering the amount of performance leaks that have surfaced just in the past two days. The new AMD Zen 3 processors carry a huge weight on their shoulders - demonstrating AMD's touted leadership in CPU performance in all metrics, whilst justifying their increased pricing against Zen 2 offerings. Many rivers of ink (and some tears) have flown in regards to pricing of the new AMD processors, so it all pertains to performance considerations on whether that pricing is justified or not.

Leaker extraordinaire TUM_APISAK has leaked some benchmarks on AMD's upcoming Ryzen 9 5900X and 5950X CPUs - namely, in Geekbench 5. In this round of leaks - which are, admittedly, originating from two different systems), the 12-core, 24-thread AMD Ryzen 9 5900X scores 1605 points in single-core and 12869 in the Multi-core benchmarks. The 16-core, 32-thread Ryzen 9 5950X, on the other hand, scores 1575 points in single and 13605 points in Multi-core workloads. The Ryzen 9 5900X's higher base clocks may be responsible for the higher single-core score; however, the Ryzen 9 5959X pulls ahead - expectedly - in the Multi-core portion of the benchmark. Comparing scores between the Zen 3 5950X and the Zen-based 3950X (via AnandTech), which carry the same amount of cores, the 5950X offers a 18% and 12% advantage, respectively, in the single and multi-threaded tests - not a far cry from AMD's touted 19% IPC uplift.

NUVIA Phoenix SoC is 40-50 Percent Faster Than Zen 2 for a Third of Power

Last year, in November of 2019, a startup company called NUVIA Inc. broke out of the stealth mode and decided to reveal itself to the public. Focused on "re-imagining silicon", the company is led by some of the brightest minds in the semiconductor industry. Some people like Gerard Williams III, the CEO of the company, previously served as a chief CPU architect at Apple and has spent over 10 years at Arm before that. Others like Manu Gulati and John Bruno serve as senior vice presidents of silicon and system engineering respectively. Together, their people are forming a company full of well-known industry names. Of course, there are more and you should check out this page.

NUVIA Inc. promises to deliver only the best performance and "re-imagine silicon" as they say. Today, we got some bold claims from the company regarding the performance of their upcoming Phoenix SoC. Using Geekbench 5, the company has provided some simulated results of how the Phoenix SoC will perform. Being that it runs on Arm ISA, the SoC can run at very low power and achieve good performance. NUVIA has run some simulations and it expects its Phoenix SoC to be 40-50% faster in single-threaded performance than Zen 2/Sunny Cove at just a third of the power, 33% of the percent of power to be precise. In the graph below, NUVIA has placed its SoC only in 5 W range, however, the company said that they have left the upper curve to be disclosed at later date, meaning that the SoC will likely compete in high-performance markets and at higher power targets. While these claims are to be taken with a grain of salt, it is now a waiting game to see how NUVIA realizes its plans.
NUVIA Inc. Logo NUVIA Phoenix SoC Performance

Intel to Clock "Rocket Lake-S" High, Evidence of an ES with 5.00 GHz Boost

Intel's 11th Generation Core "Rocket Lake-S" desktop processors in the LGA1200 package could come with clock speeds that are of the norm these days. Intel appears unwilling to dial down clock speeds in the wake of increased IPC with the new generation "Cypress Cove" CPU cores that drive these processors. Twitter handle "leakbench," which tracks interesting Geekbench results, fished out a database listing for a "Rocket Lake-S" engineering sample with clock speeds of 3.40 GHz base, and 5.00 GHz boost.

The listing has all the telltale signs of "Cypress Cove," such as 48 KB L1D cache, 512 KB per core L2 cache, and 16 MB shared L3 cache for this 8-core/16-thread chip. "Cypress Cove" is rumored to be to be a back-port of Intel's "Willow Cove" CPU core design from its original 10 nm+ node to the 14 nm++. VideoCardz compared this "Rocket Lake-S" ES benchmark result to that of a retail Core i7-10700K, and found its single-threaded performance to be roughly 6.35 percent higher despite a 200 MHz clock-speed deficit, although for some reason, its multi-threaded performance is trailing by over 15 percent.

Intel Core i5-L15G7 Lakefield Processor Spotted

Intel has been experimenting with a concept of mixing various types of cores in a single package with a design called Lakefield. With this processor, you would get a package of relatively small dimensions that are 12-by-12-by-1 millimeters withing very low TDP. Thanks to the Twitter user InstLatX64 (@InstLatX64) we have some GeekBench 5 results of the new Lakefield chip. The CPU in question is the Core i5-L15G7, a 5 core CPU without HyperThreading. The 5C/5T would be a weird configuration if only Lakefield wasn't meant for such configs. There are one "big" Sunny Cove core and four "small" Tremont cores built on the 10 nm manufacturing process. This is the so-called compute die, where only the CPU cores are present. The base dies containing other stuff like I/O controllers and PHYs, memory etc. is made on a low-cost node like 22 nm, where performance isn't the primary target. The whole chip is targeting the 5-7 W TDP range.

In the GeekBench 5 result we got, the Core i5-L15G7 is a processor that has a base frequency of 1.4 GHz, while in the test it reached as high as 2.95 GHz speeds. This is presumably for the big Sunny Cove cores, as Tremont cores are supposed to be slower. The cache configuration reportedly puts 1.5 MB of L2$ and 4 MB of L3$ for the CPUs. If we take a look at performance numbers, the chip scores 725 points in single-core tests, while the multi-core result is 1566 points. We don't know what is the targeted market and what it competes with, however, if compared to some offerings from Snapdragon, like the Snapdragon 835, it offers double the single-threaded performance with a similar multi-core score. If this is meant to compete with the more powerful Snapdragon offerings like the 8cx model, comparing the two results in Intel's fail. While the two have similar single-core performance, the Snapdragon 8cx leads by as much as 76.9% in a multi-core scenario, giving this chip a heavy blow.
Intel Core i5-L15G7 Intel Lakefield

Three Unknown NVIDIA GPUs GeekBench Compute Score Leaked, Possibly Ampere?

(Update, March 4th: Another NVIDIA graphics card has been discovered in the Geekbench database, this one featuring a total of 124 CUs. This could amount to some 7,936 CUDA cores, should NVIDIA keep the same 64 CUDA cores per CU - though this has changed in the past, as when NVIDIA halved the number of CUDA cores per CU from Pascal to Turing. The 124 CU graphics card is clocked at 1.1 GHz and features 32 GB of HBM2e, delivering a score of 222,377 points in the Geekbench benchmark. We again stress that these can be just engineering samples, with conservative clocks, and that final performance could be even higher).

NVIDIA is expected to launch its next-generation Ampere lineup of GPUs during the GPU Technology Conference (GTC) event happening from March 22nd to March 26th. Just a few weeks before the release of these new GPUs, a Geekbench 5 compute score measuring OpenCL performance of the unknown GPUs, which we assume are a part of the Ampere lineup, has appeared. Thanks to the twitter user "_rogame" (@_rogame) who obtained a Geekbench database entry, we have some information about the CUDA core configuration, memory, and performance of the upcoming cards.
NVIDIA Ampere CUDA Information NVIDIA Ampere Geekbench

Primate Labs Introduces GeekBench 5, Drops 32-bit Support

Primate Labs, developers of the ubiquitous benchmarking application GeekBench, have announced the release of version 5 of the software. The new version brings numerous changes, and one of the most important (since if affects compatibility) is that it will only be distributed in a 64-bit version. Some under the hood changes include additions to the CPU benchmark tests (including machine learning, augmented reality, and computational photography) as well as increases in the memory footprint for tests so as to better gauge impacts of your memory subsystem on your system's performance. Also introduced are different threading models for CPU benchmarking, allowing for changes in workload attribution and the corresponding impact on CPU performance.

On the Compute side of things, GeekBench 5 now supports the Vulkan API, which joins CUDA, Metal, and OpenCL. GPU-accelerated compute for computer vision tasks such as Stereo Matching, and augmented reality tasks such as Feature Matching are also available. For iOS users, there is now a Dark Mode for the results interface. GeekBench 5 is available now, 50% off, on Primate Labs' store.
Return to Keyword Browsing