News Posts matching #Xᵉ

Return to Keyword Browsing

Intel "Rocket Lake-S" Die Annotated

Intel is betting big on an 8-core processor to revive its gaming performance leadership, and that chip is the 11th Generation Core "Rocket Lake-S," coming this March. In its 2021 International CES online event, Intel disclosed more details about "Rocket Lake-S," including the first true-color die-shot. PC enthusiast @Locuza_ on Twitter annotated the die for your viewing pressure. For starters, nearly half the die-area of the "Rocket Lake-S" is taken up by the uncore and iGPU, with the rest going to the eight "Cypress Cove" CPU cores.

The "Cypress Cove" CPU core is reportedly a back-port of "Willow Cove" to the 14 nm silicon fabrication node, although there are some changes, beginning with its cache hierarchy. A "Cypress Cove" core is configured with the same L1I and L1D cache sizes as "Willow Cove," but differ with L2 and L3 cache sizes. Each "Cypress Cove" core is endowed with 512 KB of dedicated L2 cache (which is a 100% increase from the 256 KB on "Skylake" cores); but this pales in comparison to the 1.25 MB L2 caches of "Willow Cove" cores on the "Tiger Lake-U" silicon. Also, the L3 cache for the 8-core "Rocket Lake-S" die is 16 MB, spread across eight 2 MB slices; while the 4-core "Tiger Lake-U" features 12 MB of L3, spread across four 3 MB slices. Each core can address the whole L3 cache, across all slices.

8-core Intel "Tiger Lake-H" Processor by End of 2021

Intel at its recent 2021 International CES call confirmed the existence of an 8-core version of its 11th Gen Core "Tiger Lake" processor, and held the chip for the camera. The visibly bigger chip will be slated in Intel's H-segment (35 W to 45 W TDP), meaning it will only power gaming notebooks and mobile workstations; while the mainstream mobility segment will still be in the hands of its 4-core "Tiger Lake-H35" silicon. The 8-core "Tiger Lake-H" processor will also receive reasonably high clock-speeds, boosting up to 5.00 GHz.

Assuming the cache hierarchy and uncore/iGPU setup is unchanged between the 8-core and 4-core dies, we're looking at 24 MB of shared L3 cache, and 1.25 MB of dedicated L2 cache per core. These alone take up a big slice of the die-area. Add to this, the uncore features a PCI-Express Gen 4 root-complex and memory controllers that support dual-channel DDR4 and LPDDR4x memory types. The iGPU is expected to be based on the same Gen12 Xe-LP architecture as the 4-core die; although its execution unit count remains to be seen. In all likelihood, the 8-core "Tiger Lake-H" silicon is based on the same 10 nm SuperFin node.

Intel 11th Gen Core "Rocket Lake-S" Processor Detailed Some More

Intel at a January 11, 2021 online media event (which we live-blogged here) revealed more information about its 11th Generation Core "Rocket Lake-S" desktop processor family. These chips succeed the 10th Gen Core "Comet Lake-S," and are built on the same Socket LGA1200 package, retaining backwards compatibility with Intel 400-series chipset motherboards with firmware updates; and native support with the upcoming Intel 500-series chipset motherboards. Intel in its media event confirmed that the top Core i9-11900K is an 8-core/16-thread processor, which will deliver the highest PC gaming performance possible when it comes out.

In its media event, Intel revealed a side-by-side comparison of the i9-11900K with a machine powered by the AMD Ryzen 9 5900X 12-core processor, where it's shown offering a mostly mid-single-digit-percentage performance lead over the AMD chip. In the "Metro Exodus" benchmark prominently highlighted in the Intel event, the i9-11900K is shown offering an average frame-rate of 156.54 FPS compared to 147.43 FPS of the 5900X (a 6.17% gain). VideoCardz tweeted a leaked Intel presentation slide with many more game test results where Intel compared the two chips. Intel's play with marketing "Rocket Lake-S" to gamers and PC enthusiasts will hence ride on the back of gaming performance leadership, and future-proofing against the new wave of productivity apps that leverage AI deep-learning, as "Rocket Lake-S" features DLBoost VNNI extensions that accelerate deep-learning neural-net building, training, and AI inference performance.

Intel Announces Four New Processor Families

In a world where computing is pervasive and intelligence is distributed across every surface - from the cloud to the network to the intelligent edge - Intel today at CES 2021 highlighted how it is driving technology leadership to define the future of computing for people, business and society. To help people navigate through this extraordinary time, Intel introduced new processors for business, education, mobile and gaming computing platforms - all designed to offer the premium PC experiences people deserve, with the most choices and no limits.

"Only Intel has the breadth of products spanning multiple architectures; the large, open ecosystem; sheer scale of manufacturing footprint; and deep technical expertise customers need to unlock opportunities in this era of distributed intelligence," said Intel Executive Vice President Gregory Bryant. "With an intense focus on execution for our core products and across our broader portfolio, we're introducing a series of leadership products at CES with more following throughout the year."

LG 2021 gram Laptops Stun with 16:10 Aspect Ratio Screens and Sleek New Designs

LG Electronics (LG) is bringing to the first all virtual CES 2021 its eagerly awaited lineup of new gram laptops. Ultra-light, ultra-portable and boasting exceptional performance and long battery life, the new models continue the brand's legacy of go anywhere computing convenience. Stylish new designs and productivity-boosting 16:10 aspect ratio screens add even more value to the company's versatile solutions.

The diverse lineup includes five exciting new models that are designed to maximize work efficiency: LG gram 17 (model 17Z90P), LG gram 16 (model 16Z90P), LG gram 14 (model 14Z90P), LG gram 2-in-1 16 (model 16T90P) and LG gram 2-in-1 14 (model 14T90P). Offering more screen real estate than the 16:9 displays found on most laptops, the latest LG grams are able to show more information at any one time. The keyboard and touchpad have also been enlarged for comfort and efficiency without compromising the portability of these compact devices.

ADATA XPG at CES Preview: Xe-powered Notebook, Cases, CPU Coolers, DDR5, Gen4 SSDs

ADATA XPG, a fast-growing provider of systems, components, and peripherals for Gamers, E-sports Pros, and Tech Enthusiasts, is bringing a slew of new gaming lifestyle products to the all-digital CES 2021. Under the theme of "The Future of Gaming," XPG will be out in force "digitally" to show off its latest and greatest must-haves for 2021, including a new gaming lifestyle ultrabook, next-gen DDR5 DRAM module, training software, gaming chewing gum, and more.

Following the heels of the XPG XENIA gaming notebook, XPG and Intel are moving their collaboration to the next level with the unveiling of the XPG XENIA Xe gaming lifestyle ultrabook. The XENIA Xe is geared towards users seeking an all-round ultrabook that is easy to carry around but also powerful enough to keep up with their modern lifestyle needs, including gaming, light content creation, and productivity. The XENIA Xe is a 15.6" EVO Ready gaming lifestyle ultrabook that sports a sleek and contemporary design that features a premium and elegant CNC anodized aluminium chassis. It has a svelte profile of 11 mm (0.4 in) at its thinnest, weighs in at 1.65 kg (3.6lbs), and offers up to 16 hours of battery life for excellent usability on the go. It comes equipped with an Intel 11th Gen Core i5-1135G7 or i7-1165G7 processor, Intel Iris Xe graphics, 15.6" 1080P Full HD IPS touch display with an 87% screen-body ratio, as well! as XPG's very own 1 TB PCIe Gen4 M.2 SSD. With plenty of expandability options, the possibilities for the XENIA Xe are nearly endless.

Intel DG2 Xe-HPG Features 512 Execution Units, 8 GB GDDR6

Intel's return to discrete gaming GPUs may have had a modest beginning with the Iris Xe MAX, but the company is looking to take a real stab at the gaming market. Driver code from the latest 100.9126 graphics driver, and OEM data-sheets pieced together by VideoCardz, reveal that its next attempt will be substantially bigger. Called "DG2," and based on the Xe-HPG graphics architecture, a derivative of Xe targeting gaming graphics, the new GPU allegedly features 512 Xe execution units. To put this number into perspective, the Iris Xe MAX features 96, as does the Iris Xe iGPU found in Intel's "Tiger Lake" mobile processors. The upcoming 11th Gen Core "Rocket Lake-S" is rumored to have a Xe-based iGPU with 48. Subject to comparable clock speeds, this alone amounts to a roughly 5x compute power uplift over DG1, 10x over the "Rocket Lake-S" iGPU. 512 EUs convert to 4,096 programmable shaders.

A leaked OEM data-sheet referencing the DG2 also mentions a rather contemporary video memory setup, with 8 GB of GDDR6 memory. While the Iris Xe MAX is built on Intel's homebrew 10 nm SuperFin node, Intel announced that its Xe-HPG chips will use third-party foundries. With these specs, Intel potentially has a GPU to target competitive e-sports gaming (where the money is). Sponsorship of major e-sports clans could help with the popularity of Intel Graphics. With enough beans on the pole, Intel could finally invest in scaling up the architecture to even higher client graphics market segments. As for availability, VideoCardz predicts a launch roughly coinciding with that of Intel's "Tiger Lake-H" mobile processor series, possibly slated for mid-2021.

Intel 11th Gen Core "Rocket Lake" Desktop TDP Values Surface

Intel's 11th Gen Core "Rocket Lake-S" desktop processors could feature similar TDP values to their 10th Gen "Comet Lake-S" predecessors, according to Momomo_us. Intel is preparing to give the Unlocked "K" and "KF" SKUs a TDP rating of 125 W, while the locked non-K models feature 65 W rating. The lineup is led by the 8-core/16-thread Core i9-11900K, followed by the locked i9-11900 and iGPU-devoid i9-11900F; the slightly slower 8-core/16-thread Core i7-11700K, followed by the i7-11700KF, i7-11700, and i7-11700F; and the 6-core/12-thread i5-10600K and its derivatives.

The 11th Gen Core desktop processor series arrives in Q1 2021, and is based on the 14 nm "Rocket Lake-S" silicon, and built into the Socket LGA1200 package, with backwards compatibility with Intel's 400-series chipset motherboards, and native support for the Intel 500-series. The "Rocket Lake-S" die is rumored to feature up to 8 "Cypress Cove" CPU cores, a dual-channel DDR4 memory controller, a 24-lane PCI-Express 4.0 root complex, and an updated Gen12 iGPU based on the Xe LP graphics architecture. The "Cypress Cove" CPU cores are reportedly 14 nm back-ports of the "Willow Cove" cores, and feature a double-digit percent IPC increase over the "Skylake" cores.

Intel Announces Its Next Generation Memory and Storage Products

Today, at Intel's Memory and Storage 2020 event, the company highlighted six new memory and storage products to help customers meet the challenges of digital transformation. Key to advancing innovation across memory and storage, Intel announced two new additions to its Intel Optane Solid State Drive (SSD) Series: the Intel Optane SSD P5800X, the world's fastest data center SSD, and the Intel Optane Memory H20 for client, which features performance and mainstream productivity for gaming and content creation. Optane helps meet the needs of modern computing by bringing the memory closer to the CPU. The company also revealed its intent to deliver its 3rd generation of Intel Optane persistent memory (code-named "Crow Pass") for cloud and enterprise customers.

"Today is a key moment for our memory and storage journey. With the release of these new Optane products, we continue our innovation, strengthen our memory and storage portfolio, and enable our customers to better navigate the complexity of digital transformation. Optane products and technologies are becoming a mainstream element of business compute. And as a part of Intel, these leadership products are advancing our long-term growth priorities, including AI, 5G networking and the intelligent, autonomous edge." -Alper Ilkbahar, Intel vice president in the Data Platforms Group and general manager of the Intel Optane Group.

Intel Core i9-11900K "Rocket Lake" Boosts Up To 5.30 GHz, Say Rumored Specs

Intel's upcoming 11th Generation Core i9-11900K processor boosts up to 5.30 GHz, according to rumored specs of various 11th Gen Core "Rocket Lake-S" desktop processors, sourced by Harukaze5719. According to this specs-sheet, both the Core i9-11900K and the Core i7-11700K (i7-10700K successor) are 8-core/16-thread parts, and clock-speeds appear to be the only apparent product segmentation between the two. The i9-11900K has a maximum single-core boost frequency of 5.30 GHz, and 4.80 GHz all-core boost. The i7-11700K, on the other hand, has an all-core boost of 4.60 GHz, and 5.00 GHz single-core boost. This time around, even the Core i7 part gets Thermal Velocity Boost.

11th Gen Core i5 continues to be 6-core/12-thread, with Intel allegedly readying an unlocked Core i5-11600K, and a locked i5-11400. Both parts lack TVB. The i5-11600K ticks up to 4.90 GHz single-core, and 4.70 GHz all-core; while the i5-11400 does 4.20 GHz single-core, and 4.40 GHz all-core. The secret-sauce with "Rocket Lake-S" is the introduction of the new "Cypress Cove" CPU cores, which Intel claims offer a double-digit percent IPC gain over the current-gen "Comet Lake," an improved dual-channel DDR4 memory controller with native support for DDR4-3200, a PCI-Express Gen 4 root-complex, and a Gen12 Xe-LP iGPU. The "Cypress Cove" CPU cores also feature VNNI and DLBoost, which accelerate AI DNN; as well as limited AVX-512 instructions. The 11th Gen core processors will also introduce a CPU-attached M.2 NVMe slot, similar to AMD Ryzen. Intel is expected to launch its first "Rocket Lake-S" processors before Q2-2021.

ASUS Launches Next-Generation ExpertBook B9

ASUS today announced ExpertBook B9, the next generation of the 2020 Red Dot Design Award-winning mobile powerhouse, which is proudly the world's lightest 14-inch business laptop. The latest ExpertBook B9 models inherit all the strong features of the previous generation. It's engineered with the latest cutting-edge up to 11th Gen Intel Core processors with built-in Intel Iris Xe graphics for serious performance and visual excellence, Thunderbolt 4 for flexible connections at warp speed, AdaptiveLock proximity sensor for ultrafast logins and security, and AI noise-cancelation technology for undisturbed video calls - perfect for the remote working patterns imposed by the current pandemic environment.

Despite these vast improvements in performance and functionality, ExpertBook B9 retains its prestigious record as being the world's lightest 14" business laptop - weighing a mere 2.2 lb. It also offers close to a full day battery life for on the go use. ASUS has also strived to make ExpertBook B9 an environmentally-conscious choice. It is both Energy Star 7.1-certified and rated by EPEAT Gold, offering an assurance of energy efficiency that reduces operating costs over the long term. Even the packaging is environmentally conscious and useful, with the accessory box transforming into a laptop stand for instant elevation with an ecological nod.
ASUS ExpertBook B9 B9400CEA

Intel's Raja Koduri Teases Xe-HP Accelerator

Raja Koduri senior vice president, chief architect, and general manager of Architecture, Graphics, and Software at Intel Corporation has recently teased Intel's upcoming Xe-HP accelerator alongside its in production HC3 XG310 server card. The HC3 solution was Intel's first Xe-based product utilizing the Xe-LP architecture. The Intel Xe-LP products are Intel's lowest power efficiency optimized Xe processors while the Xe-HP products should offer improved performance and scaling. The upcoming Xe-HP accelerator appears to be a single-slot passively card with a single 8-pin power connector. Raja Koduri expects developers will begin receiving Xe-HP, Xe-HPG, and Xe-HPC products in 2021. He also declared that we are in the GPU golden age with new launches from NVIDIA, AMD, Intel, and Apple.

Intel to Outsource Atom and Low-Power Xeon Manufacturing to TSMC?

In a bid to maximize utilization of its own semiconductor foundry for manufacturing larger, more profitable processors, Intel could be look at contracting TSMC to manufacture certain processors based on its low-power CPU microarchitectures, according to a new Intel job posting discovered by Komachi Ensaka. The job description for a position in Intel's Bengaluru facility, speaks of a "QAT Design Integration Engineer" who would play a role in the "development and integration of CPM into Atom and Xeon-based SoC on Intel and TSMC process."

QAT is a hardware feature that accelerates cryptography and data-compression workloads. Since the Xeon part in this sentence is referenced next to SoC, Intel could be referring to Xeon processors based on low-power cores, such as "Snow Ridge," which uses "Tremont" CPU cores. The decision to go with TSMC could also be driven by the 5G infrastructure hardware gold rush awaiting the likes of Intel across dozens of new markets, particularly those averse to buying hardware from Huawei.

AWS Leverages Habana Gaudi AI Processors

Today at AWS re:Invent 2020, AWS CEO Andy Jassy announced EC2 instances that will leverage up to eight Habana Gaudi accelerators and deliver up to 40% better price performance than current graphics processing unit-based EC2 instances for machine learning workloads. Gaudi accelerators are specifically designed for training deep learning models for workloads that include natural language processing, object detection and machine learning training, classification, recommendation and personalization.

"We are proud that AWS has chosen Habana Gaudi processors for its forthcoming EC2 training instances. The Habana team looks forward to our continued collaboration with AWS to deliver on a roadmap that will provide customers with continuity and advances over time." -David Dahan, chief executive officer at Habana Labs, an Intel Company.

Intel Outs the NUC M15 Laptop Kit

The Intel NUC M15 Laptop Kit (formerly code-named "Bishop County") brings Intel's technical expertise to the whitebook market, with the goal of providing Intel's channel customers with a premium, precision engineered laptop kit. Intel provides its broad channel members the best building blocks to create innovative laptops for their customers.

The M15 Laptop Kit includes an 11th Gen Intel Core mobile processor and Intel Iris Xe graphics and is designed to exceed the stringent requirements of the new Intel Evo platform brand. Ultimately, the Intel Evo platform brand is earned by each channel partner, but the M15 Laptop Kit offers the right foundation to build an Intel EVO-qualified laptop.

AAEON Releases UP Xtreme i11 Edge Compute Enabling Kit Powered by 11th Gen Core

AAEON, a leading manufacturer of AI Edge hardware solutions, announces the latest addition to their UP Bridge the Gap brand, the UP Xtreme i11 Edge Compute Enabling Kit. Powered by the 11th Generation Intel Core processors with Intel Iris Xe embedded graphics (formerly Tiger Lake), the UP Xtreme i11 is the latest generation in edge computing solutions designed to power intelligent applications across a range of industries including retail, healthcare, transportation, robotics and industrial automation.

Powered by the latest 11th Generation Intel Core processors, the UP Xtreme i11 Edge Compute Enabling Kit is designed to bring high performance computing to the edge. This latest generation of Intel Core processors bring speeds up to 4.4 GHz with a TDP of only 28 Watts and cTDP of 15 Watts. The processors also unlock a range of Intel tools designed to optimize performance and security, including the Intel Functional Safety Essential Design Package, vPRO (i5, i7 only), TSN and TCC enabled LAN ports for real-time networking support.

Intel and Argonne Developers Carve Path Toward Exascale 

Intel and Argonne National Laboratory are collaborating on the co-design and validation of exascale-class applications using graphics processing units (GPUs) based on Intel Xe-HP microarchitecture and Intel oneAPI toolkits. Developers at Argonne are tapping into Intel's latest programming environments for heterogeneous computing to ensure scientific applications are ready for the scale and architecture of the Aurora supercomputer at deployment.

"Our close collaboration with Argonne is enabling us to make tremendous progress on Aurora, as we seek to bring exascale leadership to the United States. Providing developers early access to hardware and software environments will help us jumpstart the path toward exascale so that researchers can quickly start taking advantage of the system's massive computational resources." -Trish Damkroger, Intel vice president and general manager of High Performance Computing.

TOP500 Expands Exaflops Capacity Amidst Low Turnover

The 56th edition of the TOP500 saw the Japanese Fugaku supercomputer solidify its number one status in a list that reflects a flattening performance growth curve. Although two new systems managed to make it into the top 10, the full list recorded the smallest number of new entries since the project began in 1993.

The entry level to the list moved up to 1.32 petaflops on the High Performance Linpack (HPL) benchmark, a small increase from 1.23 petaflops recorded in the June 2020 rankings. In a similar vein, the aggregate performance of all 500 systems grew from 2.22 exaflops in June to just 2.43 exaflops on the latest list. Likewise, average concurrency per system barely increased at all, growing from 145,363 cores six months ago to 145,465 cores in the current list.

Intel Executing toward XPU Vision with oneAPI and Intel Server GPU

Intel today announced key milestones in its multiyear journey to deliver a mix of architectures with a unified software experience. The company announced the gold release of Intel oneAPI toolkits coming in December, and new capabilities in its software stack as part of the Intel's combined hardware and software design approach. Intel also debuted its first discrete graphics processing unit (GPU) for the data center, Intel Server GPU, based on the Xe-LP microarchitecture and designed specifically for high-density, low-latency Android cloud gaming and media streaming.

"Today is a key moment in our ambitious oneAPI and XPU journey. With the gold release of our oneAPI toolkits, we have extended the developer experience from familiar CPU programming libraries and tools to include our vector-matrix-spatial architectures. We are also launching our first data center GPU based on Xe-LP microarchitecture focused on the fast-growing cloud gaming and media streaming segments," said Raja Koduri, Intel senior vice president, chief architect and general manager of Architecture, Graphics and Software.

Razer Also Announces the Razer Book 13—Performance Meets Productivity

Razer, the leading global lifestyle brand for gamers, today announced the all-new Razer Book 13, a new high-performing productivity laptop built for the go-getters, side-hustlers, and spirited entrepreneurs of today's mobile world. With its ultra-mobile design, the world's thinnest 13.4" display bezels, powerful 11th Gen Intel Core processor with Intel Iris Xe graphics, and robust connectivity, the 13-inch ultraportable enables users to do more, faster.

"Since the launch of the first Razer Blade in 2011, Razer has built a legacy on delivering the highest performing gaming laptops to the delight of our fans worldwide. Today we are excited to announce Razer is breaking into the productivity space the same way we broke into laptop gaming: With a bang," said Brad Wildes, Senior Vice President & General Manager of Razer' Systems business unit. "The new Razer Book 13 is the culmination of a decade's worth of experience in developing and crafting high-end gaming machines. Sleek, powerful, and compact, the Razer Book 13 breaks out from the boring crowd and delivers prosumers an experience not yet realized in a work laptop."

Intel Rocket Lake-S CPU Benchmarked: Up to 22% Faster Compared to the Previous Generation

Just a few days ago, Intel has decided to surprise us and give out information about its upcoming Rocket Lake-S platform designed for desktop users. Arriving early next year (Q1) the Rocket Lake-S platform is yet another iteration of the company's 14 nm node. However, this time we are getting some real system changes with a new architecture design. Backporting its Golden Cove core to 14 nm, Intel has named this new core type Cypress Cove. What used to be the heart of Ice Lake CPUs, is now powering the Rocket Lake-S platform. Besides the new core, there are other features of the platform like PCIe 4.0, new Xe graphics, and updated media codecs. You can check that out here.

Today, we have gotten the first benchmarks of the Intel Rocket Lake-S system. In the Userbenchmark bench, an unknown eight-core Rocket Lake CPU has been compared to Intel's 10th generation Comet Lake-S processors. The Rocket Lake engineering sample ran at 4.2 GHz while scoring a single-core score of 179. Compared to the Core i9-10900K that runs at 5.3 GHz, which scored 152 points, the Cypress Cove design is 18% faster. And if the new design is compared to the equivalent 8C/16T Compet Lake CPU like Core i7-10700K clocked at 5.1 GHz and scoring 148 points, the new CPU uarch is up to 22% faster. This represents massive single-threaded performance increases, however, please take the information with a grain of salt, as we wait for the official reviews.

Intel Storms into 1080p Gaming and Creator Markets with Iris Xe MAX Mobile GPUs

Intel today launched its Iris Xe MAX discrete graphics processor for thin-and-light notebooks powered by 11th Gen Core "Tiger Lake" processors. Dell, Acer, and ASUS are launch partners, debuting the chip on their Inspiron 15 7000, Swift 3x, and VivoBook TP470, respectively. The Iris Xe MAX is based on the Xe LP graphics architecture, targeted at compact scale implementations of the Xe SIMD for mainstream consumer graphics. Its most interesting feature is Intel DeepLink, and a powerful media acceleration engine that includes hardware encode acceleration for popular video formats, including HEVC, which should make the Iris Xe MAX a formidable video content production solution on the move.

The Iris Xe MAX is a fully discrete GPU built on Intel's 10 nm SuperFin silicon fabrication process. It features an LPDDR4X dedicated memory interface with 4 GB of memory at 68 GB/s of bandwidth, and uses PCI-Express 4.0 x4 to talk to the processor, but those are just the physical layers. On top of these are what Intel calls Deep Link, an all encompassing hardware abstraction layer that not only enables explicit multi-GPU with the Xe LP iGPU of "Tiger Lake" processors, but also certain implicit multi-GPU functions such as fine-grained division of labor between the dGPU and iGPU to ensure that the right kind of workload is split between the two. Intel referred to this as GameDev Boost, and we detailed it in an older article.

Intel Confirms Rocket Lake-S Features Cypress Cove with Double-Digit IPC Increase

Today, Intel has decided to surprise us and give an update to its upcoming CPU lineup for desktop. With the 11th generation, Core CPUs codenamed Rocket Lake-S, Intel is preparing to launch the new lineup in the first quarter of 2021. This means that we are just a few months away from this launch. When it comes to the architecture of these new processors, they are going to be based on a special Cypress Cove design. Gone are the days of Skylake-based designs that were present from the 6th to 10th generation processors. The Cypress Cove, as Intel calls it, is an Ice Lake adaptation. Contrary to the previous rumors, it is not an adaptation of Tiger Lake Willow Cove, but rather Ice Lake Sunny Cove.

The CPU instruction per cycle (IPC) is said to grow in double-digits, meaning that the desktop users are finally going to see an improvement that is not only frequency-based. While we do not know the numbers yet, we can expect them to be better than the current 10th gen parts. For the first time on the Intel platform for desktops, we will see the adoption of PCIe 4.0 chipset, which will allow for much faster SSD speeds and support the latest GPUs, specifically, there will be 20 PCIe 4.0 lanes coming from the CPU only. The CPU will be paired with 12th generation Xe graphics, like the one found in Tiger Lake CPUs. Other technologies such as Deep Learning Boost and VNNI, Quick Sync Video, and better overclocking tuning will be present as well. Interesting thing to note here is that the 10C/20T Core i9-10900K has a PL1 headroom of 125 W, and 250 W in PL2. However, the 8C/16T Rocket Lake-S CPU also features 125 W headroom in PL1, and 250 W in PL2. This indicates that the new Cypress Cove design runs hotter than the previous generation.

Raja Koduri to Present at Samsung Foundry Forum amid Intel's Outsourcing Efforts

Intel's chief architect and senior vice president of discrete graphics division, Mr. Raja Koduri, is said to be scheduled to present at Samsung Electronics Event day. With a presentation titled "1000X More Compute for AI by 2025", the event is called Samsung Foundry SAFE Forum. It is a global virtual conference designed to be available to everyone. So you might be wondering what is Mr. Koduri doing there. Unless you have been living under a rock, you know about Intel's struggles with node manufacturing. Specifically, the 10 nm node delays that show the company's efforts to deliver a node on time. The same is happening with the 7 nm node that also experienced significant delays.

Intel has a contract to develop an exascale supercomputer at Argonne National Laboratory, called Aurora. That supercomputer is using Intel's CPUs and the company's upcoming Xe GPUs. Since the company has problems with manufacturing and has to deliver the products (it is bound by several contracts) to its contractors and customers, it decided to look at external manufacturers for its products, specifically Xe graphics. Being that Mr. Koduri tweeted an image of him visiting Samsung Giheung Fab in Korea, and now presenting at the Samsung Foundry event, it is possible that Intel will tap Samsung's semiconductor manufacturing process for its Xe GPU efforts and that Samsung will be the contractor in charge.

Intel Xe-HPG DG2 GPU is in the Labs

In its Q3 earnings, Intel disclosed that it is now shipping Intel's first discrete GPU - DG1. Codenamed Intel Iris Xe MAX, the GPU is set to arrive in ultraportable laptops and designs. It is based on Xe-LP design, which is Intel's GPU configuration for iGPUs and low-power models. However, to satisfy the needs of gamers, Intel will not be good with just this GPU configuration. The company would need something faster and ore power-hungry to power the highest framerates and highest resolutions. Enter the world of Xe-HPG DG2 GPU. Made for gamers, it features all the hardware-enabled features you would expect in such a GPU, like raytracing, etc. This GPU is manufactured outside Intel's fabs, most likely at TSMC's facilities. Right now, this GPU is in the alpha phase and is booting in Intel's labs, meaning that the final silicon is just a few months away.
Return to Keyword Browsing
May 8th, 2024 21:48 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts