News Posts matching #Cezanne

Return to Keyword Browsing

AMD Ryzen 7 Pro 5750G Zen 3 Based Desktop APU Spotted with 4.75 GHz Frequency

AMD is slowly preparing the launch of its next-generation Ryzen Pro 5000 series of APUs designed for desktop applications. The biggest difference over the previous generation Renoir 4000 series is that this generation is now offering a major improvement in microarchitecture. Using Zen 3 core at its base, the Cezanne processor lineup is supposed to integrate all of the IPC improvements and bring them to the world of APUs. Doubling the level three (L3) cache capacity from 8 MB to 16 MB, Zen 3 cores are paired with a good amount of cache to improve performance.

Thanks to a user from Chiphell forums, we have the first details about AMD Ryzen 7 Pro 5750G APU. The new generation design is bringing a big improvement with clock speeds. Having a base frequency of 3.8 GHz, the Zen 3 based design now goes up to 4.75 GHz, representing a 350 MHz increase over the past generation Ryzen 7 Pro 4750G APU. For more details, we have to wait for the official announcement.
AMD Ryzen 7 Pro 5750G AMD Cezanne

AMD Ryzen 9 5900HX Storms to the Top of PassMark Mobile CPU Leaderboard

AMD Ryzen 9 5900HX, the company's flagship mobile processor announced at the 2021 International CES, has stormed to the top of the PassMark mobile CPU leaderboard. The 8-core/16-thread processor, codenamed "Cezanne," is based on AMD's latest "Zen 3" microarchitecture. It tops the charts with 24,039 points, compared to 16,594 points of the Intel Core i9-10980HK, team blue's current flagship in the 45+ W segment. Both the 5900HX and i9-10980HK are unlocked 8-core parts. The 5900HX also ends up 21% faster than AMD's previous mobile flagship, the Ryzen 9 4900HS, and 25% faster than the 4800H. Intel's upcoming 8-core "Tiger Lake" mobile processor, due for the second half of 2021, has its task cut out.

AMD "Cezanne" Confirmed to Quadruple Max Addressable L3 Cache Per Core Over "Renoir"

At her 2021 International CES keynote address, AMD CEO Dr. Lisa Su announced the Ryzen 5000 series mobile processor family, which the company thinks has what it takes to beat Intel's 11th Gen Core "Tiger Lake" processor, possibly even its upcoming 8-core version. The Ryzen 5000 mobile processor is based on the new 7 nm "Cezanne" monolithic SoC die. This chip features an 8-core CPU based on the latest "Zen 3" microarchitecture, and its biggest change is the advent of the 8-core CCX, which means all eight cores on "Cezanne" share a common L3 cache.

AMD slides from the CES keynote confirm that the company has not only doubled the L3 cache amount compared to "Renoir," but also quadrupled the maximum addressable L3 cache per core. On "Renoir," the eight cores are split between two CCXs, each with 4 MB of L3 cache. "Cezanne" features a single 8-core CCX with 16 MB of it. The dedicated L2 cache amount remains at 512 KB per core. The "total cache" (L2+L3) adds up to 20 MB. For the 45-Watt Ryzen 5000 HX-series enthusiast mobile processors, the increased caches, coupled with improved IPC and higher clock speeds should be AMD's play against Intel's top H-segment mobile chips. AMD claims that the second-fastest Ryzen 9 5900HX beating Intel's fastest Core i9-10980HK by 13% in raw single-thread performance, 19% in game physics performance, and 35% in overall PassMark performance. The 5980HX should only end up faster.

AMD Ryzen 5000 Cezanne APU Die Render Leaked

VideoCardz has recently received a render of the upcoming AMD Ryzen 5000 Cezanne APU which is expected to be unveiled next week. The Zen 3 Cezanne APUs support up to 8 cores and 16 threads just like Zen 2 Renoir APUs. The Cezanne APU should support up to 8 graphics cores and 20 PCIe lanes, it is currently unknown whether these lanes will be PCIe 3.0 or PCIe 4.0. The Cezanne die appears to be ~10% larger than Renoir which comes from the larger Zen 3 core design and a larger L3 cache of 16 MB. The new Ryzen 5000H Cezanne series processors are expected to be announced by AMD next week and will power upcoming low and high power laptops.

AMD Ryzen 5 5600H "Cezanne" Processor Benchmarked, Crushes Renoir in Single Core and Multi Core Performance

With the launch of AMD's next-generation mobile processors just around the corner, with an expected launch date in the beginning of 2021 at the CES virtual event. The Cezanne lineup, as it is called, is based on AMD's latest Zen 3 core, which brings many IPC improvements, along with better frequency scaling thanks to the refined architecture design. Today, we get to see just how much the new Cezanne generation brings to the table thanks to the GeekBench 5 submission. In the test system, a Ryzen 5 5600H mobile processor was used, found inside of a Xiaomi Mi Notebook, paired with 16 GB of RAM.

As a reminder, the AMD Ryzen 5 5600H is a six-core, twelve threaded processor. So you are wondering how the performance looks like. Well, in the single-core test, the Zen 3 enabled core has scored 1372 points, while the multi-threaded performance result equaled 5713 points. If we compare that to the last generation Zen 2 based "Renoir" design, the equivalent Ryzen 5 4600H processor, the new design is about 37% faster in single-threaded, and about 14% faster in multi-threaded workloads. We are waiting for the announcement to see the complete AMD Cezanne lineup and see the designs it will bring.

Cezanne Stretches Its Legs: AMD Ryzen 7 5800H System Benchmarked

AMD's Zen 3 core has seen some major performance uplift, with the first products based on it being the 5000 series desktop processors codenamed "Vermeer". With the efficiency that this new core brings and IPC increase, it is only a matter of time before it scales down to mobile processors. Today, thanks to the findings of TUM APISAK, we get to see some performance results of AMD's upcoming Ryzen 7 5800H "Cezanne" processors. Benchmarked in the Geekbench 5 test suite, the CPU was spotted running at the base frequency of 3.20 GHz, and boost frequency of 4.44 GHz. This is only an engineering sample so the real product may have different clock speeds.

The CPU managed to score 1475 points in single-threaded results while having 7630 points in a multi-threaded scenario. If you wonder how does it fare to the last generation that it replaces, the Ryzen 7 4800H scored 1194 points for ST, and 7852 points for MT. That means that the new Ryzen 7 5800H CPU has a 23% performance boost for ST workloads, showing the Zen 3 capability. The MT score is not representative as we do not have the final product yet, so we have to wait and see how it performs when reviews arrive.

AMD Ryzen 7 5800U "Cezanne" Based on "Zen 3," Geekbenched

AMD's main competitor to Intel's 11th Gen Core "Tiger Lake" processor in the mobile space, the Ryzen 5800U, will introduce the same kind of generational IPC improvements over the Ryzen 4800U "Renoir" as the Ryzen 5000 desktop processors introduced over their Ryzen 3000 predecessors. Based on the 7 nm "Cezanne" silicon, the new Ryzen 7 5800U processor was put through Geekbench 5.1.1, where it yielded performance numbers of 1491 points single-threaded, and 6450 points multi-threaded. HotHardware comments that these numbers reflect a major IPC increase.

With the Ryzen 5000U series, AMD is taking a very confusing approach to the processor model stack, with half the parts based on the older "Zen 2" microarchitecture and "Lucienne" silicon, and the other half "Zen 3." The model number scheme goes as 5x00U, where if "x" is an odd number, the chip is "Zen 2" based, and if it's an even number, it is "Zen 3" based. For example, the 5800U is based on "Zen 3," whereas the 5700U is based on "Zen 2." Find the 5800U Geekbench 5 validation here. The Geekbench database listing also confirms that much like with the 8-core "Zen 3" chiplets on the Ryzen 5000 "Vermeer" desktop processors, "Cezanne" features an 8-core "Zen 3" CPU that does away with the 4-core CCX arrangement, and features a single 8-core CCX with a monolithic 16 MB L3 cache—a doubling in overall L3 cache amount compared to "Renoir," and a quadrupling in addressable L3 cache by each core.

Leaked AMD Ryzen 5000 Mobile Lineup Shows Significant Performance Boosts

AMD has attempted to fix their mobile processor naming situation with the launch of Ryzen 5000 desktop processors, by skipping Ryzen 4000 on desktop AMD has brought their mobile and desktop processor generations under the one naming scheme. However, it seems this naming scheme simplification hasn't gone as well as expected with leaked specifications for the upcoming Ryzen 5000 mobile series showing a mix of Zen 2 and Zen 3 processors. The leaked processors include the AMD Ryzen 3 5300U (Zen 2), Ryzen 3 5400U (Zen 3), Ryzen 5 5500U (Zen 2), Ryzen 5 5600U (Zen 3), Ryzen 7 5700U (Zen 2), and the Ryzen 7 5800U (Zen 3).

These new processors will maintain the core counts of their Ryzen 4000 predecessors while gaining a modest bump to base and boost speeds. These clock speed improvements will be accompanied by the claimed 19% IPC uplift on the Zen 3 based processors. The processors will also benefit from increased Vega iGPU cores and iGPU clock speed boosts. This combination should offer significantly improved performance over previous generation Ryzen 4000 mobile processors which already offered strong performance against Intel's offerings. AMD is expected to officially announce these processors at an event in January with prices slightly above previous generations.

AMD "Lucienne" Silicon to Power Certain Ryzen 5000 Series APUs

There's been much chatter in the social media about a new piece of AMD APU silicon, codenamed "Lucienne." It's being rumored that "Lucienne" is a refresh of the current-generation "Renoir" silicon, and is an APU with eight "Zen 2" CPU cores and eight "Vega" NGCUs. One of the first SKUs based on the die is the Ryzen 7 5700U, which surfaced on the AoTS benchmark database.

The 5700U is possibly a 15 W ultra-portable processor, and according to the AoTS benchmark screenshot, it comes with an 8-core/16-thread CPU (the 4700U is 8-core/8-thread). The addition of SMT helps the 5700U shore up much of its performance lead over the 4700U. It also turns out that the Ryzen 5000 will see two APU dies driving AMD's product-stack, with "Lucienne" powering the Ryzen 5 5500U and Ryzen 7 5700U; while the newer "Cezanne" die, which introduces "Zen 3" CPU cores, powers the Ryzen 5 5600U and the Ryzen 7 5800U.

AMD Warhol, Van Gogh, and Cezanne to Make Up Company's 5th Gen Ryzen

A May 2020 report put together with info from multiple sources pointed towards AMD's client-segment product roadmap going as far into the future as 2022. The roadmap was partial, with a few missing bits. VideoCardz attempted to reconstruct the roadmap based on new information from one of the primary sources of the May leak, @MeibuW. According to the roadmap, 2020 will see AMD debut its 4th Gen Ryzen "Vermeer" desktop processors featuring "Zen 3" CPU cores, built on TSMC N7e or N7P silicon fabrication process, and offering PCIe Gen 4. The "Renoir" APU silicon combining up to 8 "Zen 2" CPU cores with a 512-SP "Vega" iGPU debuted on the mobile platform, and recently launched on the desktop platform as an OEM-exclusive. It remains to be seen if AMD launches this in the DIY retail channel.

2021 is when three new codenames from AMD get some air-time. "Warhol" is codename for the 5th Gen Ryzen part that succeeds "Vermeer." Interestingly, it too is shown as a combination of "Zen 3" CPU cores, PCIe Gen 4, and 7 nm. Perhaps AMD could innovate in areas such as DRAM (switch to PC DDR5), and maybe increase core counts. DDR5 could herald a new socket, after 4 years of AM4. The second silicon bound for 2021 is "Van Gogh," an APU that combines "Zen 2" CPU cores with an RDNA2 iGPU. Interestingly, "Cezanne," bound for the same year, has the opposite CPU+iGPU combination - a newer gen "Zen 3" CPU component, and an older gen "Vega" iGPU. The two chips could target different markets, looking at their I/O, with "Van Gogh" supporting LPDDR5 memory.

ASUS Confirms A520 Support for AMD Zen 3 CPUs; X470, B450 Support in Doubt?

ASUS today has seemingly confirmed platform support of AMD's A520 chipset for the upcoming Zen 3-based CPUs. An official ASUS slide showcases the A 520 covering the latest Renoir-based CPUs (Ryzen 4000G, based on Zen 2), alongside upcoming Cezanne (Ryzen 5000G, based on Zen 3), and Vermeer (Ryzen 4000 or 5000 series, based on Zen 3 with actual series nomenclature being up in the air).

The good news end there, as the same ASUS slide may have just dropped a bomb on consumer expectations for their current platform support. Initially, the AMD B450 and X470 chipsets weren't going to support Zen 3-based CPU solutions; however, following considerable community backlash, AMD made the decision to offer support for these platforms via a vendor-specific BIOS update. This update might entail curbed support for older AMD Zen architectures, but would at least allow for an upgrade path for users interested in keeping their AM4, current-gen motherboards. ASUS doesn't seem to be offering such Zen 3 support for its X470 and B450 motherboards, though. We will have to see if this is an ASUS-specific decision or if something is indeed afoot in the world of AMD future proofing.

AMD "Cezanne" APU Spotted: Retains Renoir's iGPU, Updates CPU to "Zen 3"

AMD's 5th Generation Ryzen "Cezanne" APU sprung up on SiSoft SANDRA database, with big hints as to the areas where the company could innovate next. Apparently, "Cezanne" is a very similar silicon to "Renoir." It appears to feature the same iGPU solution, based on the "Vega" architecture. We're now learning that the iGPU even has the same core configuration, with up to 512 stream processors, and a likely bump in iGPU engine clocks over the Ryzen 4000 "Renoir" chips.

Much of the innovation is with the CPU component. Although the CPU core count is not yet known, the company is deploying its "Zen 3" microarchitecture, which sees all cores on the silicon sharing a large common slab of L3 cache. The "Vega" based iGPU should still perform better than the solution on "Renoir," as it's assisted by higher engine clocks, and possibly a higher IPC CPU component. In the SANDRA screenshot, the iGPU was shown bearing 1.85 GHz engine clocks, which amounts to a 100 MHz speed-bump compared to the engine clocks of the Ryzen 4000H and 4000U.

AMD "Cezanne" APU to Stick with "Vega" iGPU, "Van Gogh" Gets RDNA2

The earliest reports on AMD's next-generation "Cezanne" APU silicon pointed at the possibility of the chip combining "Zen 3" CPU cores with a next-generation iGPU solution based on RDNA2 ("Navi 2#"). AMD plans to launch "Cezanne" in 2021, which makes it the immediate successor to "Renoir." A report by Igor's Lab has fresh details on "Cezanne." Apparently the chip sticks with the "Vega" graphics architecture on its iGPU. This doesn't necessarily mean that it's the same exact iGPU as the 8 CU version on "Renoir."

On the other hand, the "Van Gogh" silicon slated for 2021 is expected to receive RDNA2 graphics. It's important to note here that "Van Gogh" and "Cezanne" sit in the same product stack, and "Van Gogh" does not succeed "Cezanne." Rather, it's the codename for an entry-level APU, succeeding "Dali" (Athlon 3000G), which also means the RDNA2-based iGPU will be a lot slimmer than the "Vega" based one on "Cezanne." It's only by 2022 that AMD will have a performance-segment APU with RDNA2-based iGPU, with "Rembrandt." Find our older article getting into AMD's roadmaps here.

Distant Blips on the AMD Roadmap Surface: Rembrandt and Raphael

Several future AMD processor codenames across various computing segments surfaced courtesy of an Expreview leak that's largely aligned with information from Komachi Ensaka. It does not account for "Matisse Refresh" that's allegedly coming out in June-July as three gaming-focused Ryzen socket AM4 desktop processors; but roadmap from 2H-2020 going up to 2022 sees many codenames surface. To begin with, the second half of 2020 promises to be as action packed as last year's 7/7 mega launch. Over in the graphics business, the company is expected to debut its DirectX 12 Ultimate-compliant RDNA2 client graphics, and its first CDNA architecture-based compute accelerators. Much of the processor launch cycle is based around the new "Zen 3" microarchitecture.

The server platform debuting in the second half of 2020 is codenamed "Genesis SP3." This will be the final processor architecture for the SP3-class enterprise sockets, as it has DDR4 and PCI-Express gen 4.0 I/O. The EPYC server processor is codenamed "Milan," and combines "Zen 3" chiplets along with an sIOD. EPYC Embedded (FP6 package) processors are codenamed "Grey Hawk."

AMD Confirms Zen 3 and RDNA2 by Late-2020

AMD in its post Q1-2020 earnings release disclosures stated that the company is "on track" to launching its next-generation "Zen 3" CPU microarchitecture and RDNA2 graphics architecture in late-2020. The company did not reveal in what shape or form the two will debut. AMD is readying "Zen 3" based EPYC "Milan" enterprise processors, "Vermeer" Ryzen desktop processors, and "Cezanne" Ryzen mobile APUs based on "Zen 3," although there's no word on which product line the microarchitecture will debut with. "Zen 3" compute dies (CCDs) are expected to do away with the quad-core compute complex (CCX) arrangement of cores, and are expected to be built on a refined 7 nm-class silicon fabrication process, either TSMC N7P or N7+.

The only confirmed RDNA2 based products we have as of now are the semi-custom SoCs that drive the Sony PlayStation 5 and Microsoft Xbox Series X next-generation consoles, which are expected to debut by late-2020. The AMD tweet, however, specifies "GPUs" (possibly referring to discrete GPUs). Also, with AMD forking its graphics IP to RDNA (for graphics processors) and CDNA (for headless compute accelerators), we're fairly sure AMD is referring to a Radeon RX or Radeon Pro launch in the tweet. Microsoft's announcement of the DirectX 12 Ultimate logo is expected to expedite launch of Radeon RX discrete GPUs based on RDNA2, as the current RDNA architecture doesn't meet the logo requirements.

AMD "Renoir" Successor is "Cézanne," Powered by "Zen 3" and RDNA2

AMD's 7 nm "Renoir" silicon breathed life into the notebook processor market, by bringing 8-core/16-thread CPU performance into segments Intel reserved for 4-core/8-thread; and beat Intel in the iGPU performance front. 7 nm brought performance-Watt uplifts that spell serious competition for Intel across all notebook form factors, be it 15 W or 45 W. According to _rogame, who has a knack of getting far-out hardware rumors right, AMD has its successor on the drawing-board, and it's codenamed "Cézanne," after the French post-impressionist painter Paul Cézanne.

"Cézanne" could prove vital for AMD's foothold in the premium mobile computing segments as Intel is preparing to launch its 10 nm+ "Tiger Lake" processor soon, with advanced "Willow Cove" CPU cores, and Xe based integrated graphics. AMD plans to tap into its very latest IP. Although its core-count is not known, "Cézanne" will feature CPU cores based on the latest "Zen 3" microarchitecture. The iGPU will receive its biggest performance uplift in 3 generations, with an iGPU based on the cutting-edge RDNA2 graphics architecture that meets DirectX 12 Ultimate logo requirements.
Return to Keyword Browsing