News Posts matching "14 nm"

Return to Keyword Browsing

Intel At Least 5 Years Behind TSMC and May Never Catch Up: Analyst

Intel's in-house sub-10 nanometer silicon fabrication dreams seem more distant by the day. Raymond James analyst Chris Caso, in an interview with CNBC stated that Intel's 10 nm process development could set the company back by at least 5 years behind TSMC. In its most recent financial results call, Intel revised its 10 nm outlook to reflect that the first 10 nm processors could only come out by the end of 2019. "Intel's biggest strategic problem is their delay on 10nm production - we don't expect a 10nm server chip from Intel for two years," analyst Chris Caso said in a note to clients Tuesday. "10nm delays create a window for competitors, and the window may never again close."

By that time, Intel will have missed several competitive milestones behind TSMC, which is in final stages of quantitatively rolling out its 7 nm process. Caso predicts that by the time Intel goes sub-10 nm (7 nm or something in that nanoscopic ballpark), TSMC and Samsung could each be readying their 5 nm or 3 nm process roll-outs. A Rosenblatt Securities report that came out late-August was even more gloomy about the situation at Intel foundry. It predicted that foundry delays could set the company back "5, 6, or even 7" years behind rivals. Intel is already beginning offload some of its 14 nm manufacturing to TSMC. Meanwhile, AMD is reportedly planning to entirely rely on TSMC to make its future generations of "Zen" processors.

AMD "Navi" GPU Architecture Successor Codenamed "Arcturus"?

Arcturus is the fourth brightest star in the night sky, and could be the a new GPU architecture by AMD succeeding "Navi," according to a Phoronix report. The codename of Navi-successor has long eluded AMD's roadmap slides. The name "Arcturis" surfaced on Phoronix community forums, from a post by an AMD Linux liaison who is a member there. The codename is also supported by the fact that AMD is naming its GPU architectures after the brightest stars in the sky (albeit in a descending order of their brightness). Polaris is the brightest, followed by Vega, Navi, and Arcturus.

AMD last referenced the Navi-successor on a roadmap slide during its 2017 Financial Analyst Day presentation by Mark Papermaster. That slide mentioned "Vega" to be built on two silicon fabrication processes, 14 nm and "14 nm+." We know now that AMD intends to build a better-endowed "Vega" chip on 7 nm, which could be the world's first 7 nm GPU. "Navi" is slated to be built on 7 nm as the process becomes more prevalent in the industry. The same slide mentions Navi-successor as being built on "7 nm+," which going by convention, could refer to an even more advanced process than 7 nm. Unfortunately, even in 2017, when the industry was a touch more optimistic about 7 nm, AMD expected the Navi-successor to only come out by 2020. We're not holding our breath.

TSMC to Build Intel 14nm Processors and Chipsets

Try to wrap your head around Intel contracting TSMC to build some of its processors! With its own 14 nanometer silicon fabrication nodes under stress from manufacturing several generations of Core and Xeon processors simultaneously, leading to market shortages, Intel is looking to contract TSMC to manufacture some of its 14 nm products. Among these are certain models of its desktop processors, and several 300-series chipsets, including the H310, which are currently fabbed on Intel's last 22 nm node, that's probably being converted to 14 nm.

The TSMC contract appears to be moving faster than expected, with the Taiwanese fab eager to demonstrate its competence to Intel and secure future orders as the company is closer than ever in going fully or partly fabless. According to industry observers, Intel is staring at a 1:2 supply-demand ratio, for the countless chip it's building on 14 nm; which may have forced it to contract some of these chip designs to TSMC. Motherboard vendors expect Intel to sort out its supply issues by the end of 2018, with big help from TSMC.

Intel 14nm Processors Face Shortages

Intel's 8th generation Core desktop processors based on the company's 14 nm node are facing shortages in the market, according to a Tom's Hardware report. Tracking prices and availability of popular 8th generation Core SKUs such as the i5-8400, i5-8600K, and i7-8700K, the report notes that retailers are heavily marking up these SKUs above their SEP, and many of whom are running out of stock often. This may not be attributed to heavy demand.

A possible explanation for these shortages could be Intel allocating volumes from the same 14 nm++ node for its upcoming 9th generation Core processors, which debut with three SKUs - i5-9600K, i7-9700K, and i9-9900K. Intel probably wants to launch the three chips not just at competitive prices, but also good enough volumes to win the 2018 Holiday season, and repair its competitiveness damaged by AMD 2nd generation Ryzen over the past couple of quarters.

AMD Athlon Pro 200GE Detailed: An Extremely Cut-down "Raven Ridge" at $55

AMD is giving finishing touches to its Athlon Pro 200GE socket AM4 SoC, which it could position against Intel's $50-ish Celeron LGA1151 SKUs. Leaked slides by PCEva reveals that it's a heavily cut-down 14 nm "Raven Ridge" die. For starters, unlike previous-generation Athlon-branded products on platforms such as FM2, the Athlon 200GE won't lack integrated graphics. Only 3 out of 11 Vega NGCUs will be enabled, translating to 192 stream processors, which should be enough for desktop, 2D, and video acceleration, but not serious gaming, even at low resolutions.

The CPU config is 2-core/4-thread, with 512 KB L2 cache per core, and 4 MB shared L3 cache. The CPU is clocked at 3.20 GHz, with no Precision Boost features. You still get GuardMI commercial-grade hardware security features. There is a big catch with one of its uncore components. The PCIe root-complex only supports PCI-Express 3.0 x4 out of your motherboard's topmost x16 slot, not even x8. Ryzen "Raven Ridge" APUs already offer a crippled x8 connectivity through this slot. AMD claims that the Athlon 200GE will be "up to 19 percent faster" than Intel Pentium G4560 at productivity work. When it launches on 6th September with market availability from 18th September, the Athlon Pro 200GE will be priced at USD $55.

Intel "Whiskey Lake-U" Core Processor Lineup Detailed

Intel is giving final touches to its 9th generation Core "Whiskey Lake-U" processors for Ultrabooks and other ULV platforms. Successors to 8th Gen "Kaby Lake Refresh" chips, these 15-Watt SoCs may not pack a newer microarchitecture in terms of IPC increases, but Intel is building them on the latest iteration of its 14 nm node, along with tweaks made to their Turbo Boost algorithm, which combined with higher boost clocks, should offer better performance than the previous generation.

The lineup begins with the Core i3-8145U, successor to the i3-8130U. This 2-core/4-thread chip is has a lower nominal clock at 2.10 GHz (vs. 2.20 GHz of its predecessor), but significantly higher boost clocks of 3.90 GHz (vs. 3.40 GHz of the i3-8130U). The Core i5-8265U and top-end i7-8565U are both 4-core/8-thread chips with a nominal clocks of 1.60 GHz and 1.80 GHz, respectively. The i5-8265U has a boost clock of 4.10 GHz and 6 MB of L3 cache; while the i7-8565U tops that with 4.70 GHz boost clocks, and 8 MB of L3 cache. All three chips have 15W TDP, configurable to 25W by applying the "high performance" power scheme.

Intel "Cooper Lake" Latest 14nm Stopgap Between "Cascade Lake" and "Ice Lake"

With no end to its 10 nm transition woes in sight (at least not until late-2019), Intel is left with refinement of its existing CPU micro-architectures on the 14 nanometer node. The client-desktop segment sees the introduction of the "Whiskey Lake" (aka Coffee Lake Refresh) later this year; while the enterprise segment gets the 14 nm "Cascade Lake." To its credit, Cascade Lake introduces a few major platform innovations, such as support for Optane Persistent Memory, silicon-level hardening against recent security vulnerabilities, and Deep Learning Boost, which is hardware-accelerated neural net building/training, and the introduction of VNNI (Variable Length Neural Network Instructions). "Cascade Lake" makes its debut towards the end of 2018. It will be succeeded in 2019 by Ice Lake the new "Cooper Lake" architecture.

"Cooper Lake" is a refresh of "Cascade Lake," and a stopgap in Intel's saga of getting 10 nm right, so it could build "Ice Lake" on it. It will be built on the final (hopefully) iteration of the 14 nm node. It will share its platform with "Cascade Lake," and so Optane Persistent Memory support carriers over. What's changed is the Deep Learning Boost feature-set, which will be augmented with a few new instructions, including BFLOAT16 (a possible half-precision floating point instruction). Intel could also be presented with the opportunity to crank up clock speeds across the board.

AMD Radeon Pro WX 8200 Detailed

AMD is giving final touches to the new Radeon Pro WX 8200 professional graphics card. Launched over a year following the Radeon Pro WX 9100, the WX 8200 has a leaner feature-set, while continuing to be based on AMD's current IP. The card still uses the 14 nm "Vega 10" MCM, but with a core-config akin to that of the RX Vega 56. You get 56 NGCUs working out to 3,584 stream processors, 224 TMUs, 64 ROPs, and a 4096-bit wide HBM2 memory interface, handling 16 GB of memory on this card. The air-cooled card also has a leaner connectivity load-out, with just four mini-DisplayPort 1.4 connectors (the WX 9100 comes with six). Its 8-pin + 6-pin connectors are positioned at the rear-end to be SSI workstation-friendly. The card surfaced on CompuBench database, in which its performance numbers are only slightly behind those of the WX 9100, but significantly better than the "Polaris 20" based WX 7100. AMD is expected to launch this card at SIGGRAPH 2018.

Intel to Paper-launch 9th Gen Core on August 14, Availability in Q4-2018

Intel's client desktop processor lineup is under tremendous pressure owing to competition from AMD, with the company having to roll out entire processor generations over mere 2-3 quarters. You'll recount that Intel was merrily trotting around with its barely-innovative 7th Gen "Kaby Lake" family in early 2017, when AMD stunned the industry with an outperforming product lineup. The 7th generation barely lasted its planned product cycle, before Intel rushed in a pathetic sub-$500 Core X lineup, and the 8th generation "Coffee Lake" with 50-100% core-count increases. Even that is proving insufficient in the wake of 2nd generation AMD Ryzen "Pinnacle Ridge," and Intel is cutting short its product cycle with the 9th generation Core "Whiskey Lake" (or "Coffee Lake" Refresh) series, that further increase core-counts.

"Whiskey Lake" was originally planned for Q1-2019 alongside the 14 nm original Z390 chipset. Intel wasn't expecting AMD to rebound with Ryzen 2000 series (particularly the tangible IPC increases and improved multi-core boosting). And so, it decided to rush through with a new product generation yet again. The Z370 is being re-branded to Z390 (with an improved CPU VRM reference design), and what was originally meant to come out in Q1-2019, could come out by Q4-2018, at the very earliest by October. Intel reportedly planned availability sooner, but realized that distributors have heaps of unsold 8th generation Core inventory, and motherboard vendors aren't fully ready for the chip. Since getting a 9th gen Core chip doesn't warrant a new motherboard, customers would be inclined to pick up 9th generation chip with their existing boards, or any new 300-series board. This would kill the prospects of selling 8th generation Core CPUs.

Intel Stuck with 14nm Processors Till Holiday 2019

Wrap your head around this: at some point in 2019, AMD will be selling 7 nm processors while Intel sells 14 nm processors. That how grim Intel's 10 nanometer silicon fabrication process development is looking. In the Q&A session of its Q2-2018 Earnings Call, Intel stated that the first products based on its 10 nm process will arrive only by Holiday 2019, making 14 nm micro-architectures hold the fort for not just the rest of 2018, but also most of 2019. In the client-segment, Intel is on the verge of launching its 9th generation Core "Whiskey Lake" processor family, its 5th micro-architecture on the 14 nm node after "Broadwell," "Skylake," "Kaby Lake," and "Coffee Lake."

It's likely that "Whiskey Lake" will take Intel into 2019 after the company establishes performance leadership over 12 nm AMD "Pinnacle Ridge" with a new round of core-count increases. Intel is also squeezing out competitiveness in its HEDT segment by launching new 20-core and 22-core LGA2066 processors; and a new platform with up to 28 cores and broader memory interface. AMD, meanwhile, hopes to have the first 7 nm EPYC processors out by late-2018. Client-segment products based on its architecture, however, will follow the roll-out of these enterprise parts. We could see a point in 2019 when AMD launches its 7 nm 3rd generation Ryzen processors in the absence of competing 10 nm Core processors from Intel. Posted below is an Intel slide from 2013, when the company was expecting 10 nm rollout by 2015. That's how much its plans have derailed.

Sapphire Intros FS-FP5V SFF Motherboard Based on Ryzen Embedded

Sapphire introduced the FS-FP5V, a mini-ITX (147.3 mm x 139.7 mm) SFF motherboard designed for AIO desktops, digital signage boxes, and compact desktops. At the heart of this board is an AMD Ryzen Embedded V1000 series FP5 SoC based on the 14 nm "Raven Ridge" silicon. Since this SoC also integrates a southbridge, the board is practically chipset-less. The Ryzen Embedded V1000 chip is configured with a 4-core/8-thread "Zen" CPU clocked at 2.00 GHz with 3.35 GHz boost, and 4 MB L3 cache. The iGPU is a Radeon Vega 11, which may look overkill, but is required to pull the four DisplayPort 1.4 outputs of this board (handy for digital-signage applications).

The Ryzen Embedded V1000 is wired to two DDR4 SO-DIMM slots, supporting up to 32 GB of dual-channel DDR4-2933 memory. Storage connectivity includes an M.2-2280 slot with PCI-Express 3.0 x4 wiring, an M.2 E-key slot with x1 wiring for WLAN cards; and a SATA 6 Gbps port. Networking options include two 1 GbE interfaces. USB connectivity includes two USB 3.1 gen 1 ports at the rear-panel, and two USB 3.1 gen 1 ports (direct ports) at the front side of the board, one each of type-A and type-C. Stereo HD audio makes for the rest of it. The board draws power from either 2-pin DC (external) or 4-pin ATX.

ASMedia Readies ASM2824 PCIe Switch Anticipating a Rise in M.2 Slots

ASMedia is giving finishing touches to the ASM2824 PCI-Express gen 3.0 x24 switch. With half the fabric as the PLX PEX8747, the chip takes in PCI-Express 3.0 x8, and puts out four PCI-Express 3.0 x4 connections. In theory, this would let a motherboard designer create four M.2 PCIe 3.0 x4 slots from 8 downstream PCIe lanes of the Intel Z390 chipset, saving the remaining PCIe lanes for onboard USB 3.1 controllers (preferably sourced from ASMedia itself), since Intel canned the older 14 nm version of the Z390, which was supposed to put out six 10 Gbps USB 3.1 gen 2 and ten 5 Gbps USB 3.1 gen 1 ports directly from the PCH.

With all four downstream slots populated, ASMedia promises NVMe RAID bandwidths of up to 6,500 MB/s, with some CDM numbers even crossing 6,700 MB/s. Then again, one has to take into account that the test platform probably had the ASM2824 wired to the CPU's PCIe root-complex, and not that of the chipset. Intel is yet to modernize the lousy DMI 3.0 chipset-bus between its latest processors and chipset, and is physically PCI-Express 3.0 x4, which is fundamentally outdated for the bandwidth-heavy interfaces of this generation, such as USB 3.1, M.2 NVMe, and even the upcoming SD Express. The ASM2824 is also a godsend for the AMD AM4 platform, which not only has the same PCI-Express 3.0 x4 chipset bus between the AM4 SoC and the X470 chipset, but also a poor downstream PCIe feature-set of the X470, with just 8 gen 2.0 lanes. Motherboard designers can wire out all of those lanes to an ASM2824 for up to 24 downstream lanes.

Intel Z390 Platform, Intel Core i9 CPU Lineup Leaked?

According to a report from WCCFTech, Intel is prepping the release of the Z390 chipset and is gearing up to bring their Core i9 branding series to the mainstream desktop platforms. Apparently, Intel's renaming scheme serves as a way to add the required "branding impact" to the fact that the i9 series of processors is finally hitting the mainstream - but don't be deluded. As we've previously covered, Intel's Z390 chipset may well become a rebrand of sorts from the current Z370 chipset, after Intel found insufficient capacity at its 14 nm node (which has to cope with the vast majority of Intel silicon production, following the smattering of delays hitting its 10 nm process). Basically, Intel's Z390 chipset will bring forward features that weren't built on the Z370 chipset at its inception, but have since become part of Intel's lineup (read, for example, its H370 chipset): Intel Wireless-AC 802.11 AC and Bluetooth 5.0; Intel Wireless-AC Adapter; and up to 6 x USB 3.1 Gen 2 Ports.

According to WCCFTech, there's only confirmation of an 8-core, 16-thread CPU (Intel Core i9-9900K); a 6-core, 12-thread one (Intel Core i7-9700K) and a six-core, six-thread part (Intel Core i5-9600K ). No confirmation on an i3 part has been had yet, but it's very unlikely Intel has shelved that part of their lineup. A 4-core CPU is simply too important - from a yield perspective, mainly - for Intel to shelve it - and there's still enough demand for these, even with AMD's many-core democratization push.

Intel Shelves Z390 Express As We Knew It, Could Re-brand Z370 as Z390

Intel is rumored to have shelved the iteration of its upcoming Z390 Express chipset as earlier publicized, the one which had certain new hardware features. It could now re-brand the existing Z370 Express as Z390 Express and probably bolster its reference design with heftier CPU VRM specifications, to cope better with its upcoming 8-core LGA1151 processors. The Z370 Express is similar in feature-set to the brink of being identical to its predecessor, the Z270 Express. This move could impact certain new hardware features that were on the anvil, such as significantly more USB 3.1 gen 2/gen1 ports directly from the PCH, integrated WiFi MAC, and Intel SmartSound technology, which borrowed certain concepts from edge-computing to implement native speech-to-text conversion directly on the chipset, for improved voice control latency and reduced CPU overhead.

The reasons behind this move could be a combination of last-minute cost-benefit analyses by Intel's bean-counters, and having to mass-produce Z390 Express on the busier-than-expected 14 nm silicon fabrication node, as opposed to current 300-series chipsets being built on the 22 nm node that's nearing the end of its life-cycle. Intel probably needed the switch to 14 nm for the significant increases in transistor-counts arising from the additional USB controllers, the WiFi MAC, and the SmartSound logic. Intel probably doesn't have the vacant 14 nm node capacity needed to mass-produce the Z390 yet, as its transition to future processes such as 10 nm and 7 nm are still saddled with setbacks and delays; and redesigning the Z390 (as we knew it) on 22 nm may have emerged unfeasible (i.e. the chip may have ended up too big and/or too hot). The Z390 Express chipset block-diagram, which we published in our older article has been quietly removed from Intel's website. It's also rumored that this move could force AMD to rethink its plans to launch its Z490 socket AM4 chipset.

Intel Announces Core i7-8086K Limited Edition Six-core Processor

Intel today announced the Core i7-8086K six-core processor in the LGA1151(v2) package, compatible with 300-series chipset. This processor commemorates 40 years since the company's 8086 processor, which was the spiritual ancestor of the x86 architecture that dominates modern day computing. Based on the same 14 nm "Coffee Lake" silicon as the i7-8700K, this chip features high clock speeds of 4.00 GHz nominal, with a maximum Turbo Boost frequency of 5.00 GHz. Like the i7-8700K, it features 256 KB of dedicated L2 cache per core, and 12 MB of shared L3 cache. The processor will go on sale from 8th June, the company didn't reveal pricing, but it's rumored to be a conspicuous USD 486.

Intel Core i7-8086K Listed, First 5.00 GHz Processor

Intel is commemorating 40 years of its 8086 processor, the spiritual ancestor of the x86 machine architecture that rules modern computing, with a special edition socket LGA1151 processor, dubbed Core i7-8086K. The chip appears to feature a nominal clock speed of 4.00 GHz, with a maximum Turbo Boost frequency of 5.00 GHz, making it the first mainstream desktop processor from Intel to hit the 5.00 GHz mark, out of the box.

The Core i7-8086K is more likely to be based on a special bin of the 14 nm, 6-core/12-thread "Coffee Lake" silicon, rather than being something next-gen or 8-core. The retail SKU bears the part number "BX80684I78086K." The chip will be compatible with Intel 300-series chipset motherboards. Pre-launch listings put its price around $486, which is along expected lines, as it's 70-100 EUR pricier than the i7-8700K. Intel could unveil the Core i7-8086K at the 2018 Computex (specifically on the 8th of June), alongside the first motherboards based on its Z390 Express chipset.

AMD Readies Athlon 200GE and Athlon Pro 200GE: First Athlon Branded "Zen"

AMD is giving finishing touches to the Athlon 200GE (YD200GC6M2OFB) and Athlon Pro 200GE (YD200GC6M20FB) socket AM4 APUs, which will likely be a part of the company's answer to Intel's Pentium Gold series. The "E" brand extension denotes energy-efficiency, and both chips have a rated TDP of just 35W. The two are based on AMD's 14 nm "Raven Ridge" silicon, and pack a 2-core/4-thread CPU based on the "Zen" microarchitecture, clocked at 3.20 GHz.

Unlike previous few generations of Athlon-branded parts, which were essentially socket FM2(+) APUs devoid of integrated graphics, the Athlon 200GE and Athlon Pro 200GE do feature the Radeon Vega integrated graphics solution, but we expect it to be watered down compared to the Ryzen 2000G series chips. What sets the Athlon Pro part apart from its non-Pro sibling is the same feature that set Ryzen Pro apart, such as SEV. The two chips surfaced on the updated CPU compatibility lists of ASUS Crosshair VII Hero X470.

A Push for the Higher Margin: Intel Reportedly Discontinues Production of Its H310 Chipset

A report straight out of DigiTimes, citing industry sources, says that Intel has discontinued production of its H310 chipset. The decision has apparently stemmed from lower than expected production capacity for chipsets on the 14 nm process. When that happens, production focus must shift to a specific part: in this case, Intel obviously went with the option with the lower opportunity cost, and increased production of the Z370 chipset: the one with the increased feature-set, and, most likely than not, higher margins.

After a single month of tight supply for the H310 chipset, motherboard makers are now forced to use Intel's B360 chipset in their more cost-conscious options as well - a part which carries higher cost, and thus precludes manufacturers from hitting all the price points they usually would with a fully vertical Intel chipset lineup. Speculation has emerged claiming Intel suspended the supply of H310 because they have chosen to conduct a manufacturing process change from the tight-supply 14 nm (used across almost all of Intel's production stack, both consumer and enterprise) to a 22 nm fabrication technology. Further speculation places this constrained 14 nm supply as existent because of the delay in advancing to 10 nm, a process that Intel expected to be producing in volume by now (and since a while back, to be fair).

AMD Teases Its 7 nm Vega Instinct Accelerator - Data-Pushing Silicon Deployed

AMD has announced via its Twitter feed that the Vega die shrink from current 14 nm down to 7 nm has actually coalesced into a hardware product that can be tested and vetted at their labs. Via a teaser image, the company said that "7nm @RadeonInstinct product for machine learning is running in our labs."

Of course, working silicon is only half the battle - considerations such as yields, leakage, and others are all demons that must be worked out for actual production silicon, which may thus be some months off. Only AMD and TSMC themselves themselves know how the actual production run went - and the performance and power efficiency that can be expected from this design (remember that AMD's CEO Lisa SU herself said they'd partner with both TSMC and Globalfoundries for the 7 nm push, though it seems TSMC may be pulling ahead in that field). Considering AMD's timeline for the die-shrunk Vega to 7 nm - with predicted product launch for 2H 2018 - the fact that there is working silicon being sampled right now is definitely good news.

Intel Rumored to Commemorate 40th Anniversary of the 8086 with a Special Core i7 SKU?

Intel recently celebrated 20 years of the Pentium brand that made the company a household name, with a special Pentium 20th Anniversary Edition G3258 SKU. If rumors are to be believed, the company could do something similar with the upcoming 40th anniversary of its 8086 processor, the distant ancestor of today's x86 architecture. Some sources even suggest that the company could take advantage of its 8th generation Core product cycle to launch a "Core i7-8086K" SKU.

Pictures surfaced on social media of the said "i7-8086K" SKU in the flesh, complete with a part number "SR3QQ." Based on the same 14 nm "Coffee Lake" silicon as the i7-8700K, this chip has a nominal clock speed of 4.00 GHz, a maximum Turbo Boost frequency above 5.00 GHz, an unlocked multiplier, and 12 MB of shared L3 cache. Intel could choose June 8th (around the 2018 Computex and the actual anniversary of 8086), to launch the new SKU.

Intel Expands 8th Gen. Core Desktop Processor Family, Introduces New Chipsets

Intel today expanded its 8th generation Core desktop processor family, to include xx new models across its Core i7, Core i5, and Core i3 brand extensions. The company also introduced entry-level Pentium Gold and Celeron processors. The chips are based on the 14 nm "Coffee Lake" silicon, and are compatible with socket LGA1151 motherboards based on Intel 300-series chipset. Intel has relegated dual-core to the Celeron and Pentium Gold brands. The Celeron series includes 2-core/2-thread chips with 3 MB L3 cache; while the Pentium Gold series includes 2-core/4-thread chips with 4 MB L3 cache.

The company is launching the 8th generation Celeron series with two models, the G4900 and the G4920, clocked at 3.10 GHz, and 3.20 GHz, respectively. The Pentium Gold family has three parts, the G5400, the G5500, and the G5600, clocked at 3.70 GHz, 3.80 GHz, and 3.90 GHz, respectively. The 8th generation Core i3 family of 4-core/4-thread parts receives a new member, the i3-8300. Endowed with 8 MB of L3 cache, this chip is clocked at 3.70 GHz, and sits between the i3-8100 and the i3-8350K, but lacks the unlocked multiplier of the latter.

Intel Ships Industry's First 58G PAM4-Capable FPGA

Intel today announced it has begun shipping its Intel Stratix 10 TX FPGAs, the industry's only field programmable gate array (FPGA) with 58G PAM4 transceiver technology. By integrating the FPGA with 58G PAM4 technology, Intel Stratix 10 TX FPGAs can double the transceiver bandwidth performance when compared to traditional solutions. This exceptional bandwidth performance makes the Intel Stratix 10 TX FPGAs the essential connectivity solution for next-generation use cases: optical transport networks, network function virtualization (NFV), enterprise networking, cloud service providers and 5G networks applications where high bandwidth is paramount.

To facilitate the future of networking, NFV and optical transport solutions, Intel Stratix 10 TX FPGAs provide up to 144 transceiver lanes with serial data rates of 1 to 58 Gbps. This combination delivers a higher aggregate bandwidth than any current FPGA, enabling architects to scale to 100G, 200G and 400G delivery speeds. By supporting dual-mode modulation, 58G PAM4 and 30G NRZ, new infrastructure can reach 58G data rates while staying backward-compatible with existing network infrastructure. A wide range of hardened intellectual property (IP) cores, including 100GE MAC and FEC, deliver optimized performance, latency and power.

Intel Intros Core i3-8130U Dual-core Low-power Processor

Intel today introduced the Core i3-8130U dual-core (2-core/4-thread) ultra low-power processor for thin and light notebooks, and 2-in-1 convertibles. Based on the 14 nm "Kaby Lake-U" silicon, the chip features a TDP of just 15W, making it ideal for all-day power devices. It is clocked at 2.40 GHz, with 3.40 GHz Turbo Boost frequency, and packs 4 MB of L3 cache. In its TDP-down mode, the CPU idles at 800 MHz, lowering the TDP to 10W. Its dual-channel DDR4 memory controller supports up to 32 GB of DDR4-2400 or LPDDR3-2133 memory. On the display side of things are the UHD Graphics 620 iGPU with clock speed ranging between 300 MHz and 1.00 GHz, 24 execution units, and hardware-acceleration for H.265/HEVC with 10bpc color.

AMD Officially but Silently Downgrades Radeon RX 560 with an 896 SP Variant

The phenomenon of Radeon RX 560 graphics cards with 896 stream processors is more widespread than earlier thought. It looks like RX 560 cards with 896 stream processors will be more widely available than the previously thought Greater China region; with AMD silently editing the specifications of the SKU to have either 896 or 1,024 stream processors, as opposed to the 1,024 it originally launched with. There are no clear labeling guidelines or SKU names to distinguish cards with 896 stream processors from those with 1,024.

The Radeon RX 560 and the previous-generation RX 460 are based on the 14 nm "Polaris 11" silicon, which physically features 16 GCN compute units (CUs), each packed with 64 stream processors. The RX 560 originally maxed this silicon out, with all 16 CUs being enabled, while the RX 460 has two CUs locked. The decision to change specs of the RX 560 effectively makes it a re-brand of the RX 460, which is slower, and provides fertile grounds for bait-and-switch lawsuits.

Intel Announces "Coffee Lake" + AMD "Vega" Multi-chip Modules

Rumors of the unthinkable silicon collaboration between Intel and AMD are true, as Intel announced its first multi-chip module (MCM), which combines a 14 nm Core "Coffee Lake-H" CPU die, with a specialized 14 nm GPU die by AMD, based on the "Vega" architecture. This GPU die has its own HBM2 memory stack over a 1024-bit wide memory bus. Unlike on the AMD "Vega 10" and "Fiji" MCMs, in which a silicon interposer is used to connect the GPU die to the memory stacks, Intel deployed the Embedded Multi-Die Interconnect Bridge (EMIB), a high-density substrate-level wiring. The CPU and GPU dies talk to each other over PCI-Express gen 3.0, wired through the package substrate.

This multi-chip module, with a tiny Z-height, significantly reduces the board footprint of the CPU + discrete graphics implementation, when compared to having separate CPU and GPU packages with the GPU having discrete GDDR memory chips, and enables a new breed of ultra portable notebooks that pack a solid graphics muscle. The MCM should enable devices as thin as 11 mm. The specifications of the CPU and dGPU dies remain under the wraps. The first devices with these MCMs will launch by Q1 2018.
A video presentation follows.
Return to Keyword Browsing