News Posts matching "14 nm"

Return to Keyword Browsing

AMD Ryzen 3000U Series APUs Detailed, Geekbenched

AMD is putting final touches on its Ryzen 3000U series APUs for ultra-portable notebooks and 2-in-1 devices. Thai PC enthusiast Tum Apisak shared links to Geekbench scores of at least three SKUs, the Ryzen 3 3200U, the Ryzen 3300U, and the Ryzen 5 3500U. The Ryzen 3 3200U combines a 2-core/4-thread CPU component, while the Ryzen 3 3300U packs a 4-core/4-thread CPU, and the Ryzen 5 3500U a better equipped 4-core/8-thread CPU. While the 3200U's CPU is clocked high at 2.60 GHz, the 3300U and 3500U are both clocked at 2.10 GHz. The iGPU specs are still under the wraps as Geekbench only tested the single- and multi-threaded CPU performance. The 3200U scores 3428 points single-threaded owing to its higher nominal clocks, and around 6500 points multi-threaded. The 3300U scores 9686 points in multi-threaded owing to its additional cores (sans SMT). The 3500U increases the multi-threaded score to over 11280 points multi-threaded, on account of being quad-core with SMT.

There's no clarity on the underlying micro-architecture. While the source mentions the codename of these chips as Picasso, the silicon still appears to be 14 nm "Raven Ridge." Over generation, AMD only appears to have pushed its current parts lower down the product stack. For example, the Ryzen 3 3300U appears to share the same CPU configuration (albeit with 5% higher clock-speeds) as the Ryzen 5 2500U from the current-generation. The Ryzen 5 3500U, on the other hand, appears to have essentially the same (again, marginally speed-bumped) CPU as the Ryzen 7 2700U. HP is ready with notebook and 2-in-1 products based on all three chips, although they're unlikely to launch before year-end. Perhaps CES could be a nice launchpad.

Intel 7nm EUV Node Back On Track, 2x Transistor Densities Over 10nm

There could be light at the end of the tunnel for Intel's silicon fabrication business after all, as the company reported that its 7 nanometer silicon fabrication node, which incorporates EUV (extreme ultraviolet) lithography, is on track. The company stressed in its Nasdaq Investors' Conference presentation that its 7 nm EUV process is de-linked from its 10 nm DUV (deep ultraviolet) node, and that there are separate teams working on their development. The 10 nm DUV node is qualitatively online, and is manufacturing small batches of low-power mobile "Cannon Lake" Core processors.

Cannon Lake is an optical shrink of the "Skylake" architecture to the 10 nm node. Currently there's only one SKU based on it, the Core i3-8121U. Intel utilized the electrical gains from the optical shrink to redesign the client-segment architecture's FPU to support the AVX-512 instruction-set (although not as feature-rich as the company's enterprise-segment "Skylake" derivatives). The jump from 10 nm DUV to 7 nm EUV will present a leap in transistor densities, with Intel expecting nothing short of a doubling. 10 nm DUV uses a combination of 193 nm wavelength ultraviolet lasers and multi-patterning to achieve its transistor density gains over 14 nm++. The 7 nm EUV node uses an extremely advanced 135 nm indirect laser, reducing the need for multi-patterning. The same laser coupled with multi-patterning could be Intel's ticket to 5 nm.

14nm 6th Time Over: Intel Readies 10-core "Comet Lake" Die to Preempt "Zen 2" AM4

If Intel's now-defunct "tick-tock" product development cadence held its ground, the 14 nm silicon fabrication node should have seen just two micro-architectures, "Broadwell" and "Skylake," with "Broadwell" being an incrementally improved optical shrink of 22 nm "Haswell," and "Skylake" being a newer micro-architecture built on a then more matured 14 nm node. Intel's silicon fabrication node advancement went off the rails in 2015-16, and 14 nm would go on to be the base for three more "generations," including the 7th generation "Kaby Lake," the 8th generation "Coffee Lake," and 9th generation "Coffee Lake Refresh." The latter two saw Intel increase core-counts after AMD broke its slumber. It turns out that Intel won't let the 8-core "Coffee Lake Refresh" die pull the weight of Intel's competitiveness and prestige through 2019, and is planning yet another stopgap, codenamed "Comet Lake."

Intel's next silicon fabrication node, 10 nm, takes off only toward the end of 2019, and AMD is expected to launch its 7 nm "Zen 2" architecture much sooner than that (debuts in December 2018). Intel probably fears AMD could launch client-segment "Zen 2" processors before Intel's first 10 nm client-segment products, to cash in on its competitive edge. Intel is looking to blunt that with "Comet Lake." Designed for the LGA115x mainstream-desktop platform, "Comet Lake" is a 10-core processor die built on 14 nm, and could be the foundation of the 10th generation Core processor family. It's unlikely that the underlying core design is changed from "Skylake" (circa 2016). It could retain the same cache hierarchy, with 256 KB per core L2 cache, and 20 MB shared L3 cache. All is not rosy in the AMD camp. The first AMD 7 nm processors will target the enterprise segment and not client, and CEO Lisa Su in her quarterly financial results calls has been evasive about when the first 7 nm client-segment products could come out. There was some chatter in September of a "Zen+" based 10-core socket AM4 product leading up to them.

AMD Doubles L3 Cache Per CCX with Zen 2 "Rome"

A SiSoft SANDRA results database entry for a 2P AMD "Rome" EPYC machine sheds light on the lower cache hierarchy. Each 64-core EPYC "Rome" processor is made up of eight 7 nm 8-core "Zen 2" CPU chiplets, which converge at a 14 nm I/O controller die, which handles memory and PCIe connectivity of the processor. The result mentions cache hierarchy, with 512 KB dedicated L2 cache per core, and "16 x 16 MB L3." Like CPU-Z, SANDRA has the ability to see L3 cache by arrangement. For the Ryzen 7 2700X, it reads the L3 cache as "2 x 8 MB L3," corresponding to the per-CCX L3 cache amount of 8 MB.

For each 64-core "Rome" processor, there are a total of 8 chiplets. With SANDRA detecting "16 x 16 MB L3" for 64-core "Rome," it becomes highly likely that each of the 8-core chiplets features two 16 MB L3 cache slices, and that its 8 cores are split into two quad-core CCX units with 16 MB L3 cache, each. This doubling in L3 cache per CCX could help the processors cushion data transfers between the chiplet and the I/O die better. This becomes particularly important since the I/O die controls memory with its monolithic 8-channel DDR4 memory controller.

Samsung AMD's Second Foundry Partner for "Polaris 30"

AMD's "Polaris 30" silicon at the heart of Radeon RX 590 graphics card is the company's first 12 nm GPU. Unlike NVIDIA, which is exclusively sourcing its "Turing" family of GPUs from TSMC, the "Polaris 30" is coming from not one, but two sources. This, according to AMD in response to a question by TechPowerUp. The two foundries manufacturing "Polaris 30" are GlobalFoundries and Samsung. AMD did not provide us with visual cues on how to tell chips made from either foundries apart (such as serial numbering schemes). Packaging of dies sourced from both foundries is done in China, and the national-origin marking for the chip is on the package, rather than printed on the die.

GlobalFoundries' 12 nanometer FinFET node, called GloFo 12LP, shares a lot of similarities with Samsung's 11LPP, because both are "nodelets" that are derived from an original 14 nm FinFET process blueprint Samsung licensed to GloFo, deployed in its facility in upstate New York, where AMD's "Zen" processors are made. GloFo's 12 nanometer process is a refinement of its 14 nm node, in which 12 nm transistors are etched onto silicon using the same lithography meant for 14 nm. It doesn't improve transistor densities, but provides dividends in power, which explains why "Polaris 30" and "Pinnacle Ridge" have the same die sizes as "Polaris 20" and "Summit Ridge," respectively. This WikiChip article provides a good explanation of how GloFo 12LP is a nodelet.

Intel Could Upstage EPYC "Rome" Launch with "Cascade Lake" Before Year-end

Intel is reportedly working tirelessly to launch its "Cascade Lake" Xeon Scalable 48-core enterprise processor before year-end, according to a launch window timeline slide leaked by datacenter hardware provider QCT. The slide suggests a late-Q4 thru Q1-2019 launch timeline for the XCC (extreme core count) version of "Cascade Lake," which packs 48 CPU cores across two dies on an MCM. This launch is part of QCT's "early shipment program," which means select enterprise customers can obtain the hardware in pre-approved quantities. In other words, this is a limited launch, but one that's probably enough to upstage AMD's 7 nm EPYC "Rome" 64-core processor launch.

It's only by late-Q1 thru Q2-2019 that the Xeon "Cascade Lake" family would be substantially launched, including lower core-count variants that are still 2-die MCMs. This aligns to preempt or match AMD's 7 nm EPYC family rollout through 2019. "Cascade Lake" is probably Intel's final enterprise microarchitecture to be built on the 14 nm++ node, and consists of 2-die multi-chip modules that feature 48 cores, and a 12-channel memory interface (6-channel per die); with 88-lane PCIe from the CPU socket. The processor is capable of multi-socket configurations. It will also be Intel's launch platform for substantially launching its Optane Persistent Memory product series.

CPU Shortages Will Continue Into the Second Quarter of 2019 According to Asustek CEO

A few weeks ago we talked about Intel problems in the production chain. The semiconductor giant was facing a shortage of 14 nm CPUs probably due to Intel allocating volumes from the same 14 nm++ node for its upcoming 9th Generation Core processors. That caused a clear rise in the prices of processors like the Core i7-8700K, which had a launch price of $359 and was hard to find for less than $400 a month ago. Prices have relaxed since then, but are still higher than their launch ones.

Intel's processor shortage could continue in the coming months, and in fact Jerry Shen, CEO of Asustek Computer, explained how the problem will continue until at least the second quarter of 2019. In his words, "the continued CPU supply crunch, escalating US-China trade disputes, and increasing competition in the notebook segment in Europe have pressed down Asustek's "operational visibility" for the fourth quarter of 2018 to the lowest level of 20% compared to an over 50% seen in previous years".

AMD Zen 2 "Rome" MCM Pictured Up Close

Here is the clearest picture of AMD "Rome," codename for the company's next-generation EPYC socket SP3r2 processor, which is a multi-chip module of 9 chiplets (up from four). While first-generation EPYC MCMs (and Ryzen Threadripper) were essentially "4P-on-a-stick," the new "Rome" MCM takes the concept further, by introducing a new centralized uncore component called the I/O die. Up to eight 7 nm "Zen 2" CPU dies surround this large 14 nm die, and connect to it via substrate, using InfinityFabric, without needing a silicon interposer. Each CPU chiplet features 8 cores, and hence we have 64 cores in total.

The CPU dies themselves are significantly smaller than current-generation "Zeppelin" dies, although looking at their size, we're not sure if they're packing disabled integrated memory controllers or PCIe roots anymore. While the transition to 7 nm can be expected to significantly reduce die size, groups of two dies appear to be making up the die-area of a single "Zeppelin." It's possible that the CPU chiplets in "Rome" physically lack an integrated northbridge and southbridge, and only feature a broad InfinityFabric interface. The I/O die handles memory, PCIe, and southbridge functions, featuring an 8-channel DDR4 memory interface that's as monolithic as Intel's implementations, a PCI-Express gen 4.0 root-complex, and other I/O.

AMD Unveils "Zen 2" CPU Architecture and 7 nm Vega Radeon Instinct MI60 at New Horizon

AMD today held its "New Horizon" event for investors, offering guidance and "color" on what the company's near-future could look like. At the event, the company formally launched its Radeon Instinct MI60 GPU-based compute accelerator; and disclosed a few interesting tidbits on its next-generation "Zen 2" mircroarchitecture. The Instinct MI60 is the world's first GPU built on the 7 nanometer silicon fabrication process, and among the first commercially available products built on 7 nm. "Rome" is on track to becoming the first 7 nm processor, and is based on the Zen 2 architecture.

The Radeon Instinct MI60 is based on a 7 nm rendition of the "Vega" architecture. It is not an optical shrink of "Vega 10," and could have more number-crunching machinery, and an HBM2 memory interface that's twice as wide that can hold double the memory. It also features on-die logic that gives it hardware virtualization, which could be a boon for cloud-computing providers.

Intel to Outsource Entry-level CPU and Chipset Fabrication to TSMC

Intel is facing a manufacturing crisis, in which demand has far outstripped supply, and the company is firing up all its silicon fabrication facilities to manufacture 14 nm products, mainly processors under the Core and Xeon brands. We've been hearing reports since early-September of Intel seeking out third-party foundries such as TSMC to manufacture its chipsets. We now get confirmation that TSMC will also manufacture entry-level Intel processors under brands such as Atom, Celeron, and Pentium Silver SoCs, leaving the company's socketed processors to Intel's fabs. DigiTimes does not name the third-party foundry as TSMC, but mentions that the only company that meets Intel's requirements at the moment is TSMC.

Intel At Least 5 Years Behind TSMC and May Never Catch Up: Analyst

Intel's in-house sub-10 nanometer silicon fabrication dreams seem more distant by the day. Raymond James analyst Chris Caso, in an interview with CNBC stated that Intel's 10 nm process development could set the company back by at least 5 years behind TSMC. In its most recent financial results call, Intel revised its 10 nm outlook to reflect that the first 10 nm processors could only come out by the end of 2019. "Intel's biggest strategic problem is their delay on 10nm production - we don't expect a 10nm server chip from Intel for two years," analyst Chris Caso said in a note to clients Tuesday. "10nm delays create a window for competitors, and the window may never again close."

By that time, Intel will have missed several competitive milestones behind TSMC, which is in final stages of quantitatively rolling out its 7 nm process. Caso predicts that by the time Intel goes sub-10 nm (7 nm or something in that nanoscopic ballpark), TSMC and Samsung could each be readying their 5 nm or 3 nm process roll-outs. A Rosenblatt Securities report that came out late-August was even more gloomy about the situation at Intel foundry. It predicted that foundry delays could set the company back "5, 6, or even 7" years behind rivals. Intel is already beginning offload some of its 14 nm manufacturing to TSMC. Meanwhile, AMD is reportedly planning to entirely rely on TSMC to make its future generations of "Zen" processors.

AMD "Navi" GPU Architecture Successor Codenamed "Arcturus"?

Arcturus is the fourth brightest star in the night sky, and could be the a new GPU architecture by AMD succeeding "Navi," according to a Phoronix report. The codename of Navi-successor has long eluded AMD's roadmap slides. The name "Arcturis" surfaced on Phoronix community forums, from a post by an AMD Linux liaison who is a member there. The codename is also supported by the fact that AMD is naming its GPU architectures after the brightest stars in the sky (albeit in a descending order of their brightness). Polaris is the brightest, followed by Vega, Navi, and Arcturus.

AMD last referenced the Navi-successor on a roadmap slide during its 2017 Financial Analyst Day presentation by Mark Papermaster. That slide mentioned "Vega" to be built on two silicon fabrication processes, 14 nm and "14 nm+." We know now that AMD intends to build a better-endowed "Vega" chip on 7 nm, which could be the world's first 7 nm GPU. "Navi" is slated to be built on 7 nm as the process becomes more prevalent in the industry. The same slide mentions Navi-successor as being built on "7 nm+," which going by convention, could refer to an even more advanced process than 7 nm. Unfortunately, even in 2017, when the industry was a touch more optimistic about 7 nm, AMD expected the Navi-successor to only come out by 2020. We're not holding our breath.

TSMC to Build Intel 14nm Processors and Chipsets

Try to wrap your head around Intel contracting TSMC to build some of its processors! With its own 14 nanometer silicon fabrication nodes under stress from manufacturing several generations of Core and Xeon processors simultaneously, leading to market shortages, Intel is looking to contract TSMC to manufacture some of its 14 nm products. Among these are certain models of its desktop processors, and several 300-series chipsets, including the H310, which are currently fabbed on Intel's last 22 nm node, that's probably being converted to 14 nm.

The TSMC contract appears to be moving faster than expected, with the Taiwanese fab eager to demonstrate its competence to Intel and secure future orders as the company is closer than ever in going fully or partly fabless. According to industry observers, Intel is staring at a 1:2 supply-demand ratio, for the countless chip it's building on 14 nm; which may have forced it to contract some of these chip designs to TSMC. Motherboard vendors expect Intel to sort out its supply issues by the end of 2018, with big help from TSMC.

Intel 14nm Processors Face Shortages

Intel's 8th generation Core desktop processors based on the company's 14 nm node are facing shortages in the market, according to a Tom's Hardware report. Tracking prices and availability of popular 8th generation Core SKUs such as the i5-8400, i5-8600K, and i7-8700K, the report notes that retailers are heavily marking up these SKUs above their SEP, and many of whom are running out of stock often. This may not be attributed to heavy demand.

A possible explanation for these shortages could be Intel allocating volumes from the same 14 nm++ node for its upcoming 9th generation Core processors, which debut with three SKUs - i5-9600K, i7-9700K, and i9-9900K. Intel probably wants to launch the three chips not just at competitive prices, but also good enough volumes to win the 2018 Holiday season, and repair its competitiveness damaged by AMD 2nd generation Ryzen over the past couple of quarters.

AMD Athlon Pro 200GE Detailed: An Extremely Cut-down "Raven Ridge" at $55

AMD is giving finishing touches to its Athlon Pro 200GE socket AM4 SoC, which it could position against Intel's $50-ish Celeron LGA1151 SKUs. Leaked slides by PCEva reveals that it's a heavily cut-down 14 nm "Raven Ridge" die. For starters, unlike previous-generation Athlon-branded products on platforms such as FM2, the Athlon 200GE won't lack integrated graphics. Only 3 out of 11 Vega NGCUs will be enabled, translating to 192 stream processors, which should be enough for desktop, 2D, and video acceleration, but not serious gaming, even at low resolutions.

The CPU config is 2-core/4-thread, with 512 KB L2 cache per core, and 4 MB shared L3 cache. The CPU is clocked at 3.20 GHz, with no Precision Boost features. You still get GuardMI commercial-grade hardware security features. There is a big catch with one of its uncore components. The PCIe root-complex only supports PCI-Express 3.0 x4 out of your motherboard's topmost x16 slot, not even x8. Ryzen "Raven Ridge" APUs already offer a crippled x8 connectivity through this slot. AMD claims that the Athlon 200GE will be "up to 19 percent faster" than Intel Pentium G4560 at productivity work. When it launches on 6th September with market availability from 18th September, the Athlon Pro 200GE will be priced at USD $55.

Intel "Whiskey Lake-U" Core Processor Lineup Detailed

Intel is giving final touches to its 9th generation Core "Whiskey Lake-U" processors for Ultrabooks and other ULV platforms. Successors to 8th Gen "Kaby Lake Refresh" chips, these 15-Watt SoCs may not pack a newer microarchitecture in terms of IPC increases, but Intel is building them on the latest iteration of its 14 nm node, along with tweaks made to their Turbo Boost algorithm, which combined with higher boost clocks, should offer better performance than the previous generation.

The lineup begins with the Core i3-8145U, successor to the i3-8130U. This 2-core/4-thread chip is has a lower nominal clock at 2.10 GHz (vs. 2.20 GHz of its predecessor), but significantly higher boost clocks of 3.90 GHz (vs. 3.40 GHz of the i3-8130U). The Core i5-8265U and top-end i7-8565U are both 4-core/8-thread chips with a nominal clocks of 1.60 GHz and 1.80 GHz, respectively. The i5-8265U has a boost clock of 4.10 GHz and 6 MB of L3 cache; while the i7-8565U tops that with 4.70 GHz boost clocks, and 8 MB of L3 cache. All three chips have 15W TDP, configurable to 25W by applying the "high performance" power scheme.

Intel "Cooper Lake" Latest 14nm Stopgap Between "Cascade Lake" and "Ice Lake"

With no end to its 10 nm transition woes in sight (at least not until late-2019), Intel is left with refinement of its existing CPU micro-architectures on the 14 nanometer node. The client-desktop segment sees the introduction of the "Whiskey Lake" (aka Coffee Lake Refresh) later this year; while the enterprise segment gets the 14 nm "Cascade Lake." To its credit, Cascade Lake introduces a few major platform innovations, such as support for Optane Persistent Memory, silicon-level hardening against recent security vulnerabilities, and Deep Learning Boost, which is hardware-accelerated neural net building/training, and the introduction of VNNI (Variable Length Neural Network Instructions). "Cascade Lake" makes its debut towards the end of 2018. It will be succeeded in 2019 by Ice Lake the new "Cooper Lake" architecture.

"Cooper Lake" is a refresh of "Cascade Lake," and a stopgap in Intel's saga of getting 10 nm right, so it could build "Ice Lake" on it. It will be built on the final (hopefully) iteration of the 14 nm node. It will share its platform with "Cascade Lake," and so Optane Persistent Memory support carriers over. What's changed is the Deep Learning Boost feature-set, which will be augmented with a few new instructions, including BFLOAT16 (a possible half-precision floating point instruction). Intel could also be presented with the opportunity to crank up clock speeds across the board.

AMD Radeon Pro WX 8200 Detailed

AMD is giving final touches to the new Radeon Pro WX 8200 professional graphics card. Launched over a year following the Radeon Pro WX 9100, the WX 8200 has a leaner feature-set, while continuing to be based on AMD's current IP. The card still uses the 14 nm "Vega 10" MCM, but with a core-config akin to that of the RX Vega 56. You get 56 NGCUs working out to 3,584 stream processors, 224 TMUs, 64 ROPs, and a 4096-bit wide HBM2 memory interface, handling 16 GB of memory on this card. The air-cooled card also has a leaner connectivity load-out, with just four mini-DisplayPort 1.4 connectors (the WX 9100 comes with six). Its 8-pin + 6-pin connectors are positioned at the rear-end to be SSI workstation-friendly. The card surfaced on CompuBench database, in which its performance numbers are only slightly behind those of the WX 9100, but significantly better than the "Polaris 20" based WX 7100. AMD is expected to launch this card at SIGGRAPH 2018.

Intel to Paper-launch 9th Gen Core on August 14, Availability in Q4-2018

Intel's client desktop processor lineup is under tremendous pressure owing to competition from AMD, with the company having to roll out entire processor generations over mere 2-3 quarters. You'll recount that Intel was merrily trotting around with its barely-innovative 7th Gen "Kaby Lake" family in early 2017, when AMD stunned the industry with an outperforming product lineup. The 7th generation barely lasted its planned product cycle, before Intel rushed in a pathetic sub-$500 Core X lineup, and the 8th generation "Coffee Lake" with 50-100% core-count increases. Even that is proving insufficient in the wake of 2nd generation AMD Ryzen "Pinnacle Ridge," and Intel is cutting short its product cycle with the 9th generation Core "Whiskey Lake" (or "Coffee Lake" Refresh) series, that further increase core-counts.

"Whiskey Lake" was originally planned for Q1-2019 alongside the 14 nm original Z390 chipset. Intel wasn't expecting AMD to rebound with Ryzen 2000 series (particularly the tangible IPC increases and improved multi-core boosting). And so, it decided to rush through with a new product generation yet again. The Z370 is being re-branded to Z390 (with an improved CPU VRM reference design), and what was originally meant to come out in Q1-2019, could come out by Q4-2018, at the very earliest by October. Intel reportedly planned availability sooner, but realized that distributors have heaps of unsold 8th generation Core inventory, and motherboard vendors aren't fully ready for the chip. Since getting a 9th gen Core chip doesn't warrant a new motherboard, customers would be inclined to pick up 9th generation chip with their existing boards, or any new 300-series board. This would kill the prospects of selling 8th generation Core CPUs.

Intel Stuck with 14nm Processors Till Holiday 2019

Wrap your head around this: at some point in 2019, AMD will be selling 7 nm processors while Intel sells 14 nm processors. That how grim Intel's 10 nanometer silicon fabrication process development is looking. In the Q&A session of its Q2-2018 Earnings Call, Intel stated that the first products based on its 10 nm process will arrive only by Holiday 2019, making 14 nm micro-architectures hold the fort for not just the rest of 2018, but also most of 2019. In the client-segment, Intel is on the verge of launching its 9th generation Core "Whiskey Lake" processor family, its 5th micro-architecture on the 14 nm node after "Broadwell," "Skylake," "Kaby Lake," and "Coffee Lake."

It's likely that "Whiskey Lake" will take Intel into 2019 after the company establishes performance leadership over 12 nm AMD "Pinnacle Ridge" with a new round of core-count increases. Intel is also squeezing out competitiveness in its HEDT segment by launching new 20-core and 22-core LGA2066 processors; and a new platform with up to 28 cores and broader memory interface. AMD, meanwhile, hopes to have the first 7 nm EPYC processors out by late-2018. Client-segment products based on its architecture, however, will follow the roll-out of these enterprise parts. We could see a point in 2019 when AMD launches its 7 nm 3rd generation Ryzen processors in the absence of competing 10 nm Core processors from Intel. Posted below is an Intel slide from 2013, when the company was expecting 10 nm rollout by 2015. That's how much its plans have derailed.

Sapphire Intros FS-FP5V SFF Motherboard Based on Ryzen Embedded

Sapphire introduced the FS-FP5V, a mini-ITX (147.3 mm x 139.7 mm) SFF motherboard designed for AIO desktops, digital signage boxes, and compact desktops. At the heart of this board is an AMD Ryzen Embedded V1000 series FP5 SoC based on the 14 nm "Raven Ridge" silicon. Since this SoC also integrates a southbridge, the board is practically chipset-less. The Ryzen Embedded V1000 chip is configured with a 4-core/8-thread "Zen" CPU clocked at 2.00 GHz with 3.35 GHz boost, and 4 MB L3 cache. The iGPU is a Radeon Vega 11, which may look overkill, but is required to pull the four DisplayPort 1.4 outputs of this board (handy for digital-signage applications).

The Ryzen Embedded V1000 is wired to two DDR4 SO-DIMM slots, supporting up to 32 GB of dual-channel DDR4-2933 memory. Storage connectivity includes an M.2-2280 slot with PCI-Express 3.0 x4 wiring, an M.2 E-key slot with x1 wiring for WLAN cards; and a SATA 6 Gbps port. Networking options include two 1 GbE interfaces. USB connectivity includes two USB 3.1 gen 1 ports at the rear-panel, and two USB 3.1 gen 1 ports (direct ports) at the front side of the board, one each of type-A and type-C. Stereo HD audio makes for the rest of it. The board draws power from either 2-pin DC (external) or 4-pin ATX.

ASMedia Readies ASM2824 PCIe Switch Anticipating a Rise in M.2 Slots

ASMedia is giving finishing touches to the ASM2824 PCI-Express gen 3.0 x24 switch. With half the fabric as the PLX PEX8747, the chip takes in PCI-Express 3.0 x8, and puts out four PCI-Express 3.0 x4 connections. In theory, this would let a motherboard designer create four M.2 PCIe 3.0 x4 slots from 8 downstream PCIe lanes of the Intel Z390 chipset, saving the remaining PCIe lanes for onboard USB 3.1 controllers (preferably sourced from ASMedia itself), since Intel canned the older 14 nm version of the Z390, which was supposed to put out six 10 Gbps USB 3.1 gen 2 and ten 5 Gbps USB 3.1 gen 1 ports directly from the PCH.

With all four downstream slots populated, ASMedia promises NVMe RAID bandwidths of up to 6,500 MB/s, with some CDM numbers even crossing 6,700 MB/s. Then again, one has to take into account that the test platform probably had the ASM2824 wired to the CPU's PCIe root-complex, and not that of the chipset. Intel is yet to modernize the lousy DMI 3.0 chipset-bus between its latest processors and chipset, and is physically PCI-Express 3.0 x4, which is fundamentally outdated for the bandwidth-heavy interfaces of this generation, such as USB 3.1, M.2 NVMe, and even the upcoming SD Express. The ASM2824 is also a godsend for the AMD AM4 platform, which not only has the same PCI-Express 3.0 x4 chipset bus between the AM4 SoC and the X470 chipset, but also a poor downstream PCIe feature-set of the X470, with just 8 gen 2.0 lanes. Motherboard designers can wire out all of those lanes to an ASM2824 for up to 24 downstream lanes.

Intel Z390 Platform, Intel Core i9 CPU Lineup Leaked?

According to a report from WCCFTech, Intel is prepping the release of the Z390 chipset and is gearing up to bring their Core i9 branding series to the mainstream desktop platforms. Apparently, Intel's renaming scheme serves as a way to add the required "branding impact" to the fact that the i9 series of processors is finally hitting the mainstream - but don't be deluded. As we've previously covered, Intel's Z390 chipset may well become a rebrand of sorts from the current Z370 chipset, after Intel found insufficient capacity at its 14 nm node (which has to cope with the vast majority of Intel silicon production, following the smattering of delays hitting its 10 nm process). Basically, Intel's Z390 chipset will bring forward features that weren't built on the Z370 chipset at its inception, but have since become part of Intel's lineup (read, for example, its H370 chipset): Intel Wireless-AC 802.11 AC and Bluetooth 5.0; Intel Wireless-AC Adapter; and up to 6 x USB 3.1 Gen 2 Ports.

According to WCCFTech, there's only confirmation of an 8-core, 16-thread CPU (Intel Core i9-9900K); a 6-core, 12-thread one (Intel Core i7-9700K) and a six-core, six-thread part (Intel Core i5-9600K ). No confirmation on an i3 part has been had yet, but it's very unlikely Intel has shelved that part of their lineup. A 4-core CPU is simply too important - from a yield perspective, mainly - for Intel to shelve it - and there's still enough demand for these, even with AMD's many-core democratization push.

Intel Shelves Z390 Express As We Knew It, Could Re-brand Z370 as Z390

Intel is rumored to have shelved the iteration of its upcoming Z390 Express chipset as earlier publicized, the one which had certain new hardware features. It could now re-brand the existing Z370 Express as Z390 Express and probably bolster its reference design with heftier CPU VRM specifications, to cope better with its upcoming 8-core LGA1151 processors. The Z370 Express is similar in feature-set to the brink of being identical to its predecessor, the Z270 Express. This move could impact certain new hardware features that were on the anvil, such as significantly more USB 3.1 gen 2/gen1 ports directly from the PCH, integrated WiFi MAC, and Intel SmartSound technology, which borrowed certain concepts from edge-computing to implement native speech-to-text conversion directly on the chipset, for improved voice control latency and reduced CPU overhead.

The reasons behind this move could be a combination of last-minute cost-benefit analyses by Intel's bean-counters, and having to mass-produce Z390 Express on the busier-than-expected 14 nm silicon fabrication node, as opposed to current 300-series chipsets being built on the 22 nm node that's nearing the end of its life-cycle. Intel probably needed the switch to 14 nm for the significant increases in transistor-counts arising from the additional USB controllers, the WiFi MAC, and the SmartSound logic. Intel probably doesn't have the vacant 14 nm node capacity needed to mass-produce the Z390 yet, as its transition to future processes such as 10 nm and 7 nm are still saddled with setbacks and delays; and redesigning the Z390 (as we knew it) on 22 nm may have emerged unfeasible (i.e. the chip may have ended up too big and/or too hot). The Z390 Express chipset block-diagram, which we published in our older article has been quietly removed from Intel's website. It's also rumored that this move could force AMD to rethink its plans to launch its Z490 socket AM4 chipset.

Intel Announces Core i7-8086K Limited Edition Six-core Processor

Intel today announced the Core i7-8086K six-core processor in the LGA1151(v2) package, compatible with 300-series chipset. This processor commemorates 40 years since the company's 8086 processor, which was the spiritual ancestor of the x86 architecture that dominates modern day computing. Based on the same 14 nm "Coffee Lake" silicon as the i7-8700K, this chip features high clock speeds of 4.00 GHz nominal, with a maximum Turbo Boost frequency of 5.00 GHz. Like the i7-8700K, it features 256 KB of dedicated L2 cache per core, and 12 MB of shared L3 cache. The processor will go on sale from 8th June, the company didn't reveal pricing, but it's rumored to be a conspicuous USD 486.
Return to Keyword Browsing