News Posts matching #14 nm

Return to Keyword Browsing

AMD Ryzen 9 5900X CPU-Z Bench Score Leaks, 27% Higher 1T Performance Over 3700X

With AMD expected to announce its 5th Generation Ryzen "Vermeer" desktop processors next week, the rumor-mill is grinding the finest spices. This time, an alleged CPU-Z Bench score of a 12-core/24-thread Ryzen 9 5900X processor surfaced. CPU-Z by CPUID has a lightweight internal benchmark that evaluates the single-threaded and multi-threaded performance of the processor, and provides reference scores from a selection of processors for comparison. The alleged 5900X sample is shown belting out a multi-threaded (nT) score of 9481.8 points, and single-threaded (1T) score of 652.8 points.

When compared to the internal reference score by CPUID for the Ryzen 7 3700X 8-core/16-thread processor, which is shown with 511 points 1T and 5433 points nT, the alleged 5900X ends up with a staggering 27% higher 1T score, and a 74% higher nT score. While the nT score is largely attributable to the 50% higher core-count, the 1T score is interesting. We predict that besides possibly higher clock-speeds for the 5900X, the "Zen 3" microarchitecture does offer a certain amount of IPC gain over "Zen 2" to account for the 27%. AMD's IPC parity with Intel is likely to tilt in its favor with "Zen 3," until Intel can whip something up with its "Cypress Cove" CPU cores on the 14 nm "Rocket Lake-S" processor.

Intel 14 nm Node Compared to TSMC's 7 nm Node Using Scanning Electron Microscope

Currently, Intel's best silicon manufacturing process available to desktop users is their 14 nm node, specifically the 14 nm+++ variant, which features several enhancements so it can achieve a higher frequencies and allow for faster gate switching. Compare that to AMD's best, a Ryzen 3000 series processor based on Zen 2 architecture, which is built on TSMC's 7 nm node, and you would think AMD is in clear advantage there. Well, it only sort of is. German hardware overclocker and hacker, der8auer, has decided to see how one production level silicon compares to another, and he put it to the test. He decided to use Intel's Core i9-10900K processor and compare it to AMD's Ryzen 9 3950X under a scanning electron microscope (SEM).

First, der8auer took both chips and detached them from their packages; then he proceeded to grind them as much as possible so SEM could do its job of imaging the chips sans the substrate and protective barrier. This was followed by securing the chips to a sample holder using an electrically conductive adhesive to improve penetration of the high energy electrons from the SEM electron gun. To get as fair a comparison as possible, he used the L2 cache component of both processors as they are usually the best representatives of a node. This happens because the logic portion of the chip differs according to architecture; hence, level two cache is used to get a fair comparison - it's design is much more standardized.

Eurocom Unveils Sky Z7 Mobile Workstation Powered by i9-10900K and RTX 2080 SUPER

In September 2020, Eurocom will launch its newest Mobile Supercomputer, the Sky Z7 Laptop. Users are able to configure up to the highly-anticipated and incredibly powerful, user-upgradeable, NVIDIA RTX 2080 Super (Non-Max Q) desktop graphics card. The laptop will be available with a choice of 10th Generation Intel CPUs up to the i9-10900K on-board CPU. Users are able to configure and re-configure the Sky Z7 with up to 128 GB of high-speed DDR4 memory and up to a whopping 13 TB of SSD storage via user-upgradeable, easy-to-access internal components. The Eurocom Sky Z7 is a Mobile Supercomputer with easy-to-access internal hardware and battery, showcasing Eurocom's commitment to provide power users on-the-go, heavy-duty laptops that are upgradeable, and reconfigurable with the most impressive hardware today and beyond.

The Eurocom Sky Z7 Mobile Supercomputer utilizes the Z490 Chipset and LGA 1200 socket technology configurable with the most powerful desktop GPUs available today, up to the supercharged NVIDIA RTX 2080 Super (Non-Max Q) desktop GPU, which boasts a whopping 3072 CUDA cores with 8 GB GDDR6 video memory and up to 1815 MHz boost clock. The RTX 2080 Super is among the most advanced and sought after desktop GPUs available today due to its unmatched performance when running AAA games and other GPU-intensive applications.

Chinese Fabs Attracted Over 100 TSMC Veteran Engineers Since 2019: Report

A Nikkei investigative report uncovered that two Chinese semiconductor fabrication firms, namely Quanxin Integrated Circuit Manufacturing (QXIC), and Hongxin Semiconductor Manufacturing Co (HSMC), have poached over 100 veteran semiconductor engineers from TSMC since last year. Both firms are recipients of government funding under China's ambitious plan of complete electronics hardware industry independence by 2025. Both firms were floated as recently as 2017, and began hiring specialist engineers and executives with connections across the semiconductor industry, from TSMC. The two began development of a 14 nm-class FinFET node that would support manufacturing of a wide variety of electronics components, including SoCs, ASICs, transceivers, and storage products.

Nikkei estimates that in a span of a year, Taiwan lost more than 3,000 semiconductor engineers to various start-ups in the mainland, including large semiconductor fabs. Sources in TSMC tell the Japanese publication that the company is "very concerned" about the flight of talent toward China, although it didn't believe that there is any immediate danger to the company's output or technological edge. The source advocated a national-level strategy by various Asian governments to retain talent, not through coercion, but by offering better incentives and pay than the Chinese firms flush with public investment.

Intel 8-core "Tiger Lake-H" Coming in 2021: Leaked Compal Document

Intel is preparing to launch an 8-core mobile processor based on its 10 nm "Tiger Lake" microarchitecture, according to a corporate memo by leading notebook OEM Compal, which serves major notebook brands such as Acer. The memo was drafted in May, but unearthed by momomo_us. Compal expects Intel to launch the 8-core "Tiger Lake-H" processor in Q1 2021. This is big, as it would be the first large 10 nm client-segment silicon that goes beyond 4 cores. The company's first 10 nm client silicon, "Ice Lake," as well as the "Tiger Lake-U" silicon that's right around the corner, feature up to 4 cores. As an H-segment part, the new 8-core processor could target TDPs in the range of 35-45 W, and notebooks in the "conventional thickness" form-factor, as well as premium gaming notebooks and mobile workstations.

The 8-core "Tiger Lake-H" silicon is the first real sign of Intel's 10 nm yields improving. Up until now, Intel confined 10 nm to the U- and Y-segments (15 W and below), addressing only ultra-portable form-factors. Even here, Intel launched U-segment 14 nm "Comet Lake" parts at competitive prices, to take the market demand off "Ice Lake-U." The H-segment has been exclusively held by "Comet Lake-H." Intel is planning to launch "Ice Lake-SP" Xeon processors later this year, but like all server parts, these are high-margin + low-volume parts. Compal says Intel will refresh the H-segment with a newer 8-core "Comet Lake-H" part in the second half of 2020, possibly to bolster the high-end against the likes of AMD's Ryzen 9 4900H. Later in 2021, Intel is expected to introduce its 10 nm "Alder Lake" processor, including a mobile variant. These processors will feature Hybrid technology, combining "Golden Cove" big CPU cores with "Gracemont" small ones.

Intel to Clock "Rocket Lake-S" High, Evidence of an ES with 5.00 GHz Boost

Intel's 11th Generation Core "Rocket Lake-S" desktop processors in the LGA1200 package could come with clock speeds that are of the norm these days. Intel appears unwilling to dial down clock speeds in the wake of increased IPC with the new generation "Cypress Cove" CPU cores that drive these processors. Twitter handle "leakbench," which tracks interesting Geekbench results, fished out a database listing for a "Rocket Lake-S" engineering sample with clock speeds of 3.40 GHz base, and 5.00 GHz boost.

The listing has all the telltale signs of "Cypress Cove," such as 48 KB L1D cache, 512 KB per core L2 cache, and 16 MB shared L3 cache for this 8-core/16-thread chip. "Cypress Cove" is rumored to be to be a back-port of Intel's "Willow Cove" CPU core design from its original 10 nm+ node to the 14 nm++. VideoCardz compared this "Rocket Lake-S" ES benchmark result to that of a retail Core i7-10700K, and found its single-threaded performance to be roughly 6.35 percent higher despite a 200 MHz clock-speed deficit, although for some reason, its multi-threaded performance is trailing by over 15 percent.

Intel Rocket Lake CPUs Will Bring up to 10% IPC Improvement and 5 GHz Clocks

Intel is struggling with its node development and it looks like next-generation consumer systems are going to be stuck on 14 nm for a bit more. Preparing for that, Intel will finally break free from Skylake-based architectures and launch something new. The replacement for the current Comet Lake generation is set to be called Rocket Lake and today we have obtained some more information about it. Thanks to popular hardware leaker rogame (_rogame), we know a few stuff about Rocket Lake. Starting off, it is known that Rocket Lake features the backport of 10 nm Willow Cove core, called Cypress Cove. That Cypress Cove is supposed to bring only 10% IPC improvements, according to the latest rumors.

With 10% IPC improvement the company will at least offer some more competitive product than it currently does, however, that should be much slower than 10 nm Tiger Lake processors which feature the original Willow Cove design. It shows that backporting of the design doesn't just bring loses of the node benefits like smaller design and less heat, but rather means that only a fraction of the performance can be extracted. Another point that rogame made is that Rocket Lake will run up to 5 GHz in boost, and it will run hot, which is expected.

Intel 7nm CPUs Delayed by a Year, Alder Lake in 2H-2021, Other Commentary from Intel Management

Intel's silicon fabrication woes refuse to torment the company's product roadmaps, with the company disclosing in its Q2-2020 financial results release that the company's first CPUs built on the 7 nanometer silicon fabrication node are delayed by a year due to a further 6-month delay from prior expectations. The company will focus on getting its 10 nm node up to scale in the meantime.

The company mentioned that the 10 nm "Tiger Lake" mobile processor and "Ice Lake-SP" enterprise processor remains on-track for 2020. The company's 12th Generation Core "Alder Lake-S" desktop processors won't arrive before the second half of 2021. In the meantime, Intel will launch its 11th Gen Core "Rocket Lake" processor on the 14 nm node, but with increased IPC from the new "Cypress Cove" CPU cores. Also in 2H-2021, the company will launch its "Sapphire Rapids" enterprise processors that come with next-gen connectivity and updated CPU cores.
Intel 7 nanometer delay

MSI References 11th Gen "Rocket Lake" in its H410-based Prebuilt Manual

In a clear sign of Intel's 11th Gen Core "Rocket Lake-S" desktop processors being prepared to support the company's 400-series chipsets, including the entry-level H410, the Russian language manual of the company's Infinite 915 pre-built compact gaming desktop that uses an Intel H410 chipset motherboard. The manual references support for the 65 W TDP versions of "CML-S" (10th Gen "Comet Lake-S") and "RKL-S" (11th Gen "Rocket Lake-S") processors in the manual. Besides increased IPC (single-threaded performance) riding on the new "Cypress Cove" CPU cores that are a backport of "Willow Cove" to the 14 nm process, "Rocket Lake-S" features an updated Gen12 Xe iGPU.

Intel Core i9-10850K Coming to Retail Channel After All, New Celeron Parts Listed

Intel's upcoming Core i9-10850K desktop processor, which was earlier believed to be an OEM-exclusive, is coming to the DIY retail channel after all. The 10-core Socket LGA1200 processor surfaced on retailers Cyclotron and LambdaTek as pre-orders, priced at 472€ and £459, including taxes, which aligns with its rumored USD $449 pre-tax price Stateside. At these prices, the i9-10850K is closer in price to the locked i9-10900 than to the top i9-10900K part.

Based on the 14 nm "Comet Lake-S" silicon, the Core i9-10850K is a 10-core/20-thread processor clocked up to 5.20 GHz, with 20 MB of L3 cache. Where it differs from the i9-109xx series is the lack of the Thermal Velocity Boost (TVB) feature. You still get an unlocked multiplier. The i9-10850K is hence provides a roughly $50 saving over the i9-10900K to give up the 100 MHz higher clock speed enabled by TVB. In the retail channel, the chip goes by the SKU "BX8070110850K."

Intel has "Something Big to Share" on September 2nd

Intel just sent out press invites to what is likely an online media event slated for September 2, 2020. The spells nothing other than a one-liner "We have something big to share..." with the September 2 date. Everyone has a theory as to what this could be, depending on who you ask. The Verge has a valid theory pointing to this being a formal launch of the 11th Gen Core "Tiger Lake" mobile processors on the basis of several notebook manufacturers slating their "Tiger Lake" based notebook launches on "Fall 2020."

We believe this could be a desktop-related unveil, possibly a performance preview or teaser of the company's 11th Gen "Rocket Lake-S" processor. Why September? Because September 2020 is going to be a busy month for AMD and NVIDIA, with both launching their next-gen consumer graphics architectures, product lines; and more interestingly, AMD rumored to launch its "Zen 3" microarchitecture in some shape or form. A Ryzen 4000 "Vermeer" product launch could trigger Intel to at least preview "Rocket Lake-S," as it's the first client-desktop microarchitecture in 5 years to introduce IPC gains on the backs of new "Cypress Cove" CPU cores that are a 14 nm back-port of "Willow Cove." It wouldn't surprise us if Intel shed more light on the performance throughput of its big new Xe graphics processors.

Intel Core i7 "Rocket Lake" Chips to be 8-core/12-thread?

It's been rumored for some time now, that the 14 nm "Rocket Lake-S" silicon has no more than 8 CPU cores, giving Intel's product managers some segmentation headaches between the Core i7 and Core i9 brand extensions. The current 10th Gen Core i9 chips are 10-core/20-thread, and Core i7 8-core/16-thread. The 10th Gen Core i5 chips are 6-core/12-thread, and this won't change with the 11th Gen "Rocket Lake." What will change, however, are the core-counts of the Core i7 and Core i9 processors, according to a leaked roadmap slide scored by VideoCardz.

With no more than 8 "Cypress Cove" cores on the "Rocket Lake-S" silicon, the 11th Gen Core i9 will be 8-core/16-thread. The 11th Gen Core i7, however, will be 8-core/12-thread. We don't know how this would work out, but Intel dropped hints toward it with the current 10th Gen Core "Comet Lake," whereby end-users have the ability to toggle HyperThreading (HTT) on a per-core basis. Older generations of Intel processors only allowed a global toggle of HTT. This would mean 4 out of 8 cores on the Core i7 "Rocket Lake-S" will have HTT permanently disabled. We predict that two of these will likely be the processor's favored cores, capable of sustaining the highest boost clocks under the Turbo Boost Max 3.0 algorithm, to which the OS thread scheduler will send the maximum traffic. The roadmap slide also suggests that Intel could standardize the vPro feature-set to its unlocked "K" processors with the 11th Gen.

Bad Intel Quality Assurance Responsible for Apple-Intel Split?

Apple's decision to switch from Intel processors for its Mac computers to its own, based on the Arm architecture, has shaken up the tech world, even though rumors of the transition have been doing rounds for months. Intel's first official response, coupled with facts such as Intel's CPU technology execution being thrown completely off gear due to foundry problems; pointed toward the likelihood of Intel not being able to keep up with Apple's growing performance/Watt demands. It turns out now, that Intel's reasons are a lot more basic, and date back to 2016.

According to a sensational PC Gamer report citing former Intel principal engineer François Piednoël, Apple's dissatisfaction with Intel dates back to some of its first 14 nm chips, based on the "Skylake" microarchitecture. "The quality assurance of Skylake was more than a problem," says Piednoël. It was abnormally bad. We were getting way too much citing for little things inside Skylake. Basically our buddies at Apple became the number one filer of problems in the architecture. And that went really, really bad. When your customer starts finding almost as much bugs as you found yourself, you're not leading into the right place," he adds.

Samsung Provides One-Stop Foundry Design Environment with the Launch of SAFE Cloud Design Platform

Samsung Electronics Co., Ltd., a world leader in advanced semiconductor technology, today announced the launch of 'Samsung Advanced Foundry Ecosystem (SAFE ) Cloud Design Platform (CDP)' for fabless customers, in collaboration with Rescale, a leader in high performance computing (HPC) applications in the cloud. The key highlight feature of Samsung foundry's first SAFE Cloud Design Platform is that it provides a virtual environment to design chips in the cloud. By accessing this platform through the cloud, customers can immediately start designing at anytime and anywhere.

To maximize customers' design convenience, SAFE CDP supports a very secure design condition that has verified with cloud companies. In addition, customers can utilize various Electronic Design Automation (EDA) tools offered by multiple vendors such as Ansys, Cadence, Mentor, a Siemens business and Synopsys. Gaonchips, one of Samsung Foundry's Design Solution Partners, has already tested the SAFE CDP on its 14 nm automotive project using Cadence's Innovus Implementation System and has successfully reduced its design run-time by 30 percent compared to current on-premise execution.

Intel Showcases Intelligent Edge and Energy-efficient Performance Research

This week at the 2020 Symposia on VLSI Technology and Circuits, Intel will present a body of research and technical perspectives on the computing transformation driven by data that is increasingly distributed across the core, edge and endpoints. Chief Technology Officer Mike Mayberry will deliver a plenary keynote, "The Future of Compute: How Data Transformation is Reshaping VLSI," that highlights the importance of transitioning computing from a hardware/program-centric approach to a data/information-centric approach.

"The sheer volume of data flowing across distributed edge, network and cloud infrastructure demands energy-efficient, powerful processing to happen close to where the data is generated, but is often limited by bandwidth, memory and power resources. The research Intel Labs is showcasing at the VLSI Symposia highlights several novel approaches to more efficient computation that show promise for a range of applications - from robotics and augmented reality to machine vision and video analytics. This body of research is focused on addressing barriers to the movement and computation of data, which represent the biggest data challenges of the future," said Vivek K. De, Intel fellow and director of Circuit Technology Research, Intel Labs.

Intel "Willow Cove" Backported to 14nm is "Cypress Cove"?

Intel's 11th generation Core "Rocket Lake-S" desktop processor is fascinating as it introduces Intel's first CPU core IPC uptick in about half a decade. Until now, it was rumored that "Rocket Lake-S" features a back-port of Intel's "Willow Cove" CPU cores to the 14 nm silicon fabrication process. It turns out that Intel doesn't want to call these cores "Willow Cove," which make their debut with the 10 nm+ "Tiger Lake" mobile processors later this Summer. Enter "Cypress Cove." A Moore's Law is Dead video presentation sheds light on this mysterious new codename.

Apparently, "Cypress Cove" is the codename Intel is using to refer to the CPU cores Intel is building with its latest CPU core IP on older 14 nm process. Owing to the process, the IPC of these cores may be different from the "Willow Cove" cores on "Tiger Lake," and to avoid confusion, Intel possibly choosing to give it a different internal codename. In other words, Moore's Law is Dead believes that "Cypress Cove" may not offer the alleged 25% IPC gains over "Skylake" that you could expect instead from "Willow Cove" cores in "Tiger Lake."

Intel "Rocket Lake-S" a Multi-Chip Module of 14nm Core and 10nm Uncore Dies?

VLSI engineer and industry analyst, @chiakokhua, who goes by "Retired Engineer" on Twitter, was among the very first voices that spoke about 3rd gen Ryzen socket AM4 processors being multi-chip modules of core- and uncore dies built on different silicon fabrication processes, which was an unbelievable theory at the time. He now has a fantastic theory of what "Rocket Lake-S" could look like, dating back to November 2019, which is now re-surfacing on tech communities. Apparently, Intel is designing these socket LGA1200 processors to be multi-chip modules, similar to "Matisse" in some ways, but different in others.

Apparently, "Rocket Lake-S" is a multi-chip module of a 14 nm die that holds the CPU cores; and 10 nm die that holds the uncore components. AMD "Matisse" and "Vermeer" too have such a division of labor, but the CPU cores are located on dies with a more advanced silicon fabrication process (7 nm), than the die with the uncore components (12 nm).

Intel 8-core/16-thread "Rocket Lake-S" Processor Engineering Sample 3DMarked

The "Rocket Lake-S" microarchitecture by Intel sees the company back-port its next-generation "Willow Cove" CPU core to the existing 14 nm++ silicon fabrication process in the form of an 8-core die with a Gen12 Xe iGPU. An engineering sample of one such processor made it to the Futuremark database. Clocked at 3.20 GHz with 4.30 GHz boost frequency, the "Rocket Lake-S" ES was put through 3DMark "Fire Strike" and "Time Spy," with its iGPU in play, instead of a discrete graphics card.

In "Fire Strike," the "Rocket Lake-S" ES scores 18898 points in the physics test, 1895 points in the graphics tests, and an overall score of 1746 points. With "Time Spy," the overall score is 605, with a CPU score of 4963 points, and graphics score of 524. The 11th generation Core "Rocket Lake-S" processor is expected to be compatible with existing Intel 400-series chipset motherboards, and feature a PCI-Express gen 4.0 root complex. Several 400-series chipset motherboards have PCIe gen 4.0 preparation for exactly this. The increased IPC from the "Willow Cove" cores is expected to make the 8-core "Rocket Lake-S" a powerful option for gaming and productivity tasks that don't scale across too many cores.

Intel Discontinues 8th Gen Core "Coffee Lake" Desktop Processor Family

Intel today issued a product change notice announcing the discontinuation of its 8th generation Core desktop processor family, and models of Pentium Gold and Celeron processors based on the 14 nm "Coffee Lake" silicon. The PCN covers every 8th gen SKU in the retail- and OEM channels. The company set key dates for the discontinuation. The lineup is discontinued as of June 1, 2020. Suppliers and OEM customers can last order their products on December 18, 2020. The last product shipment is slated for June 4, 2021. It's likely that the 9th generation Core desktop processor family will be follow next year. The 8th generation Core "Coffee Lake" saw the first increase in core counts for Intel's mainstream desktop processor family in close to a decade.

Qualcomm FastConnect 6900/6700 Bring 6 GHz Wi-Fi 6E & Bluetooth 5.2 To New Mobile Devices

Qualcomm Technologies Inc, launches a flagship portfolio of mobile connectivity systems that represent the most advanced Wi-Fi 6E offerings of their kind. Building upon our leading Wi-Fi 6 and Bluetooth audio technology features, the Qualcomm FastConnect 6900 and Qualcomm FastConnect 6700 mobile connectivity systems feature the fastest available Wi-Fi speeds in the industry (up to 3.6 Gbps) on a mobile Wi-Fi offering, VR-class low latency and Bluetooth advancements delivering immersive audio experiences for classic and emerging LE Audio use cases.

"With the introduction of the FastConnect 6900 and 6700 solutions, Qualcomm Technologies is redefining the mobile experience by extending the power of Wi-Fi 6 into the 6 GHz band and advancing wireless audio with cutting-edge integrated Bluetooth 5.2 features," said Dino Bekis, vice president and general manager, mobile and compute connectivity, Qualcomm Technologies, Inc. "These innovations enable us to further break away from the pack and deliver a connectivity portfolio optimized to accelerate global adoption across multiple smartphone tiers."

Intel Rocket Lake CPU Appears with 6 Cores and 12 Threads

We have been hearing a lot about Intel's Rocket Lake lineup of processors. They are supposed to be a backport of Willow Cove 10 nm core, adapted to work on a 14 nm process for better yielding. Meant to launch sometime around late 2020 or the beginning of 2021, Rocket Lake is designed to work on the now existing LGA1200 socket motherboards, which were launched just a few days ago along with Intel Comet Lake CPUs. Rocket Lake is there to supply the desktop segment and satisfy user demand, in light of lacking 10 nm offers for desktop users. The 10 nm node is going to present only on mobile/laptop and server solutions before it comes to the desktop.

In the latest report on 3D Mark, the hardware leaker TUM APISAK has found a Rocket Lake CPU running the benchmark and we get to see first specifications of the Rocket Lake-S platform. The benchmark ran on 6 core model with 12 threads, that had a base clock of 3,5 GHz. The CPU managed to boost up to 4,09 GHz, however, we are sure that these are not final clocks and the actual product should have even higher frequencies. Paired with Gen12 Xe graphics, the Rocket Lake platform could offer a very nice alternative to AMD offerings if the backport of Willow Cove goes well. Even though it is still using a 14 nm node, performance would be good. The only things that would be sacrificed (from backporting) are die space and efficiency/heat.
Intel Rocket Lake Benchmark Report

SMIC Begins Mass-Production of 14nm FinFET SoCs for Huawei HiSilicon

Semiconductor Manufacturing International Corporation (SMIC), the state-backed Mainland Chinese semiconductor foundry, announced that it commenced mass-production of 14 nm FinFET SoCs for Huawei's HiSilicon subsidiary, a mere one month since Huawei shifting chip orders from TSMC to it. The company is manufacturing Kirin 710A is a revision of the original Kirin 710 SoC from 2018, built on SMIC's 14 nm node. The 4G-era SoC is capable of powering mid-range smartphones for Huawei's Honor brand, and uses an Arm big.LITTLE setup of Cortex A53 and Cortex A57 cores. This represents a major milestone not just for SMIC, but also Huawei, which has seen the company's isolation from cutting-edge overseas fabs such as TSMC. Much of Huawei's fate is riding on the success of SMIC's next-generation N+1 node, which purportedly offers a 57 percent energy-efficiency gain over 14 nm FinFET, rivaling sub-10 nm nodes such as 7 nm; enabling Huawei to build 5G-era SoCs.

Gigabyte Says Intel Z490 Chipset Motherboards Will Support 11th Gen "Rocket Lake-S"

Maybe it's hard to fathom an Intel chipset that actually supports more than a single generation of CPU designs; and if so, you're forgiven, because it seems the blue giant has mostly forgotten of thinking about platform longevity and upgradeability. However, we might be in for a rare treat, if the words from a Gigabyte representative are to be taken seriously. In a Q&A regarding Gigabyte's latest generation Z490 motherboards, a user questioned the Gigabyte representatives whether their Z490-based platforms would support upcoming Rocket Lake designs. The answer, which came with a caveat of "I don't know if this should be made public", was that yes: Z490 will support Rocket Lake-S.

If true, this may shed some light on why motherboard manufacturers have given so much importance to PCIe 4.0 marketing on their Z490 motherboards... Whose chipset doesn't support PCIe 4.0 from the get-go. However, with next-generation Rocket Lake-S expectedly sporting the same 14 nm fabrication process albeit with a new microarchitecture, a wider DMI 3.0 8x band, Intel's high-performance Xe graphics architecture design and PCIe 4.0 support on a platform level, it does begin to make sense that manufacturers would mention PCIe 4.0 support on the current Z490. Because if CPU compatibility is maintained, that means that users looking to drop-in a Rocket Lake-S CPU will at the very least be able to enjoy 20 lanes of PCIe 4.0 in these ready-made motherboards.

Intel 10th Generation Comet Lake Desktop Processors and 400-Series Chipsets Announced, Here's what's New

Intel today launched its 10th generation Core desktop processor family and its companion Intel 400-series chipsets. Based on the 14 nm++ silicon fabrication process and built in the new LGA1200 package, the processors are based on the "Comet Lake" microarchitecture. The core design of "Comet Lake" and its IPC are identical to those of "Skylake," however Intel brought significant enhancements to the processor's clock-speed boosting algorithm, increased core- or thread counts across the board, and introduced new features that could interest enthusiasts and overclockers. The uncore component remains largely unchanged from the previous-generation, with support for DDR4 memory and PCI-Express gen 3.0. Use of these processors requires a new socket LGA1200 motherboard, they won't work on older LGA1151 motherboards. You can install any LGA115x-compatible cooler on LGA1200, provided it meets the thermal requirements of the processor you're using.

At the heart of the 10th generation Core processor family is a new 10-core monolithic processor die, which retains the same basic structure as the previous-generation 8-core "Coffee Lake Refresh" die, and 4-core "Skylake." The cores are arranged in two rows, sandwiched by the processor's uncore and iGPU blocks. A ring-bus interconnect binds the various components. The cache hierarchy is unchanged from previous generations as well, with 32 KB each of L1I and L1D caches; 256 KB of dedicated L2 cache per core, and 20 MB of shared L3 cache. The iGPU is the same Gen 9.5 based UHD 630 graphics. As we mentioned earlier, much of Intel's innovation for the 10th generation is with the processor's microcode (boosting algorithms).
Intel Core i9-10900K 10th Gen Intel Core Desktop Comet Lake Lineup 10th Gen Intel Core Desktop Comet Lake Lineup 10th Gen Intel Core Desktop Comet Lake Lineup

AMD Updates Ryzen 3 1200 CPU with Zen+ Architecture

AMD has reportedly updated its Ryzen 3 1200 CPU with Zen+ architecture and is now offering it to consumers. Featuring a configuration of 4 cores with 4 threads, this CPU can operate anywhere from 3.1 GHz (base) to 3.4 GHz in boost frequency. Having originally launched in July of 2017, just under three years ago, AMD decided to refresh this CPU with Zen+ architecture, which brought improvements like a tiny IPC increase, better turbo boost speeds, faster caches and better memory controller for better support of faster DDR4 modules.

The new "Zen+" revision has the same specifications as the older model, however, the only difference is the newer 12 nm manufacturing process and some of the architecture changes of Zen+. The rest of the specifications like clock speeds are the same. The CPU is listed by a German supplier for €54.73 or about $60. This revision carries a different part number, under the code "YD1200BBM4KAFBOX", where the older 14 nm model was "YD1200BBM4KAEBOX".
AMD Ryzen 3 1200 12nm Zen+ Edition
Return to Keyword Browsing