News Posts matching #N7

Return to Keyword Browsing

NZXT N7 Z490 Motherboard Renders Revealed

Here are some of the first pictures of the N7 Z490 motherboards by NZXT. Historically, NZXT is known to source its motherboard through OEMs such as ECS, but with great design and quality oversight, which could be the case with the Z490-based N7 board, too. Built in the ATX form-factor, the N7 Z490 draws power from a combination of 24-pin ATX, and 8+4 pin EPS power connectors, conditioning it for the CPU with a 12-phase VRM. The board is characterized by a front shroud that covers most of the business side of the PCB, and comes either in matte black or white, blending into the design scheme NZXT uses for its cases.

Expansion slots on the N7 Z490 appear to include one PCI-Express 3.0 x16, one x16 (electrical x4), and three x1 slots. Storage options include two M.2-2280 slots, each with PCI-Express 3.0 x4 wiring; and four SATA 6 Gbps ports. USB connectivity includes two 10 Gbps USB 3.1 gen 2 ports (from which one is type-C), and four 5 Gbps USB 3.1 gen 1 ports. An HDMI port provides the sole display output. Networking options include 802.11ax + Bluetooth 5 provided by an Intel AX201 WLAN card; and 2.5 GbE wired networking from a Realtek RTL8125BG controller. The onboard audio solution uses premium Realtek ALC1220 HD audio codec. There's no information on pricing or availability.

TSMC Planning a 4nm Node that goes Live in 2023

TSMC is reportedly planning a stopgap between its 5 nm-class silicon fabrication nodes, and the 3 nm-class, called N4. According to the foundry's CEO, Liu Deyin, speaking at a shareholders meeting, N4 will be a 4 nm node, and an enhancement of N5P, the company's most advanced 5 nm-class node. N4 is slated for mass-production of contracted products in 2023, and could help TSMC's customers execute their product roadmaps of the time. From the looks of it, N4 is a repeat of the N6 story: a nodelet that's an enhancement of N7+, the company's most advanced 7 nm-class node that leverages EUV lithography.

NVIDIA Underestimated AMD's Efficiency Gains from Tapping into TSMC 7nm: Report

A DigiTimes premium report, interpreted by Chiakokhua, aka Retired Engineer, chronicling NVIDIA's move to contract TSMC for 7 nm and 5 nm EUV nodes for GPU manufacturing, made a startling revelation about NVIDIA's recent foundry diversification moves. Back in July 2019, a leading Korean publication confirmed NVIDIA's decision to contract Samsung for its next-generation GPU manufacturing. This was a week before AMD announced its first new-generation 7 nm products built for the TSMC N7 node, "Navi" and "Zen 2." The DigiTimes report reveals that NVIDIA underestimated the efficiency gains AMD would yield from TSMC N7.

With NVIDIA's bonhomie with Samsung underway, and Apple transitioning to TSMC N5, AMD moved in to quickly grab 7 nm-class foundry allocation and gained prominence with the Taiwanese foundry. The report also calls out a possible strategic error on NVIDIA's part. Upon realizing the efficiency gains AMD managed, NVIDIA decided to bet on TSMC again (apparently without withdrawing from its partnership with Samsung), only to find that AMD had secured a big chunk of its nodal allocation needed to support its growth in the x86 processor and discrete GPU markets. NVIDIA has hence decided to leapfrog AMD by adapting its next-generation graphics architectures to TSMC's EUV nodes, namely the N7+ and N5. The report also speaks of NVIDIA using its Samsung foundry allocation as a bargaining chip in price negotiations with TSMC, but with limited success as TSMC established its 7 nm-class industry leadership. As it stands now, NVIDIA may manufacture its 7 nm-class and 5 nm-class GPUs on both TSMC and Samsung.

Apple's A12Z SoC Features the Same A12X Silicon

With an introduction of new iPad Pro tablets, Apple has brought another new silicon to its offerings in the form of A12Z SoC. Following the previous king in tablet space, the A12X SoC, Apple has decided to update its silicon and now there is another, more advanced stepping in form of an A12Z SoC. Thanks to the report from TechInsights, their analysis has shown that the new SoC used in Apple's devices is pretty much the same compared to the A12X SoC of last year, except the GPU used. Namely, the configuration of A12X is translated into the A12Z - there are four Apple Vortex and four Apple Tempest cores for the CPU. There is a 128-bit memory bus designed for LPDDR4X memory, the same as the A12X.

What is different, however, is the GPU cluster configuration. In A12X there was a cluster filled with 7 working and one disabled A12-gen GPU core. In A12Z SoC all of the 8 GPUs present are enabled and working, and they are also of the same A12 generation. The new SoC is even built using the same N7 7 nm manufacturing process from TSMC. While we don't know the silicon stepping revision of the A12Z, there aren't any new features besides the additional GPU core.
Apple A12Z Bionic

TSMC N5P 5nm Node Offers 84-87% Transistor Density Gain Over Current 7nm Node

A WikiChip analysis of TSMC's next-generation 5 nanometer N5P silicon fabrication node estimates a massive 84-87% increase in transistor densities on offer compared to the company's first commercial 7 nm-class node, the N7 (7 nm DUV). The report estimates an 87% transistor-density increase, even though TSMC's own figure is slightly modest, at 84%. TSMC N5P node is expected to commence production later this year. Its precursor, TSMC N5, began risk production earlier this year, with production on the node commencing in April or May, unless derailed by the COVID-19 pandemic. The N5P node provides transistor densities of an estimated 171.3 million transistors per mm² die area, compared to 91.2 mTr/mm² of N7. Apple is expected to be the node's biggest customer in 2020, with the company building its A14-series SoC on it.

TSMC and Broadcom Enhance the CoWoS Platform with World's First 2X Reticle Size Interposer

TSMC today announced it has collaborated with Broadcom on enhancing the Chip-on-Wafer-on-Substrate (CoWoS ) platform to support the industry's first and largest 2X reticle size interposer. With an area of approximately 1,700mm2, this next generation CoWoS interposer technology significantly boosts computing power for advanced HPC systems by supporting more SoCs as well as being ready to support TSMC's next-generation five-nanometer (N5) process technology.

This new generation CoWoS technology can accommodate multiple logic system-on-chip (SoC) dies, and up to 6 cubes of high-bandwidth memory (HBM), offering as much as 96 GB of memory. It also provides bandwidth of up to 2.7 terabytes per second, 2.7 times faster than TSMC's previously offered CoWoS solution in 2016. With higher memory capacity and bandwidth, this CoWoS solution is well-suited for memory-intensive workloads such as deep learning, as well as workloads for 5G networking, power-efficient datacenters, and more. In addition to offering additional area to increase compute, I/O, and HBM integration, this enhanced CoWoS technology provides greater design flexibility and yield for complex ASIC designs in advanced process nodes.

TSMC: 5 nm on Track for Q2 2020 HVM, Ramping Faster than 7 nm

TSMC vice chairman and CEO C.C. Wei announced the company's plans for 5 nm are on track, which means High Volume manufacturing (HVM) on the node is expected to be achieved by 2Q 2020. The company has increased expenditures in ramping up its various nodes from an initially projected $10 billion to something along the lines of $14 billion - 15 billion; the company is really banking on quick uptake and design wins on its most modern process technologies - and the increased demand that follows.

TSMC's 5 nm process (N5) will use extreme ultraviolet lithography (EUVL) in many more layers than its N7+ and N6 processes, with up to 14 layers being etched in the N5 silicon compared to five and six, respectively, for its "older" N7+ and N6 processes. As the company increases capital expenditure in acquiring EUVL-capable equipment that sets up its production nodes for the market they foresee will just gobble up the chips in 2020, the company is optimistic they can achieve growth in the 5-10% number.

TSMC Starts Shipping its 7nm+ Node Based on EUV Technology

TSMC today announced that its seven-nanometer plus (N7+), the industry's first commercially available Extreme Ultraviolet (EUV) lithography technology, is delivering customer products to market in high volume. The N7+ process with EUV technology is built on TSMC's successful 7 nm node and paves the way for 6 nm and more advanced technologies.

The N7+ volume production is one of the fastest on record. N7+, which began volume production in the second quarter of 2019, is matching yields similar to the original N7 process that has been in volume production for more than one year.

TSMC Expects Most 7nm Customers to Move to 6nm Density

TSMC in its quarterly earnings call expressed confidence in that most of its 7 nm (N7) process production node customers would be looking to make the transition to their 6 nm (N6) process. In fact, the company expects that node to become the biggest target for volume ordering (and thus production) amongst its customers, since the new N6 fabrication technology will bring about a sort of "backwards compatibility" with design tools and semiconductor designs that manufacturers have already invested in for its N7 node, thus allowing for cost savings for its clients.

This is despite TSMC's N6 process being able to take advantage of extreme ultraviolet lithography (EUVL) to lower manufacturing complexity. This lowering is achieved by the fact that less exposures of the silicon are required for multi-patterning - which is needed today as TSMC's N7 uses solely deep ultraviolet (DUV) lithography. Interestingly, TSMC expects other clients to pick up its N7+ manufacturing node that aren't already using their 7nm node - the need to develop new tools and lesser design compatibility between its N7 and N7+ nodes compared no N7 and N6 being the justification. TSMC's N7+ will be the first node to leverage EUV, using up to four EUVL layers, while N6 expands it up to five layers, and the upcoming N5 cranks EUVL up to fourteen (allowing for 14 layers.)

NZXT Releases H500 Vault Boy from its Shelter

NZXT and Bethesda Softworks , a ZeniMax Media company, team up again to bring you the fourth entry into NZXT's CRFT series of limited edition licensed gaming gear. Introducing the H500 Vault Boy PC gaming case and optional all-metal cover for the NZXT N7 Z390 motherboard based on the Fallout universe's iconic Vault-Tec mascot. With the H500 Vault Boy, it is even easier to show your Fallout fandom while you and your build weather the apocalypse in the confines of your gaming shelter.

"For our second Fallout entry for CRFT, it was an easy choice to have Vault Boy be the focus," says Johnny Hou, founder, and CEO of NZXT. "He is easily one of gaming's most respected icons and synonymous with the beloved Fallout franchise. This is why it was important we created a case worthy of his legacy and of the hard-earned caps of this dedicated community."

BioWare Celebrates 10 Year Anniversary of Mass Effect with #ten7 Event

BioWare today is reflecting on both the story and history of the Mass Effect franchise, through an event entitled #ten7. Fire-started by the celebration of ten years since release of the original Mass Effect, BioWare's celebration includes a throwback trailer, an invite for users to perusal The Archive with their in-game choices, and a suite of streaming events for all of the franchise entries, from the original Mass Effect all the way to the latest Mass Effect: Andromeda.

While this celebration of BioWare's IP accomplishments is a welcome sight, it doesn't exactly put to rest fears of an "iced" IP, which has been reported to be the case regarding the Mass Effect franchise. It's a shame that a publisher's pressures towards meeting launch deadlines sometimes goes ahead even at the cost of final product quality. Mass Effect: Andromeda is a perfect example of a good game that died, through massive effect, by word of mouth and a thousand cuts. Let's see where the future takes us in this universe, though I for one am eagerly awaiting for a new installment in this sci-fi setting. You can head over to the source link and scroll to the bottom of the page to take a look at a uber-resolution collage of what BioWare considers the Mass Effect franchise's best moments. You can also check out a 7-minute video, after the break.

Return to Keyword Browsing