News Posts matching #SoC

Return to Keyword Browsing

SK Hynix Licenses DBI Ultra 3D Interconnect Technology

Xperi Corporation today announced that it entered into a new patent and technology license agreement with SK hynix, one of the world's largest semiconductor manufacturers. The agreement includes access to Xperi's broad portfolio of semiconductor intellectual property (IP) and a technology transfer of Invensas DBI Ultra 3D interconnect technology focused on next-generation memory.

"We are delighted to announce the extension of our long-standing relationship with SK hynix, a world-renowned technology leader and manufacturer of memory solutions," said Craig Mitchell, President of Invensas, a wholly owned subsidiary of Xperi Corporation. "As the industry increasingly looks beyond conventional node scaling and turns toward hybrid bonding, Invensas stands as a pioneering leader that continues to deliver improved performance, power, and functionality, while also reducing the cost of semiconductors. We are proud to partner with SK hynix to further develop and commercialize our DBI Ultra technology and look forward to a wide range of memory solutions that leverage the benefits of this revolutionary technology platform."

Intel joins CHIPS Alliance to promote Advanced Interface Bus (AIB) as an open standard

CHIPS Alliance, the leading consortium advancing common and open hardware for interfaces, processors and systems, today announced industry leading chipmaker Intel as its newest member. Intel is contributing the Advanced Interface Bus (AIB) to CHIPS Alliance to foster broad adoption.

CHIPS Alliance is hosted by the Linux Foundation to foster a collaborative environment to accelerate the creation and deployment of open SoCs, peripherals and software tools for use in mobile, computing, consumer electronics and Internet of Things (IoT) applications. The CHIPS Alliance project develops high-quality open source Register Transfer Level (RTL) code and software development tools relevant to the design of open source CPUs, SoCs, and complex peripherals for Field Programmable Gate Arrays (FPGAs) and custom silicon.

AMD Strengthens Senior Leadership Team

AMD (NASDAQ: AMD) today announced several promotions and a new hire to strengthen its senior leadership team to further enable the company's continued growth.

AMD announced four senior vice president promotions:
  • Nazar Zaidi to senior vice president of Cores, Server SoC and Systems IP Engineering with continued responsibility for leading the development of leadership CPU cores, server SoCs and system IP.
  • Andrej Zdravkovic to senior vice president of Software Development, leading the teams responsible for all aspects of AMD software strategy and development across AMD graphics, client and data center products.
  • Spencer Pan to senior vice president of Greater China Sales and president of AMD Greater China, with responsibility for leading all sales and go-to-market activities for AMD in Greater China and expansion of strategic partner and customer relationships in the region.
  • Jane Roney to senior vice president of Business Operations, responsible for aligning and scaling critical business processes across the company to support growth and help ensure consistent execution.

TERRAMASTER at CES 2020: Thunderbolt DAS and Cost-Effective 10GbE NAS

TERRAMASTER is democratizing 10 GbE in the consumer NAS space through aggressive cost-optimization. For small businesses, 1 GbE is no longer an acceptable network bandwidth in which multiple desktops are working on shared resources. The new F5-422 from TERRAMASTER is a 5-bay small-business NAS with a fat 10 GbE pipe, which enables data transfer-rates of up to 670 MB/s to your local network. It also features two additional 1 GbE ports with link-aggregation as a fallback. Its caddies are designed to support both 3.5-inch and 2.5-inch SATA drives, without the need for adapters.

Under the hood, the F5-422 is powered by an Intel "Apollo Lake" quad-core x64 SoC (likely the Celeron J3455), running at 1.50 GHz, with 4 GB of memory that's expandable to 8 GB. The NAS supports 80 TB of total storage, or up to 16 TB per disk. It uses an aluminium alloy body with a noise-optimized single fan. TERRAMASTER's TOS 4.1 software provides a browser-based UX for the NAS. The F5-422 is priced at $600. Next up, is a new family of RAID DAS (disk-attached storage) solutions featuring Thunderbolt 3 (40 Gbps), targeting creative professionals working on large data-sets that need to be redundant and secured. TERRAMASTER's DAS lineup is based on a common hardware platform that features up to 1,600 MB/s of throughput, and supports up to 128 TB of aggregate storage. Models range from 2-bay, to 4-bay, 5-bay, and large 8-bay towers. These units feature aluminium-alloy bodies with grab-handles on top and 1 or 2 low-noise fans, depending on the model.

Xbox Head Posts "Project Scarlett" (Xbox Series X) SoC Picture, Has that 7nm Tinge

Phil Spencer, head of the Xbox division at Microsoft, posted a picture of the semi-custom SoC at the heart of the company's upcoming "Project Scarlett" Xbox Series X game console as his Twitter avatar. The picture reveals a chip that looks visibly similar to that of "Project Scorpio" (Xbox One X). The picture was also taken from an angle that reveals the pinkish/auburn tinge of 7 nm AMD chips made at TSMC. You'll find the same tinge on chips such as "Navi 10" when viewed from an angle. The die unabashedly bears the "Project Scarlett" and "8K" markings.

Next-generation game consoles are marketing 4K 60 Hz and 8K gaming capability. They likely use a combination of dynamic resolution-scale and variable rate shading to achieve this. The "Project Scarlett" SoC is a semi-custom chip co-designed by Microsoft and AMD, and uses CPU cores based on the company's "Zen 2" microarchitecture, combined with a powerful GPU based on RDNA2, which features hardware-accelerated ray-tracing and variable-rate shading. Hardware enthusiasts on Twitter are abuzz with estimating the die-size of the SoC, with calculations pinning it around the 350 mm² mark ±10 mm², or roughly similar to that of "Project Scorpio," but one must factor in the switch to 7 nm from 16 nm significantly increasing transistor-density.

AMD to Outpace Apple as TSMC's Biggest 7nm Customer in 2020

AMD in the second half of 2020 could outpace Apple as the biggest foundry customer of TSMC for its 7 nm silicon fabrication nodes (DUV and EUV combined). There are two key factors contributing to this: AMD significantly increasing its orders for the year; and Apple transitioning to TSMC's 5 nm node for its A14 SoC, freeing up some 7 nm allocation, which AMD grabbed. AMD is currently tapping into 7 nm DUV for its "Zen 2" chiplet, "Navi 10," and "Navi 14" GPU dies. The company could continue to order 7 nm DUV until these products reach EOL; while also introducing the new "Renoir" APU die on the process. The foundry's new 7 nm+ (EUV) node will be utilized for "Zen 3" chiplets and "Navi 2#" GPU dies in 2020.

Currently, the top-5 customers for TSMC 7 nm are Apple, HiSilicon, Qualcomm, AMD, and MediaTek. Barring AMD, the others in the top-5 build mobile SoCs or 4G/5G modem chips on the node. AMD is expected to top the list as it scales up orders with TSMC. In the first half of 2020, TSMC's monthly output for 7 nm is expected to grow to 110,000 wafers per month (wpm). Apple's migration to 5 nm in 2H-2020, coupled with capacity-addition could take TSMC's 7 nm output to 140,000 wpm. AMD has reportedly booked the entire capacity-addition for 30,000 wpm, taking its allocation up to 21% in 2H-2020. Qualcomm is switching to Samsung for its next-generation SoCs and modems designed for 7 nm EUV. NVIDIA, too, is expected to built its next-gen 7 nm EUV GPUs on Samsung instead of TSMC. These moves by big players could free up significant foundry allocation at TSMC for AMD's volumes to grow in 2020.

Intel Hires Former AMD GPU Silicon Executive

Intel's latest talent acquisition from rival AMD, as it builds a GPU product lineup, is Masooma Bhaiwala. "After 15+ amazing years at AMD, I have decided to take on a different opportunity... It was a truly fun ride, with an incredible team, during which we built some truly cool chips," she wrote in a LinkedIn post. According to her profile, Bhaiwala takes the role of Vice President, discrete GPU SoCs, and works under Intel's Graphics and Throughput Computing Hardware Engineering group headed by Raja Koduri.

Koduri's team has been a glassdoor for former AMD executives and tech-leads. While it has hired engineering talent such as Balaji Kanigicherla, Kalyan Thumaty and Joseph Facca; it has simultaneously lost client-graphics marketing talent, with the likes of Chris Hook, Heather Lennon, and Jon Carvill waltzing out of the company in less than a year of their association. Besides Koduri's Intel's most priced tech talent acquisition is Jim Keller, who is working on a future high-IPC CPU core design for the company. While working for AMD, Keller's "Zen" microarchitecture coupled with CEO Lisa Su's leadership have scripted one of the biggest turnarounds in Silicon Valley.

NVIDIA Introduces DRIVE AGX Orin Platform

NVIDIA today introduced NVIDIA DRIVE AGX Orin, a highly advanced software-defined platform for autonomous vehicles and robots. The platform is powered by a new system-on-a-chip (SoC) called Orin, which consists of 17 billion transistors and is the result of four years of R&D investment. The Orin SoC integrates NVIDIA's next-generation GPU architecture and Arm Hercules CPU cores, as well as new deep learning and computer vision accelerators that, in aggregate, deliver 200 trillion operations per second—nearly 7x the performance of NVIDIA's previous generation Xavier SoC.

Orin is designed to handle the large number of applications and deep neural networks that run simultaneously in autonomous vehicles and robots, while achieving systematic safety standards such as ISO 26262 ASIL-D. Built as a software-defined platform, DRIVE AGX Orin is developed to enable architecturally compatible platforms that scale from a Level 2 to full self-driving Level 5 vehicle, enabling OEMs to develop large-scale and complex families of software products. Since both Orin and Xavier are programmable through open CUDA and TensorRT APIs and libraries, developers can leverage their investments across multiple product generations.

AMD Announces Mini PC Initiative, Brings the Fight to Intel in Yet Another Product Segment

AMD is wading into even deeper waters across Intel's markets with the announcement of new Mini-PCs powered by the company's AMD Ryzen embedded V1000 and R1000 processors. Mini PCs, powered by AMD Ryzen Embedded V1000 and R1000 processors. Multiple partners such as ASRock Industrial, EEPD, OnLogic and Simply NUC have already designed their own takes on Mini-PCs (comparable to Intel's NUC, Next unit of Computing) as a way to give businesses a way to have a small form factor box for different computing needs. These aim to offer a high-performance CPU/GPU processor with expansive peripheral support, in-depth security features and a planned 10-year processor availability.

Until now, AMD's Ryzen Embedded product line had mostly scored one design win here and there, powering handheld consoles such as the Smach Z and such other low power, relatively high-performance environments. When AMD announced the R1000 SoC back in April, it already announced that partners would be bringing their own takes on the underlying silicon, and today is the announcement of that effort.

AWS Starts Designing 32-Core Arm Neoverse N1 CPU for Data Center

Amazon Web Services, a part of Amazon that is in charge of all things cloud, has announced plans to release 32 core CPU based on Arm Neoverse N1 microarchitecture that is designed to handle a diverse workload that today's cloud infrastructure needs. This new CPU should be the second iteration of AWS'es custom CPU based on the Arm architecture. First-generation AWS CPU was a processor called Graviton, which Amazon offered on-demand in the cloud.

The still-unnamed second-gen CPU will utilize a 7 nm manufacturing process if the Neoverce N1 core at its base is to be believed. Additionally, everything from the Neoverse line should translate to this next-gen CPU as well, meaning that there will be features like high frequency and high single-threaded performance, cache coherency, and interconnect fabric designed to connect special-purpose accelerators to the CPU complex. For reference, Arm's design of Neoverce N1 has a TDP of 105 W for the whole SoC and its packs 64 cores running at 3.1 GHz, delivering amazing power efficiency and high core count.

Imagination launches IMG A-Series Graphics Architecture: "The GPU of Everything"

Imagination Technologies announces the tenth generation of its PowerVR graphics architecture, the IMG A-Series. The fastest GPU IP ever released, IMG A-Series evolves the PowerVR GPU architecture to fulfil the graphics and compute needs of the full spectrum of next-generation devices. Designed to be "The GPU of Everything" IMG A-Series is the ultimate solution for multiple markets, from automotive, AIoT, and computing through to DTV/STB/OTT, mobile and server.

The IMG A-Series' multi-dimensional approach to performance scalability ranges from 1 pixel per clock (PPC) parts for the entry-level market right up to 2 TFLOP cores for performance devices, and beyond that to multi-core solutions for cloud applications. Dr. Ron Black, CEO, Imagination Technologies, says: "IMG A-Series is our most important GPU launch since we delivered the first mobile PowerVR GPU 15 years ago and the best GPU IP for mobile ever made. It offers the best performance over sustained time periods and at low power budgets across all markets. It really is the GPU of everything."

MediaTek Announces Dimensity & Dimensity 1000 5G SoC

MediaTek today unveiled Dimensity, MediaTek's family of powerful 5G system-on-chips (SoCs) offering an unrivaled combination of connectivity, multimedia, AI and imaging innovations for premium and flagship smartphones.

The MediaTek Dimensity 5G chipset family brings smart and fast together to power the world's most capable 5G devices. Dimensity represents a step toward a new era of mobility - the fifth dimension - to spur industry innovation and let consumers unlock the possibilities of 5G connectivity.

MSI Unveils Comet Lake Powered Cubi 5 10M Mini-PC

MSI updated its Cubi line of NUC-like mini-PCs with the new Cubi 5 10M, powered by 10th generation Core "Comet Lake" mobile processors. Measuring 124 mm x 124 mm X 53.7 mm (WxDxH), and weighing 550 g (excluding the power-brick), the Cubi 5 10M is powered by a Core i7 "Comet Lake-U" SoC (either i7-10510U quad-core or i7-10710U six-core), with its integrated UHD Graphics putting out pixels. Two DDR4 SO-DIMM slots let you drop in up to 64 GB of dual-channel memory, while your storage options are an M.2-2280 slot with both PCI-Express 3.0 x4 and SATA 6 Gbps wiring, and a 2.5-inch drive bay with SATA 6 Gbps. Connectivity includes USB 3.2 gen 1 type-C and type-A ports along the front panel, next to the audio jacks; additional type-A gen 1 ports at the rear; DisplayPort and HDMI making up the display outputs; a gigabit Ethernet interface driven by an Intel i219-V controller, and Intel AX201 WLAN card that provides 802.11ax and Bluetooth 5.0. The company didn't reveal pricing.

VIA CenTaur Develops a Multi-core x86 Processor for Enterprise with in-built AI Hardware

Tasting Intel's blood in the water with AMD's return to competitiveness, dormant x86 licensee VIA wants to take another swing at the market, this time with a multi-core processor targeted at enterprises and possibly workstations, developed by its subsidiary CenTaur. The company appears to want to cash in on the AI boom, and could develop turnkey facial-recognition CCTV solutions with the chip. CenTaur is ready with a working prototype. It features eight 64-bit x86 CPU cores, and an on-die "AI co-processor" named NCORE. A ringbus connects the eight CPU cores and the NCORE with the processor's other components. The processor features 16 MB of shared L3 cache, a quad-channel DDR4-3200 memory interface, and a 44-lane PCI-Express gen 3.0 root-complex, along with a fully integrated southbridge, making it an SoC. It also appears to be multi-socket capable, although VIA didn't detail the interconnect in use.

The NCORE is a PCI-mapped device to the software, which provides functions such as DNN building and training acceleration. From the looks of it, there's more to NCORE than simply a fixed-function hardware that multiplies matrices. Its developers state that the device accelerates AI at a rate of "20 trillion AI operations/sec with 20 terabytes/sec memory bandwidth." The CPU cores on the processor tick at 2.50 GHz, and while VIA hasn't made any IPC claims, it has mentioned support for the cutting-edge AVX-512 instruction-set, something even "Zen 2" lacks, which possibly indicates a powerful FPU. The silicon measures 195 mm², and has been built on 16 nm FinFET node at TSMC. VIA will demonstrate the unnamed processor and its testbed at ISC East 2019, held on November 20 and 21.

The full technology announcement slide-deck follows.

TechPowerUp and TerraMaster Present NAS Giveaway

TechPowerUp is partnering with TerraMaster to present the TerraMaster NAS Giveaway. Open for readers from the US and the EU, two randomly selected lucky winners stand a chance to get a TerraMaster F2-210 NAS. The F2-210 is the most powerful 2-bay NAS priced under USD $200, with a performance-optimized SoC for maximum throughput. It offers multiple layers of data-security over your network and the Internet. The TNAS interface is a powerful browser-based user-interface that lets you access your data over the local network and remotely, with a ton of security settings. Find out more about the F2-210 in its product page.

For more information and to participate, visit this page.

Intel "Frost Canyon" NUC Based on "Comet Lake" SoC Pictured

Here are some of the first pictures of Intel's new generation "Frost Canyon" NUC based on the company's 10th generation Core "Comet Lake-U" SoC. The top-spec variant, NUC10i7FN, is powered by a Core i7-10710U SoC, which packs a 6-core/12-thread CPU with 12 MB L3 cache, up to 4.70 GHz Turbo Boost, UHD Graphics clocked at 1.15 GHz, and 25 W cTDP (configurable TDP). The middle variant, NUC10i5FN, is powered by the 4-core/8-thread Core i5-10210U (up to 4.20 GHz CPU Turbo Boost, UHD Graphics with up to 1.00 GHz clocks, 8 MB L3 cache, and 25 W cTDP). At the entry level is the NUC10i3FN powered by the Core i3-10110U (2-core/4-thread CPU clocked up to 4.10 GHz, 4 MB L3 cache, UHD Graphics clocked up to 1.00 GHz, and 25 W cTDP).

Physically, these 10th generation NUCs look similar to their "Coffee Lake" powered predecessors codenamed "Bean Canyon," with the exception of just one each type-C and type-A USB 3.2 front panel ports. Other connectivity includes possible Wi-Fi 6 (802.11ax WLAN), 1 GbE, HDMI 2.0, Thunderbolt 3 with DP output on the top model, and an additional pair of 10 Gbps USB 3.2 ports. Intel is likely to launch "Frost Canyon" on December 12.

Samsung Shuts Down Its Custom CPU Design Group

According to the information obtained by Statesman, Samsung Electronics is shutting down its custom CPU design group within the company. Known for the designs of mobile SoCs like Exynos 9110, 9810 and 9820 just to name a few, it seems that there will be no more future developments of custom Exynos SoC for Samsung's mobile devices. Instead of designing its own cores, Samsung is now going to use ARM's reference A7x series of CPUs based on ARM v8 instruction set, with A76 or A77 being chosen as likely candidates for the high-performance workloads.

So far it is still unknown what will be inside new processors like the upcoming Exynos 9830 SoC, meant to power the next generation of mobile devices. But if things are like Samsung states, there should be reference ARM cores like A77 inside the new chip. Already announced chips like Exynos 990 are supposed to use a custom CPU core, while all future revisions of any new Exynos SoC will license a design IP from ARM. This decision is supposedly a by-product of being unable to compete with offers from Qualcomm, which offers faster "Snapdragon" SoCs. Samsung already uses the Snapdragon SoCs in its phones for the US and Chinese markets, while the rest of the world is getting an Exynos equivalent with the purchase of the same mobile device.

AMD Reports Third Quarter 2019 Financial Results

AMD (NASDAQ:AMD) today announced revenue for the third quarter of 2019 of $1.80 billion, operating income of $186 million, net income of $120 million and diluted earnings per share of $0.11. On a non-GAAP(*) basis, operating income was $240 million, net income was $219 million and diluted earnings per share was $0.18.

"Our first full quarter of 7 nm Ryzen, Radeon and EPYC processor sales drove our highest quarterly revenue since 2005, our highest quarterly gross margin since 2012 and a significant increase in net income year-over-year," said Dr. Lisa Su, AMD president and CEO. "I am extremely pleased with our progress as we have the strongest product portfolio in our history, significant customer momentum and a leadership product roadmap for 2020 and beyond."

GLOBALFOUNDRIES Introduces 12LP+ FinFET Solution for Cloud and Edge AI Applications

GLOBALFOUNDRIES (GF), the world's leading specialty foundry, announced today at its Global Technology Conference the availability of 12LP+, an innovative new solution for AI training and inference applications. 12LP+ offers chip designers a best-in-class combination of performance, power and area, along with a set of key new features, a mature design and production ecosystem, cost-efficient development and fast time-to-market for high-growth cloud and edge AI applications.

Derived from GF's existing 12nm Leading Performance (12LP) platform, GF's new 12LP+ provides either a 20% increase in performance or a 40% reduction in power requirements over the base 12LP platform, plus a 15% improvement in logic area scaling. A key feature is a high-speed, low-power 0.5 V SRAM bit cell that supports the fast, power-efficient shuttling of data between processors and memory, an important requirement for AI applications in the computing and wired infrastructure markets.

Intel Ships First 10nm Agilex FPGAs

Intel today announced that it has begun shipments of the first Intel Agilex field programmable gate arrays (FPGAs) to early access program customers. Participants in the early access program include Colorado Engineering Inc., Mantaro Networks, Microsoft and Silicom. These customers are using Agilex FPGAs to develop advanced solutions for networking, 5G and accelerated data analytics.

"The Intel Agilex FPGA product family leverages the breadth of Intel innovation and technology leadership, including architecture, packaging, process technology, developer tools and a fast path to power reduction with eASIC technology. These unmatched assets enable new levels of heterogeneous computing, system integration and processor connectivity and will be the first 10nm FPGA to provide cache-coherent and low latency connectivity to Intel Xeon processors with the upcoming Compute Express Link," said Dan McNamara, Intel senior vice president and general manager of the Networking and Custom Logic Group.

Xilinx Announces Virtex UltraScale+, the World's Largest FPGA

Xilinx, Inc., the leader in adaptive and intelligent computing, today announced the expansion of its 16 nanometer (nm) Virtex UltraScale+ family to now include the world's largest FPGA — the Virtex UltraScale+ VU19P. With 35 billion transistors, the VU19P provides the highest logic density and I/O count on a single device ever built, enabling emulation and prototyping of tomorrow's most advanced ASIC and SoC technologies, as well as test, measurement, compute, networking, aerospace and defense-related applications.

The VU19P sets a new standard in FPGAs, featuring 9 million system logic cells, up to 1.5 terabits per-second of DDR4 memory bandwidth and up to 4.5 terabits per-second of transceiver bandwidth, and over 2,000 user I/Os. It enables the prototyping and emulation of today's most complex SoCs as well as the development of emerging, complex algorithms such as those used for artificial intelligence, machine learning, video processing and sensor fusion. The VU19P is 1.6X larger than its predecessor and what was previously the industry's largest FPGA — the 20 nm Virtex UltraScale 440 FPGA.

Intel Launches First 10th Gen Core Processors: Redefining the Next Era of Laptop Experiences

Today, Intel officially launched 11 new, highly integrated 10th Gen Intel Core processors designed for remarkably sleek 2 in 1s and laptops. The processors bring high-performance artificial intelligence (AI) to the PC at scale, feature new Intel Iris Plus graphics for stunning entertainment and enable the best connectivity with Intel Wi-Fi 6 (Gig+) and Thunderbolt 3. Systems are expected from PC manufacturers for the holiday season.

"These 10th Gen Intel Core processors shift the paradigm for what it means to deliver leadership in mobile PC platforms. With broad-scale AI for the first time on PCs, an all-new graphics architecture, best-in-class Wi-Fi 6 (Gig+) and Thunderbolt 3 - all integrated onto the SoC, thanks to Intel's 10nm process technology and architecture design - we're opening the door to an entirely new range of experiences and innovations for the laptop."
-Chris Walker, Intel corporate vice president and general manager of Mobility Client Platforms in the Client Computing Group

AMD Reports Second Quarter 2019 Financial Results

AMD (NASDAQ:AMD) today announced revenue for the second quarter of 2019 of $1.53 billion, operating income of $59 million, net income of $35 million and diluted earnings per share of $0.03. On a non-GAAP basis, operating income was $111 million, net income was $92 million and diluted earnings per share was $0.08.

"I am pleased with our financial performance and execution in the quarter as we ramped production of three leadership 7nm product families," said Dr. Lisa Su, AMD president and CEO. "We have reached a significant inflection point for the company as our new Ryzen, Radeon and EPYC processors form the most competitive product portfolio in our history and are well positioned to drive significant growth in the second half of the year."

BIOSTAR Formally Enables PCIe Gen 4 on its AMD 400-series Motherboards

BIOSTAR formally (officially) enabled PCI-Express gen 4.0 support for four of its socket AM4 motherboard models based on the AMD X470 and B450 chipsets, through BIOS updates. The updated BIOS lets you use PCI-Express gen 4.0 graphics cards on the topmost PCI-Express x16 slot, and the M.2 NVMe slot that's directly wired to the AM4 SoC. The expansion slots that are wired to the chipset are still restricted to PCIe gen 2.0. You will need a 3rd generation Ryzen "Matisse" processor for PCI-Express gen 4.0. Among the motherboards that receive PCIe gen 4.0 support through BIOS updates are the AB45C-M4S (B450MH), the AB35G-M4S (B45M2), the AX47A-A4T (X470GT8), and the AX47A-I4S (X470GTN). The links lead to the BIOS image files on BIOSTAR website, which you use at your own risk.

ASUS Begins Enabling Limited PCIe Gen 4.0 on AMD 400-series Chipset Motherboards

ASUS believes that PCI-Express gen 4.0 support on older socket AM4 motherboards based on the AMD 400-series chipset is technically possible, even if discouraged by AMD. The company's latest series of motherboard BIOS updates that expose PCIe Gen 4 toggle in the PCIe settings, does in fact enable PCIe gen 4.0 to all devices that are directly wired to the SoC. These would be the PCI-Express x16 slots meant for graphics, and one of the M.2 slots that has PCIe x4 wiring to the SoC. Below is a list of motherboards scored by Chinese tech publication MyDrivers, which details the extent of PCIe gen 4.0 support across a number of ASUS motherboards based on the X470 and B450 chipsets.

AMD apparently did not explicitly block PCIe gen 4.0 for older chipsets. It merely suggested to motherboard manufacturers not to enable it, since the newer AMD 500-series motherboards are built to new PCB specifications that ensure PCIe gen 4.0 signal-integrity and stability. ASUS wants to leave it to users to decide if they want gen 4.0. If their machines are unstable, they can choose to limit PCIe version to gen 3.0 in their BIOS settings. Among other things, AMD's specifications for 500-series chipset motherboards prescribe PCBs with more than 4 layers, for optimal PCIe and memory wiring. Many of the motherboards on ASUS' list, such as the TUF B450 Pro Gaming, use simple 4-layer PCBs.
Return to Keyword Browsing