Monday, February 19th 2024
AMD "Zen 5c" CCDs Made On More Advanced 3 nm Node Than "Zen 5"
AMD is reportedly building its upcoming "Zen 5" and "Zen 5c" CPU Core Dies (CCDs) on two different foundry nodes, a report by Chinese publication UDN, claims. The Zen 5 CCD powering the upcoming Ryzen "Granite Ridge" desktop processors, "Fire Range" mobile processors, and EPYC "Turin" server processors, will be reportedly built on the 4 nm EUV foundry node, a slightly more advanced node than the current 5 nm EUV the company is building "Zen 4" CCDs on. The "Zen 5c" CCD, or the chiplet with purely "Zen 5c" cores in a high density configuration; on the other hand, will be built on an even more advanced 3 nm EUV foundry node, the report says. Both CCDs will go into mass production in Q2-2024, with product launches expected across the second half of the year.
The "Zen 5c" chiplet has a mammoth 32 cores spread across two CCXs of 16 cores, each. Each CCX has 16 cores sharing a 32 MB L3 cache. It is to cram these 32 cores, each with 1 MB of L2 cache; and a total of 64 MB of L3 cache, that AMD could be turning to the 3 nm foundry node. Another reason could be voltages. If "Zen 4c" is anything to go by, the "Zen 5c" core is a highly compacted variant of "Zen 5," which operates at a lower voltage band than its larger sibling, without any change in IPC or instruction sets. The decision to go with 3 nm could be a move aimed at increasing clock speeds at those lower voltages, in a bid to generationally improve performance using clock speeds, besides IPC and core count. The EPYC processor with "Zen 5c" chiplets will feature no more than six such large CCDs, for a maximum core count of 192. The regular "Zen 5" CCD has just 8 cores in a single CCX, with 32 MB of L3 cache shared among the cores; and TSV provision for 3D Vertical Cache, to increase the L3 cache in special variants.
Sources:
UDN, Wccftech
The "Zen 5c" chiplet has a mammoth 32 cores spread across two CCXs of 16 cores, each. Each CCX has 16 cores sharing a 32 MB L3 cache. It is to cram these 32 cores, each with 1 MB of L2 cache; and a total of 64 MB of L3 cache, that AMD could be turning to the 3 nm foundry node. Another reason could be voltages. If "Zen 4c" is anything to go by, the "Zen 5c" core is a highly compacted variant of "Zen 5," which operates at a lower voltage band than its larger sibling, without any change in IPC or instruction sets. The decision to go with 3 nm could be a move aimed at increasing clock speeds at those lower voltages, in a bid to generationally improve performance using clock speeds, besides IPC and core count. The EPYC processor with "Zen 5c" chiplets will feature no more than six such large CCDs, for a maximum core count of 192. The regular "Zen 5" CCD has just 8 cores in a single CCX, with 32 MB of L3 cache shared among the cores; and TSV provision for 3D Vertical Cache, to increase the L3 cache in special variants.
78 Comments on AMD "Zen 5c" CCDs Made On More Advanced 3 nm Node Than "Zen 5"
Eight Zen 5 cores, 4 nm, 6.0+ GHz
16 Zen 5c cores, 3 nm, 128 MB 3D cache
All in one package for a total of 24 cores / 48 threads and up to 15% generational IPC uplift across all cores.
16-core "Zen 4c" CCD just 9.6% larger in die-area, than the 8-core "Zen 4" CCD. That's 72.7 mm² per CCD, compared to 66.3 mm² of the regular 8-core "Zen 4" CCD.
So would most likely end up with the Zen 5 COre with X3D and the C ones without. It may be a way of keeping all the frequencys on the die the same however.
Intel is already doing this.
Do you know how many nanometers the transistors for the cache memories of TSMC's 4 and 3 nm nodes are made of? Do you use any app that uses this many cores? If so, what are they?
Nowadays, practically all operations that were/are too heavy for CPUs are done quickly by GPUs, such as rendering and encoding videos.
X3D chips usually release a good while after the standard architecture.
R9 8950 being 8+8 full Zen 5 as a change, with higher clocks.
Zen xC doesn't have the ability to have 3DVCache.