News Posts matching "10 nm"

Return to Keyword Browsing

Samsung Begins Mass-production of First SoC on 10-nanometer FinFET Node

Samsung Electronics Co., Ltd., a world leader in advanced semiconductor technology, today announced that it has commenced mass production of System-on-Chip (SoC) products with 10-nanometer (nm) FinFET technology for which would make it first in the industry. Following the successful mass production of the industry's first FinFET mobile application processor (AP) in January, 2015, Samsung extends its leadership in delivering leading-edge process technology to the mass market with the latest offering.

"The industry's first mass production of 10 nm FinFET technology demonstrates our leadership in advanced process technology," said Jong Shik Yoon, Executive Vice President, Head of Foundry Business at Samsung Electronics. "We will continue our efforts to innovate scaling technologies and provide differentiated total solutions to our customers."

Intel "Coffee Lake" Architecture by Q2-2018, 7 nm Process By 2022?

Intel's silicon fabrication has evidently hit a huge roadblock. It turns out that not just "Kaby Lake," but its two successors "Cannon Lake" and "Coffee Lake" could also be built on the 14 nm node, at best with a few process-level improvements. "Coffee Lake" is the company's 9th generation Core architecture, which is two steps ahead of even the "Kaby Lake" architecture, which is due later this year. "Kaby Lake" makes its way to the 45W mobile (H-segment) and 15W mobile (U-segment), in Q4-2016 and Q3-2016, respectively. The 15W U-segment will be augmented by "Cannon Lake" (8th generation Core) in Q4-2017. By mid-2018, Intel plans to launch "Coffee Lake" across both H- and U-segments.

According to a "Hot Hardware" report, based on a job listing for a systems engineer at the company, Intel could be staring at the scary prospect of holding out on 14 nm for the next three years, only to be relieved by the stopgap 10 nm node, which makes its debut with the 10th generation Core "Tiger Lake" architecture, due for 2019. "Tiger Lake," its succeeding "Ice Lake," and one other architecture could be launched on 10 nm, before finally deploying 7 nm around 2022.
Sources: HotHardware, AnandTech Forums

GlobalFoundries to Skip 10 nm and Jump Straight to 7 nm

Silicon fabrication company GlobalFoundries is reportedly planning to skip development of the 10 nanometer (nm) process, and is aiming to jump straight to 7 nm. The company currently operates a 14 nm FinFET node. In 2015 the company acquired semiconductor manufacturing assets from IBM, and is using them to fast-track its development. When it's ready, the 7 nm node will offer both optical and EUV (extreme ultra-violet) lithography. Driving the EUV product is an IBM 3300 EUV fabricator at the company's advanced patterning center, in its Albany, New York fab.

Source: SemiWiki

Intel to Contract-manufacture ARM Processors at its Fabs

Intel is opening up its silicon manufacturing facilities to fabless chip-makers, beginning with the manufacture of ARM SoCs. The company entered a licensing deal with ARM that allows ARM SoC designers such as Qualcomm, Apple, and Samsung, to manufacture their SoCs at Intel fabs. Intel is among the first fabs with a working 14 nm node, and is on-track for sub-10 nm node development.

Intel had a crack at the market segments typically addressed by ARM SoCs, with its own x86 chips, which failed to see the kind of volumes ARM chipmakers were pushing. The company has now changed tactics to open its fabs up to those ARM SoC makers, letting them manufacture their designs on proven silicon-fabrication tech, in geographically important locations. Intel has its cutting-edge fabs located in Costa Rica and Malaysia.

Source: Bloomberg

TSMC to Begin 7 nm Trial Production in 2017

Taiwan's premier semiconductor foundry TSMC could begin 7 nanometer (nm) trial production in as early as the first half of 2017. Co-CEO Mark Liu, speaking at the company's investor-meet held earlier this month, stated that TSMC is currently engaging with over 20 companies on 7 nm development, with over 15 tape-outs within 2017, leading up to volume-production by early-2018. In the run-up to 7 nm, the company is also developing a 10 nm node for lower-powered devices (eg: mobile baseband). The company has already begun tape-outs of 10 nm chips in Q1-2016. TSMC is currently handling volume-production of 16 nm FinFET Plus chips.

Source: DeliddedTech

First 10 nm Intel Processor Out in 2017

With Intel's "tick-tock" product development cycle slowing down to a 3-launch cadence per silicon fab process, the company is preparing to launch no less than three micro-architectures on its next 10 nanometer silicon fab process. The first 10 nm CPU by Intel will launch in 2017.

In 2016, Intel will launch its 7th generation Core "Kaby Lake" processor, its third chip on the 14 nm process (after "Broadwell" and "Skylake"). The first 10 nm micro-architecture will be codenamed "Cannonlake," and will launch some time in 2017. Intel will build chips on the 10 nm for two more generations after "Cannonlake." The company's 2018 micro-architecture, built on the 10 nm will be codenamed "Icelake," and its 2019 release will be codenamed "Tigerlake." It's only 2020 that the company will pull out its next silicon fab process, 5 nm.

Source: OC3D

Samsung to Fab AMD "Zen" and "Arctic Islands" on its 14 nm FinFET Node

It has been confirmed that Samsung will be AMD's foundry partner for its next generation GPUs. It has been reported that AMD's upcoming "Arctic Islands" family of GPUs could be built on the 14 nanometer FinFET LPP (low-power Plus) process. AMD's rival NVIDIA, meanwhile, is building its next-gen "Pascal" GPU family on 16 nanometer FinFET node, likely at its traditional foundry partner TSMC.

It gets better - not only will Samsung manufacture AMD's next-gen GPUs, but also its upcoming "Zen" family of CPUs, at least a portion of it. AMD is looking to distribute manufacturing loads between two foundries, Samsung and GlobalFoundries, perhaps to ensure that foundry-level teething trouble doesn't throw its product launch cycle off the rails. One of the most talked about "Arctic Islands" GPUs is codenamed "Greenland," likely a successor to "Fiji." Sales of some of the first chips - GPUs or CPUs - made at Samsung, will begin some time in Q3 2016. Some of the other clients for Samsung's 14 nm FinFET node are Apple and Qualcomm. The company plans to speed up development of its more advanced 10 nm node to some time in 2017.

Source: ETNews

TSMC to Commence 10 nm Volume Production by Q4-2016

Semiconductor foundry TSMC assured its clients that the company will be ready with a 10 nanometer manufacturing node for volume production, by the 4th quarter of 2016. Company president and joint-CEO Mark Liu made this announcement during the company's recent Q2-2015 earnings call. "The recent progress of our 10 nanometer technology development is very encouraging and on track with our plan," he said. With volume production of chips commencing in Q4, some of the first products based on them should begin appearing in early-2017. "We ramp up 10 nm in the Q4 2016 next year, but the real product shipment will be in Q1 2017," said C.C. Wei, co-CEO.

Source: Kitguru

Moore's Law Buckles as Intel's Tick-Tock Cycle Slows Down

Intel co-founder Gordon Moore's claim that transistor counts in microprocessors can be doubled with 2 years, by means of miniaturizing silicon lithography is beginning to buckle. In its latest earnings release, CEO Brian Krzanich said that the company's recent product cycles marked a slowing down of its "tick-tock" product development from 2 years to close to 2.5 years. With the company approaching sub-10 nm scales, it's bound to stay that way.

To keep Moore's Law alive, Intel adopted a product development strategy it calls tick-tock. Think of it as a metronome that give rhythm to the company. Each "tock" marks the arrival of a new micro-architecture, and each "tick" marks its miniaturization to a smaller silicon fab process. Normally, each year is bound to see one of the two in alternation.

Samsung Mass Producing 10 nm Class High-Performance 128-Gbit 3-bit MLC NAND Flash

Samsung Electronics Co., Ltd., the world leader in advanced memory technology, announced today that it has begun mass producing a 128-gigabit (Gb), 3-bit multi-level-cell (MLC) NAND memory chip using 10 nanometer (nm)-class process technology this month. The highly advanced chip will enable high-density memory solutions such as embedded NAND storage and solid state drives (SSDs).

"By introducing next-generation memory storage products like the 128Gb NAND chip, Samsung is extremely well situated to meet growing global customer needs," said Young-Hyun Jun, executive vice president, memory sales & marketing, Device Solutions Division, Samsung Electronics. "The new chip is a critical product in the evolution of NAND flash, one whose timely production will enable us to increase our competitiveness in the high density memory storage market."

Intel 14 nm Silicon Fab Development in Progress

Intel will be capable making chips on the 14 nanometer silicon fabrication process, in 18-inch diameter wafers, "in two years," as development of the technology and machinery to make it happen is making good progress, according to company CTO Justin Rattner. He noted that Intel's aggressive tech advancement will keep Moore's Law relevant for at least the next 10 years. By the end of 2013, Intel's D1X Fab in Oregon, Fab 42 in Arizona, in the US, and Fab 24 in Ireland will begin producing batches of simple chips such as P1272 and P1273 series SoCs. After 14 nm, development for 10 nm, 7 nm, and 5 nm will follow, in order.

Source: DigiTimes

Samsung Announces 10 nm-class eMMC for Slim Smartphones and Tablets

Samsung Electronics Co., Ltd., the world leader in advanced memory technology, today announced a next-generation 64 GB embedded multimedia card (eMMC) using 10 nanometer (nm)-class process technology. The new 64 Gb NAND memory went into production late last month.

Myungho Kim, vice president of Memory marketing, Device Solutions, Samsung Electronics noted, "The new high-speed, small form factor eMMC reinforces Samsung's technology leadership in storage memory solutions. We look forward to expanding our line-up of embedded memory solutions in conjunction with the new chip's design, in pursuing a system-level adoption of application processors and other key components that form the foundation for the most advanced mobile platforms. This will allow us to better attend to time-to-market demands enabling the design of more convenient features for next-generation mobile applications."

Return to Keyword Browsing