News Posts matching #Xe

Return to Keyword Browsing

ASUS Announces the ExpertBook B1

ASUS today announced ExpertBook B1, a durable, reliable and versatile laptop that's ready for the rigors of the modern business world. ExpertBook B1's lineup of powerful features includes up to an Intel Core 7 processor with Intel Iris Xe Graphics, up to 64 GB of memory and ample storage, plus a vibrant screen with a tall 16:9 aspect ratio - all encased in a sleek 1.4 kg chassis. ExpertBook B1 is designed for seamless connectivity, featuring up to WiFi 6E and a comprehensive array of I/O ports. In addition, it offers military-grade durability and incorporates an eco-friendly design that reflects a commitment to sustainability and accountability.

Robust performance
ExpertBook B1 is engineered to enhance business capabilities, providing the fast and responsive performance essential for today's demands—enabling seamless multitasking, advanced data handling, and streamlined operations. Powered by up to an Intel Core 7 processor with Intel Iris Xe Graphics, ExpertBook B1 delivers the robust performance needed to get the job done.

Intel Announces New Mobile Lunar Lake Core Ultra 200V Series Processors

Intel today launched its most efficient family of x86 processors ever, the Intel Core Ultra 200V series processors. They deliver exceptional performance, breakthrough x86 power efficiency, a massive leap in graphics performance, no-compromise application compatibility, enhanced security and unmatched AI compute. The technology will power the industry's most complete and capable AI PCs with more than 80 consumer designs from more than 20 of the world's top manufacturing partners, including Acer, ASUS, Dell Technologies, HP, Lenovo, LG, MSI and Samsung. Pre-orders begin today with systems available globally on-shelf and online at over 30 global retailers starting Sept. 24. All designs featuring Intel Core Ultra 200V series processors and running the latest version of Windows are eligible to receive Copilot+ PC features as a free update starting in November.

"Intel's newest Core Ultra processors set the industry standard for mobile AI and graphics performance, and smash misconceptions about x86 efficiency. Only Intel has the scale through our partnerships with ISVs and OEMs, and the broader technology ecosystem, to provide consumers with a no-compromise AI PC experience."
--Michelle Johnston Holthaus, Intel executive vice president and general manager of the Client Computing Group

Intel "Meteor Lake" CPUs Face Yield Issues, Company Running "Hot Lots" to Satisfy Demand

In a conversation with Intel's CEO Pat Gelsinger, industry analyst Patrick Moorhead revealed that Intel's Meteor Lake CPU platform suffers from some production issues. More specifically, Intel has been facing some yield and/or back-end production issues with its Meteor Lake platform, resulting in a negative impact on Intel's margins when producing the chip. The market is showing great demand for these chips, and Intel has been forced to run productions of "hot lots"-- batch production of silicon with the highest priority that gets moved to the front of the production line so they can get packaged as fast as possible. While this is a good sign that the demand is there, running hot lots increases production costs overall as some other wafers have to go back so Meteor Lake can pass.

The yield issues associated with Meteor Lake could be stemming from the only tile made by Intel in the MTL package: the compute tile made on the Intel 4 process. Intel 4 process is specific to Meteor Lake. No other Intel product uses it, not even the Xeon 6, which uses Intel 3, or any of the upcoming CPUs like Arrow Lake, which uses the Intel 20A node. So, Intel is doing multiple nodes for multiple generations of processors, further driving up costs as typical high-volume production with a single node for multiple processors yields lower costs. Additionally, the company is left with lots of "wafers to burn" with Intel 4 node, so even with Meteor Lake having yield issues, the production is ultimately fine, while the operating costs and margins take a hit.

Intel Core Ultra 200V "Lunar Lake" CPUs Arrive on September 3rd

Intel has officially confirmed the upcoming Core Ultra 200V "Lunar Lake" CPU generation is arriving on September 3rd. The official media alert states: "Ahead of the IFA 2024 conference, join Michelle Johnston Holthaus, Intel executive vice president and general manager of the Client Computing Group, and Jim Johnson, senior vice president and general manager of the Client Business Group, and Intel partners as they launch the next generation of Intel Core Ultra processors, code-named Lunar Lake. During the livestreamed event, they will reveal details on the new processors' breakthrough x86 power efficiency, exceptional core performance, massive leaps in graphics performance and the unmatched AI computing power that will drive this and future generations of Intel products."

With IFA happening in Berlin from September 6th to 10th, Intel's Lunar Lake launch is also happening in Berlin just a few days before, on September 3rd at 6 p.m. CEST (9 a.m. PDT). We expect to see nine SKUs: Core Ultra 9 288V, Core Ultra 7 268V, Core Ultra 7 266V, Core Ultra 7 258V, Core Ultra 7 256V, Core Ultra 5 238V, Core Ultra 5 236V, Core Ultra 5 228V, and Core Ultra 5 226V. All of the aforementioned models feature four P-cores and four E-cores, with varying Xe2 GPU core counts and clocks. We also expect to see Intel present its design wins and upcoming Lunar Lake devices like laptops during the launch.
Intel Core Ultra 200V Lunar Lake

NVIDIA GeForce "Blackwell" Won't Arrive Before January 2025?

It appears like 2024 will go down as the second consecutive year without any new GPU generation launch from either NVIDIA or AMD. Kopite7kimi, a reliable source with NVIDIA leaks, says that the GeForce RTX 50-series "Blackwell" generation won't see a debut before the 2025 International CES (January 2025). It was earlier expected that the company would launch at least its top two SKUs—the RTX 5090 and RTX 5080—toward the end of 2024, and ramp the series up from 2025. There is no explanation behind this "delay." Like everyone else, NVIDIA could be rationing its foundry allocation of the 3 nm wafers from TSMC for its high-margin "Blackwell" AI GPUs. The company now makes over five times the revenue from selling AI GPUs than it does from gaming GPUs, so this development should come as little surprise.

Things aren't any different with NVIDIA's rivals in this space, AMD and Intel. AMD's RDNA 4 graphics architecture and the Radeon RX series GPUs based on it, aren't expected to arrive before 2025. AMD is making several architectural upgrades with RDNA 4, particularly to its ray tracing hardware; and the company is expected to build these GPUs on a new foundry node. Meanwhile, Intel's Arc B-series gaming GPUs based on the Xe2 "Battlemage" graphics architecture are expected to arrive in 2025, too, although these chips are rumored to be based on a more mature 4 nm-class foundry node.

Intel Core Ultra 300 Series "Panther Lake" Leaks: 16 CPU Cores, 12 Xe3 GPU Cores, and Five-Tile Package

Intel is preparing to launch its next generation of mobile CPUs with Core Ultra 200 series "Lunar Lake" leading the charge. However, as these processors are about to hit the market, leakers reveal Intel's plans for the next-generation Core Ultra 300 series "Panther Lake". According to rumors, Panther Lake will double the core count of Lunar Lake, which capped out at eight cores. There are several configurations of Panther Lake in the making based on the different combinations of performance (P) "Cougar Cove," efficiency (E) "Skymont," and low power (LP) cores. First is the PTL-U with 4P+0E+4LP cores with four Xe3 "Celestial" GPU cores. This configuration is delivered within a 15 W envelope. Next, we have the PTL-H variant with 4P+8E+4LP cores for a total of 16 cores, with four Xe3 GPU cores, inside a 25 W package. Last but not least, Intel will also make PTL-P SKUs with 4P+8E+4LP cores, with 12 Xe3 cores, to create a potentially decent gaming chip with 25 W of power.

Intel's Panther Lake CPU architecture uses an innovative design approach, utilizing a multi-tile configuration. The processor incorporates five distinct tiles, with three playing active roles in its functionality. The central compute operations are handled by one "Die 4" tile with CPU and NPU, while "Die 1" is dedicated to platform control (PCD). Graphics processing is managed by "Die 5", leveraging Intel's Xe3 technology. Interestingly, two of the five tiles serve a primarily structural purpose. These passive elements are strategically placed to achieve a balanced, rectangular form factor for the chip. This design philosophy echoes a similar strategy employed in Intel's Lunar Lake processors. Panther Lake is poised to offer greater versatility compared to its Lunar Lake counterpart. It's expected to cater to a wider range of market segments and use cases. One notable advancement is the potential for increased memory capacity compared to Lunar Lake, which capped out at 32 GB of LPDDR5X memory running at 8533 MT/s. We can expect to hear more potentially at Intel's upcoming Innovation event in September, while general availability of Panther Lake is expected in late 2025 or early 2026.

ASUS Previews Intel's "Lunar Lake" Platform with ExpertBook P5 14-Inch Laptop

ASUS has revealed its upcoming ExpertBook P5 laptop, set to debut alongside Intel's highly anticipated "Lunar Lake" processors. This ultrabook aims to boost AI-capable laptop market, featuring an unspecified Intel Lunar Lake "Core Ultra 200V" CPU at its core. The ExpertBook P5 boasts impressive AI processing capabilities, with over 45 TOPS from its Neural Processing Unit and a combined 100+ TOPS when factoring in the CPU and GPU. The NPU provides efficient processing, with additional power coming from Lunar Lake's GPU with XMX cores, featuring the Xe2 Battlemage architecture. This is more than enough for the Copilot+ certification from Microsoft, making the laptop debut as an "AI PC." The ExpertBook P5 offers up to 32 GB of LPDDR5X memory running at 8333 MT/s, up to 3 TB of PCIe 4.0 SSD storage with two drives, and Wi-Fi 7 support.

The 14-inch anti-glare display features a 2.5K resolution and a smooth 144 Hz refresh rate, ensuring a premium visual experience. Despite its powerful internals, the ExpertBook P5 maintains a solid profile weighing just 1.3 kg. The laptop is housed in an all-metal military-grade aluminium body with a 180-degree lay-flat hinge, making it both portable and versatile. ASUS has also prioritized cooling efficiency with innovative technology that optimizes thermal management, whether the laptop is open or closed. Security hasn't been overlooked either, with the ExpertBook P5 featuring a robust security ecosystem, including Windows 11 secured-core PC framework, NIST-155-ready Commercial-Grade BIOS protection, and biometric login options. While an exact release date hasn't been confirmed, ASUS is preparing ExpertBook P5 and other Lunar Lake-powered laptops to hit the market in the second half of 2024.

Intel Arc Xe2 "Battlemage" Discrete GPUs Made on TSMC 4 nm Process

Intel has reportedly chosen the TSMC 4 nm EUV foundry node for its next generation Arc Xe2 discrete GPUs based on the "Battlemage" graphics architecture. This would mark a generational upgrade from the Arc "Alchemist" family, which Intel built on the TSMC 6 nm DUV process. The TSMC N4 node offers significant increases in transistor densities, performance, and power efficiency over the N6, which is allowing Intel to nearly double the Xe cores on its largest "Battlemage" variant in numerical terms. This, coupled with increased IPC, clock speeds, and other features, should make the "Battlemage" contemporary against today's AMD RDNA 3 and NVIDIA Ada gaming GPUs. Interestingly, TSMC N4 isn't the most advanced foundry node that the Xe2 "Battlemage" is being built on. The iGPU powering Intel's Core Ultra 200V "Lunar Lake" processor is part of its Compute tile, which Intel is building on the more advanced TSMC N3 (3 nm) node.

Intel Readies Arrow Lake-H Laptop CPU SKU with 24 Cores Based on Desktop Arrow Lake-S

As Intel gears for the launch of Lunar Lake and Arrow Lake processors, the company appears to be preparing a new line of high-performance processors for gaming laptops. Recent developments suggest that the company is adapting its desktop-grade Arrow Lake-S chips for use in ultra-high-performance notebooks. The buzz began when X user @InstLatX64 spotted Intel testing a peculiar motherboard labeled "Arrow Lake Client Platform/ARL-S BGA SODIMM 2DPC." This discovery hints at the possibility of Intel packing up to 24 cores into laptop processors, eight more cores compared to the 16 cores expected in standard Arrow Lake-H mobile chips. By utilizing the full potential of Arrow Lake-S silicon in a mobile form factor, Intel aims to deliver desktop-class performance to high-end notebooks in a BGA laptop CPU.

The leaked chip would likely feature eight high-performance Lion Cove P-cores and 16 energy-efficient Skymont E-cores, along with an integrated Xe2 GPU. This configuration could provide the raw power needed for demanding games and professional applications in a portable package. However, implementing such powerful hardware in laptops presents challenges. The processors are expected to have a TDP of 45 W or 55 W, with actual power consumption potentially exceeding these figures to maintain high clock speeds. Success will depend not only on Intel's chip design but also on the cooling solutions and power delivery systems developed by laptop manufacturers. As of now, specific details about clock speeds and performance metrics remain under wraps. The test chip that surfaced showed a base frequency of 3.0 GHz, notably without AVX-512 support.

Intel Prepares Linux Drivers for Next-Generation Battlemage GPUs with Focus on Efficiency

According to the report from Phoronix, the upcoming Linux 6.11 kernel will introduce initial display support for the highly anticipated Intel Battlemage graphics processors. Battlemage, built on Intel's Xe2 architecture, represents the company's latest effort to challenge established players in the graphics arena. This new line of GPUs is designed to succeed the current DG2/Alchemist hardware, promising enhanced performance and improved power efficiency. The Linux 6.11 kernel will provide the fundamental capability to drive displays connected to Battlemage GPUs. While this initial support is a crucial first step, it lays the groundwork for more comprehensive functionality in future updates. Linux users and developers can look forward to testing and providing feedback on these new graphics solutions.

Intel's focus on power efficiency is evident in the features accompanying Battlemage support. The kernel will introduce Panel Replay functionality, a technology aimed at reducing display power consumption. This aligns with the growing demand for energy-efficient computing solutions, particularly in mobile and laptop segments. However, the work is far from complete. Intel's Linux graphics driver team continues to refine and optimize Battlemage support, with the goal of delivering a seamless experience by the time these GPUs hit the market later this year. The introduction of Battlemage support not only expands options for Linux users but also intensifies competition in the GPU market, potentially driving innovation across the industry. With promises of up to 1.5x over the previous generation Arc GPUs, we are in for a decent upgrade this year.

Intel's Next-Gen Falcon Shores GPU to Consume 1500 W, No Air-Cooled Variant Planned

Intel's upcoming Falcon Shores GPU is shaping up to be a powerhouse for AI and high-performance computing (HPC) workloads, but it will also be an extreme power hog. The processor, combining Gaudi and Ponte Vecchio successors into a single GPU, is expected to consume an astonishing 1500 W of power - more than even Nvidia's beefy B200 accelerator, which draws 1000 W. This immense power consumption will require advanced cooling solutions to ensure the Falcon Shores GPU operates efficiently and safely. Intel's partners may turn to liquid cooling or even full immersion liquid cooling, a technology Intel has been promoting for power-hungry data center hardware. The high power draw is the cost of the Falcon Shores GPU's formidable performance promises. Intel claims it will deliver 5x higher performance per watt and 5x more memory capacity and bandwidth compared to its Ponte Vecchio products.

Intel may need to develop proprietary hardware modules or a new Open Accelerator Module (OAM) spec to support such extreme power levels, as the current OAM 2.0 tops out around 1000 W. Slated for release in 2025, the Falcon Shores GPU will be Intel's GPU IP based on its next-gen Xe graphics architecture. It aims to be a major player in the AI accelerator market, backed by Intel's robust oneAPI software development ecosystem. While the 1500 W power consumption is sure to raise eyebrows, Intel is betting that the Falcon Shores GPU's supposedly impressive performance will make it an enticing option for AI and HPC customers willing to invest in robust cooling infrastructure. The ultra-high-end accelerator market is heating up, and the HPC accelerator market needs a Ponte Vecchio successor.

Intel Prepares Core Ultra 5-238V Lunar Lake-MX CPU with 32 GB LPDDR5X Memory

Intel has prepared the Core Ultra 5-238V, a Lunar Lake-MX CPU that integrates 32 GB of LPDDR5X memory into the CPU package. This new design represents a significant departure from the traditional approach of using separate memory modules, promising enhanced performance and efficiency, similar to what Apple is doing with its M series of processors. The Core Ultra 5-238V is the first of its kind for Intel to hit mass consumers. Previous attempt was with Lakefield, which didn't take off, but had advanced 3D stacked Foveros packaging. With 32 GB of high-bandwidth, low-power LPDDR5X memory directly integrated into the CPU package, the Core Ultra 5-238V eliminates the need for separate memory modules, reducing latency and improving overall system responsiveness. This seamless integration results in faster data transfer rates and lower power consumption with LPDDR5X memory running at 8533 MT.

Applications that demand intensive memory usage, such as video editing, 3D rendering, and high-end gaming, will be the first to experience performance gains. Users can expect smoother multitasking, quicker load times, and more efficient handling of memory-intensive tasks. The Core Ultra 5-238V is equipped with four big Lion Cove and four little Skymont cores, in combination with seven Xe2-LPG cores based on Battlemage GPU microarchitecture. The bigger siblings to Core Ultra 5, the Core Ultra 7 series, will feature eight Xe2-LPG cores instead of seven, with the same CPU core count, while all of them will run the fourth generation NPU.

TOP500: Frontier Keeps Top Spot, Aurora Officially Becomes the Second Exascale Machine

The 63rd edition of the TOP500 reveals that Frontier has once again claimed the top spot, despite no longer being the only exascale machine on the list. Additionally, a new system has found its way into the Top 10.

The Frontier system at Oak Ridge National Laboratory in Tennessee, USA remains the most powerful system on the list with an HPL score of 1.206 EFlop/s. The system has a total of 8,699,904 combined CPU and GPU cores, an HPE Cray EX architecture that combines 3rd Gen AMD EPYC CPUs optimized for HPC and AI with AMD Instinct MI250X accelerators, and it relies on Cray's Slingshot 11 network for data transfer. On top of that, this machine has an impressive power efficiency rating of 52.93 GFlops/Watt - putting Frontier at the No. 13 spot on the GREEN500.

Intel-powered Aurora Supercomputer Ranks Fastest for AI

At ISC High Performance 2024, Intel announced in collaboration with Argonne National Laboratory and Hewlett Packard Enterprise (HPE) that the Aurora supercomputer has broken the exascale barrier at 1.012 exaflops and is the fastest AI system in the world dedicated to AI for open science, achieving 10.6 AI exaflops. Intel will also detail the crucial role of open ecosystems in driving AI-accelerated high performancehigh -performance computing (HPC). "The Aurora supercomputer surpassing exascale will allow it to pave the road to tomorrow's discoveries. From understanding climate patterns to unraveling the mysteries of the universe, supercomputers serve as a compass guiding us toward solving truly difficult scientific challenges that may improve humanity," said Ogi Brkic, Intel vice president and general manager of Data Center AI Solutions.

Designed as an AI-centric system from its inception, Aurora will allow researchers to harness generative AI models to accelerate scientific discovery. Significant progress has been made in Argonne's early AI-driven research. Success stories include mapping the human brain's 80 billion neurons, high-energy particle physics enhanced by deep learning, and drug design and discovery accelerated by machine learning, among others. The Aurora supercomputer is an expansive system with 166 racks, 10,624 compute blades, 21,248 Intel Xeon CPU Max Series processors, and 63,744 Intel Data Center GPU Max Series units, making it one of the world's largest GPU clusters.

BIOSTAR Becomes an Intel Arc Board Partner, Introduces Arc A750 OC Graphics Card

BIOSTAR, a leading manufacturer of motherboards, graphics cards, and storage devices today, is thrilled to introduce the brand-new Intel Arc A750 OC Graphics card. BIOSTAR proudly presents the Arc A750 OC graphics card, a true game-changer for content creators and professional gamers. It is meticulously designed to cater to a wide range of computing needs, seamlessly accommodating content creation and gaming at every level. The Arc A750 OC graphics card harnesses the cutting-edge Intel Arc graphics technology, offering a unique blend of unmatched performance and innovative features that sets it apart in the competitive market.

With its impressive 28 Xe-Cores and a graphics clock speed of 2200 MHz, the BIOSTAR Arc A750 OC is a powerhouse designed to deliver robust gaming and content creation performance. It comes packed with a substantial 8 GB of GDDR6 memory, operating at a lightning-fast speed of 16 Gbps, and utilizes a 256-bit memory interface for efficient data transfer and processing. With a total board power (TBP) of 225 W, this graphics card is engineered to balance power consumption with high-end performance, making it an exciting option for users looking for a powerful yet efficient GPU solution.

Intel Xeon Scalable Gets a Rebrand: Intel "Xeon 6" with Granite Rapids and Sierra Forest Start a New Naming Scheme

During the Vision 2024 event, Intel announced that its upcoming Xeon processors will be branded under the new "Xeon 6" moniker. This rebranding effort aims to simplify the company's product stack and align with the recent changes made to its consumer CPU naming scheme. In contrast to the previous "x Generation Xeon Scalable", the new branding aims to simplify the product family. The highly anticipated Sierra Forest and Granite Ridge chips will be the first processors to bear the Xeon 6 branding, and they are set to launch in the coming months. Intel has confirmed that Sierra Forest, designed entirely with efficiency cores (E-cores), remains on track for release this quarter. Supermicro has already announced early availability and remote testing programs for these chips. Intel's Sierra Forest is set to deliver a substantial leap in performance. According to the company, it will offer a 2.4X improvement in performance per watt and a staggering 2.7X better performance per rack compared to the previous generation. This means that 72 Sierra Forest server racks will provide the same performance as 200 racks equipped with older second-gen Xeon CPUs, leading to significant power savings and a boost in overall efficiency for data centers upgrading their system.

Intel has also teased an exciting feature in its forthcoming Granite Ridge processors-support for the MXFP4 data format. This new precision format, backed by the Open Compute Project (OCP) and major industry players like NVIDIA, AMD, and Arm, promises to revolutionize performance. It could reduce next-token latency by up to 6.5X compared to fourth-gen Xeons using FP16. Additionally, Intel stated that Granite Ridge will be capable of running 70 billion parameter Llama-2 models, a capability that could open up new possibilities in data processing. Intel claims that 70 billion 4-bit models run entirely on Xeon in just 86 milliseconds. While Sierra Forest is slated for this quarter, Intel has not provided a specific launch timeline for Granite Ridge, stating only that it will arrive "soon after" its E-core counterpart. The Xeon 6 branding aims to simplify the product stack and clarify customer performance tiers as the company gears up for these major releases.

Intel Releases XeSS 1.3, Improves FPS Across Presets with New Resolution Scaling, Improved Upscalers

Intel on Wednesday released the XeSS 1.3 performance enhancement, which works with Intel Arc "Alchemist" discrete GPUs, and Intel Arc iGPUs powering the Core Ultra "Meteor Lake" processors. The new super sampling technology brings several under-the-hood improvements to the upscaler, which improves image quality at a given resolution. Intel leveraged this improved upscaler to rework the resolution-scale of each performance preset, thereby improving performance per preset; while also introducing new presets at both ends of the resolution scale. The company released the XeSS 1.3 SDK on GitHub, so developers can begin exploring the tech and implementing it on their games.

The XeSS 1.3 update is predicated on an improved upscaler. Intel says that it has updated the AI models with new optimizations, and additional pre-training, particularly with difficult to upscale elements (such as meshes, as in textures with a lot of alpha pixels). The updated upscaler offers better reconstruction of detail, better AA, less ghosting, and improved temporal stability. Intel then used this up change the resolution scale across all its presets as detailed in the table below. It introduced the new Ultra Performance preset that does a 3.0x resolution scale, something that didn't exist in the previous versions of XeSS. On the other end of the spectrum is Native AA, a mode that has zero upscaling, but just the full application of the upscaler as a varnish—this is essentially Intel's take on DLAA.

Intel's Desktop and Mobile "Arrow Lake" Chips Feature Different Versions of Xe-LPG

Toward the end of 2024, Intel will update its client processor product stack with the introduction of the new "Arrow Lake" microarchitecture targeting both the desktop and mobile segments. On the desktop side of things, this will herald the new Socket LGA1851 with more SoC connectivity being shifted to the processor; and on the mobile side of things, there will be a much-needed increase in CPU core counts form the current 6P+8E+2LP. This low maximum core-count for "Meteor Lake" is the reason why Intel couldn't debut it on the desktop platform, and couldn't use it to power enthusiast HX-segment mobile processors, either—it had to tap into "Raptor Lake Refresh," and use the older 14th Gen Core nomenclature one last time.

All hopes are now pinned on "Arrow Lake," which could make up Intel's second Core Ultra mobile lineup; its first desktop Core Ultra, and possibly push "Meteor Lake" to the non-Ultra tier. "Arrow Lake" carries forward the Xe-LPG graphics architecture for the iGPU that Intel debuted with "Meteor Lake," but there's a key difference between the desktop- and mobile "Arrow Lake" chips concerning this iGPU, and it has not just to do with the Xe core counts. It turns out, that while the desktop "Arrow Lake-S" processor comes with an iGPU based on the Xe-LPG graphics architecture; the mobile "Arrow Lake" chips spanning the U-, P-, and H-segments will use a newer version of this architecture, called the Xe-LPG+.

Adaptive Sharpening Filter Outlined in Intel Lunar Lake Xe2 Patch Notes

Intel appears to working on an intriguing next generation adaptive sharpening filter—as revealed in mid-week published patch notes. Lunar Lake's display engine seems to be the lucky recipient here—its Xe2 "Battlemage" graphics architecture is expected to debut later this year. Second generation Intel Arc integrated graphics solutions have been linked to mobile Lunar Lake (LNL) processors—driver enablement was uncovered by Phoronix last September. The notes reveal that Team Blue is exploring a more intelligent approach to improving visual enhancements across games and productivity applications.

Author, Nemesa Garg (an engineer at Intel India) stated: "Many a times images are blurred or upscaled content is also not as crisp as original rendered image. Traditional sharpening techniques often apply a uniform level of enhancement across entire image, which sometimes result in over-sharpening of some areas and potential loss of natural details. Intel has come up with Display Engine based adaptive sharpening filter with minimal power and performance impact. From LNL onwards, the Display hardware can use one of the pipe scaler for adaptive sharpness filter. This can be used for both gaming and non-gaming use cases like photos, image viewing. It works on a region of pixels depending on the tap size."

MSI Confirms Claw Prices for All Three SKUs, Confirms VRR Screen

MSI has officially confirmed the price for all three Claw gaming handheld SKUs, including two SKUs with the Intel Core Ultra 7-155H CPU and one equipped with the Core Ultra-135H CPU. The MSI Claw starts at $699.99 for the base version with an Intel Core Ultra 5-135H CPU, 16 GB of LPDDR5 memory, and 512 GB of PCIe Gen 4 M.2 storage. The other two SKUs, are priced at $749.99 and $799.99, both come with a Core Ultra 7-155H CPU, 16 GB of LPDDR5 memory, and either 512 GB or 1 TB of PCIe Gen 4 M.2 storage. Unfortunately, there is no word on the rumored SKU with 32 GB of LPDDR5 memory.

These prices make the MSI Claw just a tad bit more expensive than the ASUS ROG Ally and the Lenovo Legion Go, but it should do well if the performance is there. MSI has also confirmed to The Verge that the Claw's 7-inch 1080p screen comes with Variable Refresh Rate (VRR) operating between 48 and 120 Hz. The MSI Claw is rumored to launch in February or March.

Intel Arc Xe2 "Battlemage" Not Coming to Mobile AICs, Possibly First PCIe Gen 5 GPU

Intel is planning to launch its next-generation Arc "Battlemage" GPUs in 2024. When they come out, they could possibly be the first to implement a PCIe Gen 5 host interface, with the BCM-G10 silicon powering the top SKUs reportedly featuring PCI-Express 5.0 x16. Given how sensitive current generation Arc GPUs are to host interface features such as resizable BAR, the GPUs might possibly need not just the added bandwidth, but also features Gen 5 introduces, such as memory coherency. It might not just be a move aimed at sprucing up the specs sheet.

The Moore's Law is Dead report behind this leak also says that with the Arc Xe2 generation, Intel might not release mobile AIC cards like it does with the current generation. Now, this does not mean that there won't be mobile SKUs, it's just that they'll be sold to laptop OEMs to hardwired onto their laptop mainboards—as it's done on the majority of laptops with discrete GPUs. Besides laptop GPUs in trays, Intel will also develop desktop PCIe add-on graphics cards based on the new GPUs.

Intel Reports Fourth-Quarter and Full-Year 2023 Financial Results

Intel Corporation today reported fourth-quarter and full-year 2023 financial results. "We delivered strong Q4 results, surpassing expectations for the fourth consecutive quarter with revenue at the higher end of our guidance," said Pat Gelsinger, Intel CEO. "The quarter capped a year of tremendous progress on Intel's transformation, where we consistently drove execution and accelerated innovation, resulting in strong customer momentum for our products. In 2024, we remain relentlessly focused on achieving process and product leadership, continuing to build our external foundry business and at-scale global manufacturing, and executing our mission to bring AI everywhere as we drive long-term value for stakeholders."

David Zinsner, Intel CFO, said, "We continued to drive operational efficiencies in the fourth quarter, and comfortably achieved our commitment to deliver $3 billion in cost savings in 2023. We expect to unlock further efficiencies in 2024 and beyond as we implement our new internal foundry model, which is designed to drive greater transparency and accountability and higher returns on our owners' capital." For the full year, the company generated $11.5 billion in cash from operations and paid dividends of $3.1 billion.

SPARKLE Announces Arc A380 Genie and A310 Eco Low-profile Graphics Cards

SPARKLE is announcing the low-profile series: SPARKLE Intel Arc A380 GENIE graphics and SPARKLE Intel Arc A310 ECO graphics. Both graphics cards come as low-profile configurations with 1x HDMI and 2x mini-DP video outputs, a free additional short bracket in the box, and are packed with Intel Arc technologies. Advanced technologies include AI-enhanced Intel Xe Super Sampling (XeSS) for higher image quality and performance, DirectX 12 Ultimate support including hardware-accelerated ray tracing, full AV1 hardware encode and decode for the latest multimedia support, and Intel Deep Link Technologies for exclusive platform advantages combining Intel Core processor and Intel Arc graphics.

These cards are ready to fit into any magic lamp and make gaming wishes come alive! Furthermore, SPARKLE has built an exclusive Intel Arc A310 by successfully reducing the TBP (total board power) of the Intel Arc A310 from Intel's default 75 W to 50 W, providing the best balance of features, technologies and experiences in a small but advanced form-factor.

Intel Arc GPU Graphics Drivers 101.5122 WHQL Released

Intel released the latest version of its Arc GPU Graphics drivers. Version 101.5122 WHQL comes with support for the 14th Gen Core HX and Desktop 65 W series processors with their Intel UHD 770/730 series integrated graphics based on the Xe-LP architecture. The drivers also add optimization for "Prince of Persia: The Lost Crown." The company hasn't fixed any issues with this particular driver release, but identified a handful new issues to fix with future releases. Grab the drivers from the link below.

DOWNLOAD: Intel Arc GPU Graphics Drivers 101.5122 WHQL

Intel Arc "Battlemage" GPUs Confirmed for 2024 Release

Intel, in a company presentation made to its channel partners, confirmed that it is looking to release its next generation Arc Xe² discrete GPU lineup, codenamed "Battlemage." This would be Intel's second rodeo with high performance gaming graphics since its 2022 return to the segment with the Arc "Alchemist" series. The One Intel presentation slide talks about what to look forward to from the company in the client segment, in the coming year. The slide states that PC processor, workstation processor, and discrete GPU segments will each see upcoming products, which can be seen as a confirmation for a 2024 launch of "Battlemage." Older company slides had illustrated that the launch of "Battlemage" would be timed around that of the company's "Meteor Lake" and "Arrow Lake" client processors. The company is expected to launch "Arrow Lake" sometime in 2024. With "Battlemage," Intel is looking to offer a linear increase in performance, along with new hardware capabilities. The discrete GPUs from this family are expected to be built on a 4 nm-class foundry node by TSMC.
Return to Keyword Browsing
Sep 15th, 2024 02:40 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts