News Posts matching #DDR

Return to Keyword Browsing

PassMark Software Previews DDR5 Support in MemTest86

If you even came across a PC system that had a problem with its Ram, there are high chances that you have used PassMark Software MemTest86 software for testing and revealing DRAM errors. The software uses a chain of algorithms, including SIMD and row hammer tests, to try to test if the memory is in a good shape or it has some problems. PC builders have used the software for years to detect and isolate any potential Ram issues that occurred. Today, makers of MemTest86, PassMark Software, previewed initial support for DDR5 memory in their internal software builds. That means that by the time DDR5 memory hits the consumer market, we will have software for testing any possible defective Ram.

SiFive Performance P550 Core Sets New Standard as Highest Performance RISC-V Processor IP

SiFive, Inc., the industry leader in RISC-V processors and silicon solutions, today announced launched the new SiFive Performance family of processors. The SiFive Performance family debuts with two new processor cores, the P270, SiFive's first Linux capable processor with full support for the RISC-V vector extension v1.0 rc, and the SiFive Performance P550 core, SiFive's highest performance processor to date. The new SiFive Performance P550 delivers a SPECInt 2006 score of 8.65/GHz, making it the highest performance RISC-V processor available today, and comparable to existing proprietary solutions in the application processor space.

"SiFive Performance is a significant milestone in our commitment to deliver a complete, scalable portfolio of RISC-V cores to customers in all markets who are at the vanguard of SOC design and are dissatisfied with the status quo," said Dr. Yunsup Lee, Co-Founder and CTO of SiFive. "These two new products cover new performance points and a wide range of application areas, from efficient vector processors that easily displace yesterday's SIMD architectures, to the bleeding edge that the P550 represents. SiFive is proud to set the standard for RISC-V processing and is ready to deliver these products to customers today."

Intel Alder Lake-S Engineering Sample Spotted with DDR5-4800 Memory Running DOTA 2

Intel's upcoming Alder Lake-S processors are going to be the company's first attempt at delivering heterogeneous core solutions, combining low-power and high-performance IPs in a single chip. Another important milestone that these processors will reach is DDR5 memory adoption, the first of its kind on consumer platforms. Today, thanks to CapFrameX, a monitoring tool that also hosts a database of benchmark runs, we have a piece of recorded information coming from a test system equipped with an Intel Alder Lake-S processor. The tested system spotted an engineering sample of the Alder Lake-S lineup, clocked at just 2.2 GHz. The core count and core configuration remained unknown.

Alongside the upcoming CPU, the system is composed of NVIDIA's GeForce RTX 3080 GPU and DDR5 memory running at 4800 MHz. There were four sticks present, each having 8 GB capacity. The leaked system was running the DOTA 2 game at an average of 119.98 FPS, which doesn't mean much, given that we don't know which settings were applied and what was the resolution. There is a chart showing the gaming frame rate and frame time, which could be interesting to look at. However, the only new information we have come to know is that the Alder Lake-S is already capable of playing games and the ecosystem support should be very good at launch.

DRAM Revenue for 1Q21 Undergoes 8.7% Increase QoQ Thanks to Increased Shipment as Well as Higher Prices, Says TrendForce

Demand for DRAM exceeded expectations in 1Q21 as the proliferation of WFH and distance education resulted in high demand for notebook computers against market headwinds, according to TrendForce's latest investigations. Also contributing to the increased DRAM demand was Chinese smartphone brands' ramp-up of component procurement while these companies, including OPPO, Vivo, and Xiaomi, attempted to seize additional market shares after Huawei's inclusion on the Entity List. Finally, DRAM demand from server manufacturers also saw a gradual recovery. Taken together, these factors led to higher-than-expected shipments from various DRAM suppliers in 1Q21 despite the frequent shortage of such key components as IC and passive components. On the other hand, DRAM prices also entered an upward trajectory in 1Q21 in accordance with TrendForce's previous forecasts. In light of the increases in both shipments and quotes, all DRAM suppliers posted revenue growths in 1Q21, and overall DRAM revenue for the quarter reached US$19.2 billion, an 8.7% growth QoQ.

Demand for PC, mobile, graphics, and special DRAM remains healthy in 2Q21. Furthermore, after two to three quarters of inventory reduction during which their DRAM demand was relatively sluggish, some server manufacturers have now kicked off a new round of procurement as they expect a persistent increase in DRAM prices. TrendForce therefore forecasts a significant QoQ increase in DRAM ASP in 2Q21. In conjunction with increased bit shipment, this price hike will likely drive total DRAM revenue for 2Q21 to increase by more than 20% QoQ.

Intel Xe-HPG DG2 GPU Specifications Leak, First GPUs are Coming in H2 2021 in Alder Lake-P Laptops

Yesterday, we got information that Intel's upcoming DG2 discrete graphics card is "right around the corner". That means that we are inching closer to the launch of Intel's discrete GPU offerings, and we are going to get another major player in the current GPU market duopoly. Today, however, we are in luck because Igor from Igor's LAB has managed to get ahold of the specifications of Intel's Xe-HPG DG2 graphics card. For starters, it is important to note that DG2 GPU will first come to laptops later this year. More precisely, laptops powered by Alder Lake-P processors will get paired with DG2 discrete GPU in the second half of 2021. The CPU and GPU will connect using the PCIe 4.0 x12 link as shown in the diagram below, where the GPU is paired with the Tiger Lake-H processor. The GPU has its subsystem that handles the IO as well.

AMD Releases Radeon Software Adrenalin 2020 Edition 21.5.1 Drivers

AMD has today updated its Radeon Software Adrenalin 2020 Edition version 21.5.1 drivers, bringing many features on board as well as fixing a lot of issues that have appeared in the past. Starting with support for the Resident Evil Village PC game, AMD promises to deliver up to 13% better frame rate at 4K maximum settings, while using the Radeon RX 6800 XT graphics card. The comparison was conducted with a reference to the previous driver, 21.4.1, which didn't allow the card to reach as high FPS as it is now possible with the proper support for the game. Another game that is added to the support list is Metro Exodus PC Enhanced Edition. Some fixes have been implemented, as the incorrect performance metrics that may have incorrectly reported temperatures on Ryzen 5 1600 series processors. For a detailed list of bug fixes, please take a look at the list below.
DOWNLOAD: AMD Radeon Software Adrenalin 2020 Edition 21.5.1

GIGABYTE Also Announces AORUS Model X and Model S Gaming PCs Powered By AMD Ryzen Processors

GIGABYTE TECHNOLOGY Co. Ltd, a leading manufacturer of motherboards and graphics cards, today presented two gaming systems of AMD X570 platform with AORUS MODEL X and AMD B550 platform with mini system AORUS MODEL S, which adopt the top-notch components and materials for extreme performance. Enhanced by the strict verification and leading technology, GIGABYTE provides the PC system of extreme performance with optimized heat dissipation and acoustic control. The system maintains cool and quiet even under the full operation, which balance the high performance and low temperature to keep the system acoustic under 40dB without throttling. Furthermore, the three-year warranty of full system offers an ease and comprehensive service for users.

"When tackling the uplift of PC performance, multi-core, high frequency, and copious storage become a must to the premium PC platform, as well as how to make the best components matrix to provide the optimized performance with reliability turns into more inevitable." indicated by Eddie Lin, Vice President of the GIGABYTE Channel Solutions. "The new AORUS system is well-tempered by multiple verification and tuning of GIGABYTE's R&D team, which provide a perfect match of cool, quiet, and powerful performance with compatibility and three-year whole system warranty.

GIGABYTE Launches AORUS Model S and Model X Gaming Desktops Powered by Intel 11th Generation Processors

GIGABYTE TECHNOLOGY Co. Ltd, a leading manufacturer of motherboards and graphics cards, today presented two gaming systems of Intel Z590 platform with AORUS MODEL X and mini system AORUS MODEL S, which adopt the top-notch components and materials for extreme performance. Enhanced by the strict verification and leading technology, GIGABYTE provides the PC system of premium performance with optimized heat dissipation and acoustic control. The system maintains cool and quiet even under the overclocking, which balance the high performance and low temperature to keep the system acoustic under 40dB without throttling. Furthermore, the three-year warranty of full system offers reassuring and comprehensive service for users.

"When tackling the uplift of PC performance, multi-core, high frequency, and copious storage become a standard to the premium PC platform, as well as how to make the best components matrix to provide the optimized performance with reliability turns into more inevitable." indicated by Eddie Lin, Vice President of the GIGABYTE Channel Solutions. "The new AORUS system is well-tempered by multiple verification and tuning of GIGABYTE's R&D team, which provide a perfect match of cool, quiet, and powerful performance with optimized compatibility, Expandability, and three-year warranty of whole system.

DRAM Prices Projected to Rise by 18-23% QoQ in 2Q21 Owing to Peak Season Demand, Says TrendForce

TrendForce's investigations find that DRAM suppliers and major PC OEMs are currently participating in the critical period of negotiating with each other over contract prices for 2Q21. Although these negotiations have yet to be finalized, the ASP of mainstream DDR4 1G*8 2666 Mbps modules has already increased by nearly 25% QoQ as of now, according to data on ongoing transactions. This represents a higher price hike than TrendForce's prior forecast of "nearly 20%". On the other hand, prices are likewise rising across various DRAM product categories in 2Q21, including DDR3/4 specialty DRAM, mobile DRAM, graphics DRAM, and in particular server DRAM, which is highly related to PC DRAM and is therefore also undergoing a higher price hike than previously expected. TrendForce is therefore revising up its forecast of overall DRAM price hike for 2Q21 from 13-18% QoQ to 18-23% QoQ instead. However, the actual increase in prices of various DRAM product categories will depend on the production capacities allocated to the respective products by DRAM suppliers.

Netac Kickstarts Research and Development Process for 10 GHz DDR5 Memory

Netac, a Chinese company based in Shenzen claiming to be the inventor of USB flash drive, has reportedly started the research and development process of DDR5 memory modules that will outperform everything on the market. Netac is rumored to have started the development of DDR5 memory that will have a frequency of over 10,000 MHz. While the JEDEC specification notes that the DDR5 frequency range is between 4800-8400 MHz, manufacturers are always welcome to go over the official specifications. Being that Netac is a relatively new player in the PC memory space, we are wondering how the company plans to execute its plans.

A 10 GHz DDR5 memory would require a very high voltage to run, meaning high heat output. We know that DDR5 chips can run at 2.6 V, according to T-FORCE, who tested such a configuration earlier. The next potential problem would be a platform that could handle 10 GHz DDR5 memory, however, by the time we get this memory in our hands, platforms will mature enough to handle high-speed RAM. The first batch of new DDR5 memory that was sent to Netac was Micron's Z9ZSB modules, which are 2Gx8, CL40 memory modules. They are manufactured in the 1znm memory manufacturing node Micron uses. It is left to be seen what we end up with and if Netac delivers on its promise.

CPU-Z Enables Preliminary Support for Intel Alder Lake CPUs

CPU-Z, the CPU monitoring tool used to gather information about the processor your system is running on, has been updated with version 1.96. This new update doesn't change the software much but rather brings support for new hardware. Starting from this revision, Intel's upcoming Alder Lake CPUs have received preliminary support in the tool. To go along with CPUs, the software is now also enabled to recognize Intel's Z6xx motherboards that pair with Alder Lake processors. Alongside that, the software now also brings support for next-generation DDR5 memory, which is supposed to feature speeds anywhere from 4800 to 8400 MT/s. When it comes to AMD, the tool received an update that enables it to read information about AMD's Ryzen 5700G, 5600G, and 5300G APUs, and Radeon RX 6900 XT, 6800 (& XT), 6700 XT GPUs.
Download CPU-Z Version 1.96 Here.

NVIDIA Announces Grace CPU for Giant AI and High Performance Computing Workloads

NVIDIA today announced its first data center CPU, an Arm-based processor that will deliver 10x the performance of today's fastest servers on the most complex AI and high performance computing workloads.

The result of more than 10,000 engineering years of work, the NVIDIA Grace CPU is designed to address the computing requirements for the world's most advanced applications—including natural language processing, recommender systems and AI supercomputing—that analyze enormous datasets requiring both ultra-fast compute performance and massive memory. It combines energy-efficient Arm CPU cores with an innovative low-power memory subsystem to deliver high performance with great efficiency.

Intel's Upcoming Sapphire Rapids Server Processors to Feature up to 56 Cores with HBM Memory

Intel has just launched its Ice Lake-SP lineup of Xeon Scalable processors, featuring the new Sunny Cove CPU core design. Built on the 10 nm node, these processors represent Intel's first 10 nm shipping product designed for enterprise. However, there is another 10 nm product going to be released for enterprise users. Intel is already preparing the Sapphire Rapids generation of Xeon processors and today we get to see more details about it. Thanks to the anonymous tip that VideoCardz received, we have a bit more details like core count, memory configurations, and connectivity options. And Sapphire Rapids is shaping up to be a very competitive platform. Do note that the slide is a bit older, however, it contains useful information.

The lineup will top at 56 cores with 112 threads, where this processor will carry a TDP of 350 Watts, notably higher than its predecessors. Perhaps one of the most interesting notes from the slide is the department of memory. The new platform will make a debut of DDR5 standard and bring higher capacities with higher speeds. Along with the new protocol, the chiplet design of Sapphire Rapids will bring HBM2E memory to CPUs, with up to 64 GBs of it per socket/processor. The PCIe 5.0 standard will also be present with 80 lanes, accompanying four Intel UPI 2.0 links. Intel is also supposed to extend the x86_64 configuration here with AMX/TMUL extensions for better INT8 and BFloat16 processing.

The Latest BIOS of GIGABYTE B560 Motherboards Boosts i9 11900K CPU to All-cores 5.1 GHz

Gigabyte Technology, one of the top global manufacturers of motherboards, graphics cards, and hardware solutions, announces today the latest BIOS of B560 AORUS motherboards. Enhanced by the 12+1 phases DrMOS power stage with 60 Amps for each and full coverage VRM thermal design, B560 AORUS motherboards can support Intel Core i9 11900K (F) series processors overclocking to all cores 5.1 GHz. The exclusive anti-interference design of memory circuit enables DDR4 speed raising up to XMP 4800 MHz, and overclocking performance boost to DDR4 5300 MHz. which demonstrates GIGABYTE's strong R&D strength and persistence in quality. Users can enjoy the performance boost of time-limited overclocking by simply updating to the latest BIOS to meet their special needs.1

Intel B series chipset motherboards have been always excluded from overclocking due to the product positioning. Although the memory XMP overclocking is unlocked on 500 series, the processor frequency can only reach up to 4.8 GHz by Turbo Boost. Thanks to the efforts of Gigabyte's R&D team, the processor can be overclocked to 5.1 GHz and maintain low temperature under the Prime95 no AVX burn-in test. This powerful performance benefits from the top-quality materials of GIGABYTE AORUS motherboards and product design capabilities, which include 12+1 phases/ 60Apms DrMOS power stage, 6 layers 2Oz ultra-cool PCB, full-covered VRM thermal design, and the latest Smart Fan 6 technology for temperature control. These features allow processors to have a stable and pure power supply under ultra-high frequency operation, providing the most solid backing for the CPU limited-time overclocking.

ASRock Rack Puts AMD Ryzen 5000 Series Processor in 1U Short Depth Server

ASRock Rack, a division of ASRock dedicated to server/enterprise products, has today quietly launched a 1U short depth server, equipped with AMD's X570 motherboards, able to accommodate AMD Ryzen 5000 series of processors. The 1U2-X570/2T, as ASRock calls it, features an X570D4I-2T motherboard that is capable of housing any AMD Ryzen and Ryzen Pro 5000 series processor with TDP up to 105 Watts, paired with up to four SO-DIMMs of DDR4 ECC memory. Being a remote desktop/server type of build, the 1U case is not designed to be equipped with any powerful discrete graphics card. There is room for the motherboard, the power supply, and the HDDs located next to the motherboard.

Equipped with an 80-Plus Bronze 265 Watt PSU, the system can handle almost any CPU it is equipped with, two 3.5" drives and two 2.5" 7 mm drives. The motherboard also supports M.2 2280 SSD with PCIe 4.0 protocol support. When it comes to basic graphics output, ASRock Rack has installed an ASPEED AST2500 graphics controller to handle basic video output and display the command line, so you can operate with your server with ease. When it comes to networking, it is equipped with dual RJ45 10 GbE connectors, coming from an Intel X550-AT2 Ethernet controller. For more details, head over to the ASRock Rack 1U2-X570/2T product page.

AMD's Next-Generation Van Gogh APU Shows Up with Quad-Channel DDR5 Memory Support

AMD is slowly preparing to launch its next-generation client-oriented accelerated processing unit (APU), which is AMD's way of denoting a CPU+GPU combination. The future design is codenamed after Van Gogh, showing AMD's continuous use of historic names for their products. The APU is believed to be a design similar to the one found in the SoC of the latest PlayStation 5 and Xbox Series X/S consoles. That means that there are Zen 2 cores present along with the latest RDNA 2 graphics, side by side in the same processor. Today, one of AMD's engineers posted a boot log of the quad-core Van Gogh APU engineering sample, showing some very interesting information.

The boot log contains information about the memory type used in the APU. In the logs, we see a part that says "[drm] RAM width 256bits DDR5", which means that the APU has an interface for the DDR5 memory and it is 256-bit wide, which represents a quad-channel memory configuration. Such a wide memory bus is typically used for applications that need lots of bandwidth. Given that Van Gogh uses RDNA 2 graphics, the company needs a sufficient memory bandwidth to keep the GPU from starving for data. While we don't have much more information about it, we can expect to hear greater details soon.

DDR5-6400 RAM Benchmarked on Intel Alder Lake Platform, Shows Major Improvement Over DDR4

As the industry is preparing for a shift to the new DDR standard, companies are trying to adopt the new technology and many companies are manufacturing the latest DDR5 memory modules. One of them is Shenzhen Longsys Electronics Co. Ltd, a Chinese manufacturer of memory chips, which has today demonstrated the power of DDR5 technology. Starting with this year, client platforms are expected to make a transition to the new standard, with the data center/server platform following. Using Intel's yet unreleased Alder Lake-S client platform, Longsys has been able to test its DDR5 DIMMs running at an amazing 6400 MHz speed and the company got some very interesting results.

Longsys has demoed a DDR5 module with 32 GB capacity, CAS Latency (CL) of 40 CL, operating voltage of 1.1 V, and memory modules clocked at 6400 MHz. With this being an impressive memory module, this is not the peak of DDR5. According to JEDEC specification, DDR5 will come with up to 8400 MHz speeds and capacities that are up to 128 GB per DIMM. Longsys has run some benchmarks, using an 8-core Alder Lake CPU, in AIDA64 and Ludashi. The company then proceeded to compare these results with DDR4-3200 MHz CL22 memory, which Longsys also manufactures. And the results? In AIDA64 tests, the new DDR5 module is faster anywhere from 12-36%, with the only regression seen in latency, where DDR5 is doubling it. In synthetic Ludashi Master Lu benchmark, the new DDR5 was spotted running 112% faster. Of course, these benchmarks, which you can check out here, are provided by the manufacturer, so you must take them with a grain of salt.

SiPearl to Manufacture its 72-Core Rhea HPC SoC at TSMC Facilities

SiPearl has this week announced their collaboration with Open-Silicon Research, the India-based entity of OpenFive, to produce the next-generation SoC designed for HPC purposes. SiPearl is a part of the European Processor Initiative (EPI) team and is responsible for designing the SoC itself that is supposed to be a base for the European exascale supercomputer. In the partnership with Open-Silicon Research, SiPearl expects to get a service that will integrate all the IP blocks and help with the tape out of the chip once it is done. There is a deadline set for the year 2023, however, both companies expect the chip to get shipped by Q4 of 2022.

When it comes to details of the SoC, it is called Rhea and it will be a 72-core Arm ISA based processor with Neoverse Zeus cores interconnected by a mesh. There are going to be 68 mesh network L3 cache slices in between all of the cores. All of that will be manufactured using TSMC's 6 nm extreme ultraviolet lithography (EUV) technology for silicon manufacturing. The Rhea SoC design will utilize 2.5D packaging with many IP blocks stitched together and HBM2E memory present on the die. It is unknown exactly what configuration of HBM2E is going to be present. The system will also see support for DDR5 memory and thus enable two-level system memory by combining HBM and DDR. We are excited to see how the final product looks like and now we wait for more updates on the project.

DigiTimes: DDR3 Prices to Soar 40-50% in 2021

Yes, you are reading that title correctly. Today we got ahold of information that DDR3 prices are going to skyrocket by as much as 40-50% this year! Despite DDR4 being present for seven years (since 2014), which is a lot in the world of tech, DDR3 is still thriving. Used in a wide range of devices like IoT, older servers, and long time running machines that need maintenance for decades. The DDR3 has been manufactured by SK Hynix, Samsung, and Micron, however, as technology moved on, these companies began the migration to the newer DDR4 standard. Even DDR5 exists today and it is currently manufactured.

So why is DDR3 soaring in value? It is because of the increased scarcity of this memory. SK Hynix has stopped the production of 2 Gb modules, leaving only the 4 Gb modules in production. Samsung has cut down the capacity from 60,000 wafers of DDR3 memory modules per month to just 20,000. This has caused the price of 2 Gb and 4 Gb modules to rise already as much as 30%. Despite the age of 14 years, DDR3 is still widely used in many systems. And because of that, the scarcity is making the price of the current memory increase. The price is expected to rise through the whole year and it could reach a 50% increase.

Intel Confirms HBM is Supported on Sapphire Rapids Xeons

Intel has just released its "Architecture Instruction Set Extensions and Future Features Programming Reference" manual, which serves the purpose of providing the developers' information about Intel's upcoming hardware additions which developers can utilize later on. Today, thanks to the @InstLatX64 on Twitter we have information that Intel is bringing on-package High Bandwidth Memory (HBM) solution to its next-generation Sapphire Rapids Xeon processors. Specifically, there are two instructions mentioned: 0220H - HBM command/address parity error and 0221H - HBM data parity error. Both instructions are there to address data errors in HBM so the CPU operates with correct data.

The addition of HBM is just one of the many new technologies Sapphire Rapids brings. The platform is supposedly going to bring many new technologies like an eight-channel DDR5 memory controller enriched with Intel's Data Streaming Accelerator (DSA). To connect to all of the external accelerators, the platform uses PCIe 5.0 protocol paired with CXL 1.1 standard to enable cache coherency in the system. And as a reminder, this would not be the first time we see a server CPU use HBM. Fujitsu has developed an A64FX processor with 48 cores and HBM memory, and it is powering today's most powerful supercomputer - Fugaku. That is showing how much can a processor get improved by adding a faster memory on-board. We are waiting to see how Intel manages to play it out and what we end up seeing on the market when Sapphire Rapids is delivered.

DRAM ASP to Recover from Decline in 1Q21, with Potential for Slight Growth, Says TrendForce

The DRAM market exhibits a healthier and more balanced supply/demand relationship compared with the NAND Flash market because of its oligopolistic structure, according to TrendForce's latest investigations. The percentage distribution of DRAM supply bits by application currently shows that PC DRAM accounts for 13%, server DRAM 34%, mobile DRAM 40%, graphics DRAM 5%, and consumer DRAM (or specialty DRAM) 8%. Looking ahead to 1Q21, the DRAM market by then will have gone through an inventory adjustment period of slightly more than two quarters. Memory buyers will also be more willing to stock up because they want to reduce the risk of future price hikes. Therefore, DRAM prices on the whole will be constrained from falling further. The overall ASP of DRAM products is now forecasted to stay generally flat or slightly up for 1Q21.

Colorful is Preparing DDR4-4000 C14 Memory for Ryzen 5000 Series CPUs

Colorful, a Chinese manufacturer of PC components known for its graphics cards, is apparently preparing a special RAM version for AMD's Ryzen 5000 series CPUs. The new arrival is part of the iGame series that Colorful offers. Thanks to SMZDM forums, we have specifications of the upcoming iGame RAM tuned specifically for Ryzen 5000 series processors. Coming in with all white PCB without a heat spreader, the new Colorful iGame memory features Samsung's B-dies designed for maximum speed and performance. The dies are running at 4000 MT/s with some very strict timings. The memory features C14 (14-14-14-35) timings that are supposed to bring the system latency down and improve performance even further. It is estimated that such a configuration will require 1.5 Volts to power it. While the exact name, launch date, and pricing is unknown, we can only wait and see how Colorful plays it out.

RISC-V Comes to PC: SiFive Introduces HiFive Unmatched Development Board

RISC-V architecture is a relatively new Instruction Set Architecture (ISA) developed at the University of California Berkeley. Starting as a "short, three-month project" the RISC-V ISA is a fifth generation of the Reduced Instruction Set Computing (RISC) ideology. A company working on this technology and helping to grow the ecosystem is SiFive. Today, they announced a big step forward for the ecosystem that will enable developers to make and optimize even more software for this architecture and platform. Called the HiFive Unmatched, the development board represents the first entry of RISC-V ISA to the world of personal computing, with its Mini-ITX form factor and PC-like connectors of power supply and I/O.

The board is home to SiFive's FU740 SoC, a five-core heterogeneous, coherent processor with four SiFive U74 cores, and one SiFive S7 core. This SoC is capable of smooth Linux OS operation, giving the developers a good platform to do their optimizations for. There is 8 GB of onboard DDR4 RAM (unknown frequencies and timing), a MicroSD card slot, and one PCIe 3.0 x4 M.2 slot for system storage. To connect the board to the outside world, you get one Gigabit Ethernet port. For user I/O there are four USB 3.2 Gen 1 Type-A ports (1 Charging port) and one MicroUSB Console port. To power the board, you need a proper power supply with a 24-pin power connector. If you plan to build a PC based on the Unmatched board, you would need a standard ITX case, as it comes in the standard Mini-ITX (170x170 mm) form factor. For more information, please check out SiFive's website.

Intel Alder Lake-S CPU Has Been Pictured

Intel has been preparing the launch of its 10 nm processors for desktop users for some time now, and today we are getting the first pictures of the Alder Lake-S CPU backside. Featuring a package with a size of 37.5×45 mm, the Alder Lake CPU uses more of its area for a pin count increase. Going up from 1200 pins in the LGA1200 socket, the new Alder Lake-S CPU uses 1700 CPU pins, which slots in the LGA1700 socket. In the picture below, there is an engineering sample of the Alder Lake-S CPU, which we see for the first time. While there is no much information about the processor, we know that it will use Intel's 10 nm SuperFin design, paired with hybrid core technology. That means that there will be big (Golden Cove) and little (Gracemont) cores in the design. Other features such as PCIe 5.0 and DDR5 should be present as well. The new CPU generation and LGA1700 motherboards are scheduled to arrive in second half of 2021.

Fujitsu Completes Delivery of Fugaku Supercomputer

Fujitsu has today officially completed the delivery of the Fugaku supercomputer to the Riken scientific research institute of Japan. This is a big accomplishment as the current COVID-19 pandemic has delayed many happenings in the industry. However, Fujitsu managed to play around that and deliver the supercomputer on time. The last of 400 racks needed for the Fugaku supercomputer was delivered today, on May 13th, as it was originally planned. The supercomputer is supposed to be fully operational starting on the physical year of 2021, where the installation and setup will be done before.

As a reminder, the Fugaku is an Arm-based supercomputer consisting out of 150 thousand A64FX CPUs. These CPUs are custom made processors by Fujitsu based on Arm v8.2 ISA, and they feature 48 cores built on TSMC 7 nm node and running above 2 GHz. Packing 8.786 billion transistors, this monster chips use HBM2 memory instead of a regular DDR memory interface. Recently, a prototype of the Fugaku supercomputer was submitted to the Top500 supercomputer list and it came on top for being the most energy-efficient of all, meaning that it will be as energy efficient as it will be fast. Speculations are that it will have around 400 PetaFlops of general compute power for Dual-Precision workloads, however, for the specific artificial intelligence applications, it should achieve ExaFLOP performance target.
K SuperComputer
Return to Keyword Browsing
Copyright © 2004-2021 www.techpowerup.com. All rights reserved.
All trademarks used are properties of their respective owners.