News Posts matching "Intel"

Return to Keyword Browsing

Intel to Acquire eASIC to Bolster FPGA Talent and Solutions

Intel is competing to win in the largest-ever addressable market for silicon, which is being driven by the explosion of data and the need to process, analyze, store and share it. This dynamic is fueling demand for computing solutions of all kinds. Of course Intel is known for world-class CPUs, but today we offer a broader range of custom computing solutions to help customers tackle all kinds of workloads - in the cloud, over the network and at the edge. In recent years, Intel has expanded its products and introduced breakthrough innovations in memory, modems, purpose-built ASICs, vision processing units and field programmable gate arrays (FPGAs).

FPGAs are experiencing expanding adoption due to their versatility and real-time performance. These devices can be programmed anytime - even after equipment has been shipped to customers. FPGAs contain a mixture of logic, memory and digital signal processing blocks that can implement any desired function with extremely high throughput and very low latency. This makes FPGAs ideal for many critical cloud and edge applications, and Intel's Programmable Solutions Group revenue has grown double digits as customers use FPGAs to accelerate artificial intelligence, among other applications.

Intel Announces New Generation Xeon E Processor Family

Intel today announced the release of the new Intel Xeon E-2100 processor. The Intel Xeon E processor, successor to the Intel Xeon E3 processor, is designed for entry-level workstations that provide creators with powerful, single-threaded application performance with a platform optimized for reliability and affordability.

"With today's workloads, aging workstations impede productivity, collaboration and creativity. The release of the Intel Xeon E processor is intended to deliver the essential performance and visuals for entry workstations, as well as optimizing the innovative form factors, designs and diverse requirements of our customers," said Jennifer Huffstetler, vice president and general manager, data center product management, Intel Corporation.

New "Spectre" Variant Hits Intel CPUs, Company Promises Quarterly Microcode Updates

A new variant of the "Spectre" CPU vulnerability was discovered affecting Intel processors, by security researchers Vladimir Kiriansky and Carl Waldspurger, who are eligible to bag a USD $100,000 bounty by Intel, inviting researchers to sniff out vulnerabilities from its processors. This discovery, chronicled under CVE-2018-3693, is among 12 new CVEs Intel will publish later this week. The company is also expected to announce quarterly CPU microcode updates to allay fears of its enterprise customers.

The new vulnerability, like most other "Spectre" variants, targets the speculative execution engine of the processor, in a bounds-check bypass store attack. A malicious program already running on the affected machine can alter function pointers and return addresses in the speculative execution engine, thereby redirecting the flow of data out of protected memory address-spaces, making it visible to malware. This data could be anything, including cryptographic keys, passwords, and other sensitive information, according to "The Register." Intel chronicled this vulnerability in section 2.2.1 of its revised speculative execution side-channel attacks whitepaper. You can also catch a more detailed whitepaper from the researchers themselves.

Intel Exhorts Developers Towards Vulkan Usage as Graphics API of Choice

Intel, via a Game Dev Developer Zone blog post, took it into its hands to urge game developers towards usage of the industry-prevalent Vulkan API. Some unapologetic puns are thrown in, such as "(...) You might say that Vulkan lets apps live long and prosper", but these are only meant to entertain. And it's well known that Intel has supported the Khronos Group and Vulkan's inception from the beginning, alongside Google. The reasons for this blog post to make it into a front page, however, are twofold.
Vulkan APIs are positioned to become one of the next dominant graphics rendering platforms.

Intel to Kill off The "Extreme Edition" Brand Extension

Intel is allegedly killing off the "Extreme Edition" brand extension it has been using to denote its flagship client-segment products, such as processors and NUCs. This, according to industry observer François Piednoël. This could also mean the retirement of related elements such as the iconic Intel Skull, and the black and silver packaging. What Intel is replacing this moniker with, remains a mystery.

Intel currently assigns the "Extreme" extension to only one client-segment product, the Core i9-7980XE. With the advent of the 28-core client-segment processor on a new motherboard platform, Intel could find itself tough to justify the extension on the "Basin Falls" (LGA2066) platform. The company is planning to launch new 20-core and 22-core LGA2066 processors, besides its 28-core processor on the new platform. The Extreme extension is also used on the company's "Skull Canyon" NUC.

TechPowerUp Processor Survey Results: The Ryzen Effect is Real

Late May 2018, TechPowerUp started a front-page poll asking people which processor they use. 37 days and 16,140 responses later, we have a general idea of where the desktop processor market stands among our readers (predominantly PC gamers and enthusiasts). The top-two responses to our survey were 4th generation Core "Haswell," followed by the preceding two generations ("Ivy Bridge" and "Sandy Bridge"). This speaks volumes as to the hole Intel dug itself into, due to lack of competition from AMD. Processors that are 4-7 years old still run today's gaming PCs, and don't bottleneck today's games, as long as graphics cards keep getting faster (where there has been relatively more competition than the CPU market).

Despite being newer, fewer respondents use 6th generation "Skylake" and 7th generation "Kaby Lake" processors than older generations, because those on something like 4th generation "Haswell" or even "Ivy Bridge," don't see the value in upgrading. But then something changed in 2017 - AMD became competitive again, and forced an increase in CPU core counts across the segment. AMD's Ryzen processor family, including both its 1st and 2nd generations, are better received in the market than Intel's competing 8th generation "Coffee Lake" and 7th generation "Kaby Lake." The data stands to validate the "Ryzen effect," the idea that the introduction of Ryzen disrupted Intel's near-monopoly, increased core-counts, and brought innovation back to the segment.

Intel 9000 Series CPU Lineup Confirmed in Official Microcode Revision Guidance + Clocks

Following all of the unofficial, tentative tidbits of information following Intel's on-again, off-again 9000 series CPU lineup (which still belongs to the 8th Generation), we now have official confirmation - as is usual, through Intel's documentation. In this instance, the "culprit" is Intel's Microcode Revision Guidance. The Coffee Lake S series featuring 6+2 configurations are now listed with Core i5-9600(K), Core i5-9500(T) and the Core i5-9400, while the Core i3-9100 and Core i3-9000 SKUs are listed with a 4+2 configuration.

Update: Intel's 8th Gen Specification Update now lists clocks and core count for the aforementioned CPUs. Overall, there's an increased 100 or 200 MHz Max Turbo frequency across the board within the same TDP package, and some instances of 100 MHz base frequency increases over Intel's 8000 series CPUs (can't just call them 8th gen anymore now can we?). The 9600K, for example, increases base clocks from the 8600K by 100 MHz (up to 3.7 GHz base), but pole-vaults its predecessor in maximum Turbo (up to 4.5 GHz).

Intel 10 nm Process Increases Transistor Density by 2.7x Over 14 nm: Report

Intel's 10 nanometer FinFET silicon fabrication is coming together at a slower than expected rate, however when it does, it could vastly enlarge the canvas for the company's chip designers, according to a technical report by Tech Insights. The researchers removed the die of an Intel "Cannon Lake" Core i3-8121U processor inside a Lenovo Ideapad330, and put it under their electron microscope.

Its summary mentions quite a few juicy details of the 10 nm process. The biggest of these is the achievement of a 2.7-times increase in transistor density over the current 14 nm node, enabling Intel to cram up to 100.8 million transistors per square millimeter. A 127 mm² die with nothing but a sea of transistors, could have 12.8 billion transistors. Intel 10 nm node also utilizes third-generation FinFET technology, with a reduction in minimum gate pitch from 70 nm to 54 nm; and minimum metal pitch from 52 nm to 36 nm. 10 nm also sees Intel introduce metallization of cobalt in the bulk and anchor layers of the silicon substrate. Cobalt emerged as a good alternative to tungsten and copper as a contact material between layers, due to its lower resistance at smaller sizes,

Intel Z390 Platform, Intel Core i9 CPU Lineup Leaked?

According to a report from WCCFTech, Intel is prepping the release of the Z390 chipset and is gearing up to bring their Core i9 branding series to the mainstream desktop platforms. Apparently, Intel's renaming scheme serves as a way to add the required "branding impact" to the fact that the i9 series of processors is finally hitting the mainstream - but don't be deluded. As we've previously covered, Intel's Z390 chipset may well become a rebrand of sorts from the current Z370 chipset, after Intel found insufficient capacity at its 14 nm node (which has to cope with the vast majority of Intel silicon production, following the smattering of delays hitting its 10 nm process). Basically, Intel's Z390 chipset will bring forward features that weren't built on the Z370 chipset at its inception, but have since become part of Intel's lineup (read, for example, its H370 chipset): Intel Wireless-AC 802.11 AC and Bluetooth 5.0; Intel Wireless-AC Adapter; and up to 6 x USB 3.1 Gen 2 Ports.

According to WCCFTech, there's only confirmation of an 8-core, 16-thread CPU (Intel Core i9-9900K); a 6-core, 12-thread one (Intel Core i7-9700K) and a six-core, six-thread part (Intel Core i5-9600K ). No confirmation on an i3 part has been had yet, but it's very unlikely Intel has shelved that part of their lineup. A 4-core CPU is simply too important - from a yield perspective, mainly - for Intel to shelve it - and there's still enough demand for these, even with AMD's many-core democratization push.

Shuttle Introduces DH02U 1.3-liter Mini-PC with GeForce GTX 1050

Shuttle's product family of 1.3-liter PCs has a powerful new addition. As the first model in this format, the DH02U no longer relies solely on the graphics performance which is determined by the soldered-on processor. For the first time, the latter is supported by an NVIDIA GeForce GTX 1050 graphics chip with 4 GB of memory. This means that the DH02U is fast enough for fluent 3D visualization and to operate, via HDMI 2.0b, four high-resolution monitors in 4K at 60 Hz.
  • Suitable for ambient temperatures of up to 50 °C
  • Support for up to four 4K monitors
  • Available in two versions: with Intel Celeron or Intel Core i5 processor

Intel Shelves Z390 Express As We Knew It, Could Re-brand Z370 as Z390

Intel is rumored to have shelved the iteration of its upcoming Z390 Express chipset as earlier publicized, the one which had certain new hardware features. It could now re-brand the existing Z370 Express as Z390 Express and probably bolster its reference design with heftier CPU VRM specifications, to cope better with its upcoming 8-core LGA1151 processors. The Z370 Express is similar in feature-set to the brink of being identical to its predecessor, the Z270 Express. This move could impact certain new hardware features that were on the anvil, such as significantly more USB 3.1 gen 2/gen1 ports directly from the PCH, integrated WiFi MAC, and Intel SmartSound technology, which borrowed certain concepts from edge-computing to implement native speech-to-text conversion directly on the chipset, for improved voice control latency and reduced CPU overhead.

The reasons behind this move could be a combination of last-minute cost-benefit analyses by Intel's bean-counters, and having to mass-produce Z390 Express on the busier-than-expected 14 nm silicon fabrication node, as opposed to current 300-series chipsets being built on the 22 nm node that's nearing the end of its life-cycle. Intel probably needed the switch to 14 nm for the significant increases in transistor-counts arising from the additional USB controllers, the WiFi MAC, and the SmartSound logic. Intel probably doesn't have the vacant 14 nm node capacity needed to mass-produce the Z390 yet, as its transition to future processes such as 10 nm and 7 nm are still saddled with setbacks and delays; and redesigning the Z390 (as we knew it) on 22 nm may have emerged unfeasible (i.e. the chip may have ended up too big and/or too hot). The Z390 Express chipset block-diagram, which we published in our older article has been quietly removed from Intel's website. It's also rumored that this move could force AMD to rethink its plans to launch its Z490 socket AM4 chipset.

Thermaltake Intros Engine 17 "All Metal" Low-profile CPU Cooler

Back in 2011, a team of engineers with the Sandia National Laboratories in New Mexico, proposed an audacious new chip air-cooling concept called simply the Sandia CPU cooler. Its design involved a chunky metallic fan not just ventilating the cooler, but also dissipating heat by itself, conveyed through a thin layer of conductive lubricant between the fan and the static heatsink below it. The concept itself never made it to commercial production, but Thermaltake brought something closely resembling it to the market in 2016, with the Engine 27. The company is giving this cooler an even smaller sibling, with the new Engine 17. The number in the model name refers to its Z-height of just 17 mm, making it comfortable for 1U builds.

Besides its reduced Z-height, the design is practically unchanged from the Engine 27 - a round, nickel-plated copper base-plate draws heat from the CPU, which is mated with a 60 mm diameter metallic fan that not just dissipates heat by itself, but also passes air through a ring of aluminium fin channels projecting radially. The reduced height means that this cooler can only handle thermal loads of up to 35W TDP. It only supports Intel LGA115x sockets. Despite its weight, the fan spins between 1,500 to 2,500 RPM, pushing about 9 CFM of air, with a noise output ranging between 11 to 23 dBA. Measuring 91.5 mm x 91.5 mm x 17 mm, it weighs 205 g. The company didn't reveal pricing.

Intel CEO Brian Krzanich Resigns - For Having Sex With Colleague

Intel Corporation today announced the resignation of Brian Krzanich as CEO and a member of the board of directors. The board has named Chief Financial Officer Robert Swan interim chief executive officer, effective immediately.

Intel was recently informed that Mr. Krzanich had a past consensual relationship with an Intel employee. An ongoing investigation by internal and external counsel has confirmed a violation of Intel's non-fraternization policy, which applies to all managers. Given the expectation that all employees will respect Intel's values and adhere to the company's code of conduct, the board has accepted Mr. Krzanich's resignation.

OpenBSD Turns Off Hyper-Threading to Combat Intel CPU Security Issues

Lead developer for OpenBSD Mark Kettenis has announced that OpenBSD will no longer enable Hyper-Threading on Intel processors by default. This move is intended to mitigate security exploits from the Spectre ecosystem as well as TLB and cache timing attacks, because important processor resources are no longer shared between threads. Their suspicion is that some of the unreleased (or yet unknown) attacks can be stopped using this approach.

This move is supported by the fact that most newer motherboards no longer provide an option to disable Hyper-Threading via BIOS. OpenBSD users who still want to use Hyper-Threading can manually enable support for it using the sysctl hw.smt. The developers are also looking into expanding this feature to other CPUs from other vendors, should they be affected, too.

Raja Hires Larrabee Architect Tom Forsyth to Help With Intel GPU

A few months ago we reported that Raja Koduri has left AMD to work at Intel on their new discrete GPU project. Looks like he's building a strong team, with the most recent addition being Tom Forsyth who is the father of Larrabee, which was Intel's first attempt at making an x86-based graphics processor. While Larrabee did not achieve its goal and is considered a failure by many, it brought some interesting improvements to the world, for example AVX512, and is now sold under the Xeon Phi brand.

Tom, who has previously worked at Oculus, Valve, and 3DLabs posted on Twitter that he's joining Intel in Raja's group, but he's "Not entirely sure what he'll be working on just yet." At Oculus and Valve he worked on Virtual Reality projects, for example he wrote big chunks of the Team Fortress 2 VR support for the Oculus Rift. Taking a look at Tom's papers suggests that he might join the Intel team as lead for VR-related projects, as that's without a doubt one of Raja's favorite topics to talk about.

Intel: "If [AMD] Wanted an Intel Core i7-8086K CPU, [They] Could Have Just Asked Us"

Oh well, this almost makes us think of this industry as going hand in hand merrily, tongue-in-cheeking each other towards fulfilling, eternal happiness. It's a shame that this not usually the shape of our industry, but really, life isn't either, so let's keep our expectations in check. All in all, Intel's Twitter response to the viral, beautifully-crafted AMD initiative of exchanging one of Intel's commemorative 8086K CPUs for one of its Threadripper 1950X processors is equally satisfying - there's an unavoidable smile to be found while considering these two exchanges.

Kudos, Intel. Kudos for both companies for keeping it in a good spirit. If only we didn't have strange things such as Optane memory shenanigans going on concurrently...

Wishful Thinking, Disingenious Marketing: Intel's Optane Being Marketed as DRAM Memory

Intel's Optane products, based on the joint venture with Micron, have been hailed as the next step in memory technology - delivering, according to Intel's own pre-launch slides, a mid-tier, al-dente point between DRAM's performance and NAND's density and pricing. Intel even demoed their most avant-garde product in recent times (arguably, of course) - the 3D XPoint DIMM SSD. Essentially, a new storage contraption that would occupy vacant DIMM channels, delivering yet another tier of storage up for grabs for speed and space-hungry applications - accelerating workloads that would otherwise become constrained by the SATA or even NVMe protocol towards NAND drives.

Of course, that product was a way off; and that product still hasn't come to light. The marriage of Optane's density and speed with a users' DRAM subsystem is just wishful thinking at best, and the dreams of pairing DRAM and 3D Xpoint in the same memory subsystem and extracting the best of both worlds remains, well... A figment of the imagination. But not according to some retailers' websites, though. Apparently, the usage of Intel's Optane products as DRAM memory has already surfaced for some vendors - Dell and HP included. How strange, then, that this didn't come out with adequate pomp and circumstance.

Trade Your Intel Core i7-8086K for a Threadripper 1950X

AMD acknowledges Intel's contribution to the x86 architecture over the last 40 years. However, AMD is convinced that they are the leading company for future high-performance computing, and will "take it from here". That's why AMD will hold its own online sweepstakes to give the first 40 U.S.-based winners of the Intel sweepstakes the opportunity to swap their 6-core prize for a 16-core monster. To put things into perspective, the Ryzen Threadripper 1950X has 16 cores, 32 threads, 40 MB of cache, and 64 PCIe Gen3 lanes. Now that's something hard to pass up on! AMD's sweepstakes will go live on June 25 at 1:00:00 PM EDT. If you were one of the lucky Core i7-8086K winners and want to take up on AMD's offer, check this page for further details.

Update: Intel's response didn't take long. The company posted the following message to their Intel Gaming Twitter account: "if you wanted an Intel Core i7-8086K processor too, you could have just asked us. :)"

Lenovo Reveals ThinkPad P52 with Xeon Hexa-Core CPU and 128 GB of RAM

Lenovo recently announced its latest ThinkPad P52 mobile workstation designed for 3D rendering, content creation, and AI simulations. The laptop can be equipped with a 8th generation Intel Core or Xeon hexa-core processor. What's amazing with the Lenovo ThinkPad P52 is its ability to house up to 128 GB of DDR4 memory and 6 TB of storage. The P52 flaunts a 15.6-inch 4K display with a 10-bit color depth, 100% Adobe color gamut, and 400 nits of brightness. The laptop's graphics duties are delegated to a mobile high-end NVIDIA Quadro P3200 GPU with 6 GB of GDDR5 memory.

The ThinkPad P52 comes with two Thunderbolt 3 ports alongside three USB-A 3.1 Gen 1 ports, a HDMI 2.0 port, and a mini DisplayPort 1.4. It also comes with a Smart Card and an integrated 4-in-1 card reader. Internet connectivity includes a conventional RJ45 Gigabit Ethernet port, Intel Wireless-AC 9560 802.11ac adapter with integrated Bluetooth 5.0, and a Fibocomm 4G LTE (Cat 9) modem. The ThinkPad P52 isn't only fast, but it's probably one of the most secure mobile workstations to date. Lenovo implemented various security measures into the P52 such as TPM 2.0, IR camera, fingerprint reader, and ThinkShutter. The manufacturer didn't disclose the pricing of the ThinkPad P52. However, we'll find out soon as the laptop should be available by late June.

Intel Processors Hit by "Lazy FP State Restore" Vulnerability

Security researchers have discovered a vulnerability affecting all modern Intel Core and Xeon processors, which is an exploit of a performance optimization feature called "lazy FP state restore," which can be exploited to sniff out sensitive information, including cryptographic keys used to protect sensitive data. The flaw affects all x86 micro-architectures by Intel, "Sandy Bridge" and later.

The "lazy FP state restore" feature is a set of commands used to temporarily store or restore the FPU states of applications running "lazily" (as opposed to "eagerly"). Red Hat put out an advisory stating that numbers held in FPU registers could be used to access sensitive information about the activities of other applications, including encryption keys. Intel began working with popular OS vendors to quickly roll out software patches against the vulnerability.

ASUS Intros WS X299 SAGE 10G Motherboard with Dual 10GbE and Improved VRM

ASUS today introduced the WS X299 SAGE/10G, a step up variant of the WS X299 SAGE it launched back in Q4-2017. As you can tell from the model name, this board's star-attraction is 10 Gbps Ethernet. It features not one, but two 10 GbE interfaces, replacing the dual 1 GbE interfaces of the original. These interfaces aren't backed by low-cost controllers, but the Intel X550-AT2 "Sageville," which is an $80 chip by itself, and drives both interfaces.

ASUS also used the opportunity to improve the CPU VRM a bit. Although it's still the same combination of chokes and MOSFETs, pulling power from two 8-pin EPS connectors, ASUS improved the secondary VRM heatsink, which pulls heat from the main heatsink over a flattened heat-pipe. This heatsink is now made of a dense aluminium fin-stack like the main heatsink, a section of which protrudes all the way to the rear I/O shield. The rear I/O now consists of four USB 3.1 gen 1 ports, two USB 3.1 gen 2 ports (including a type-C port), and the 8-channel HD audio cluster, besides the two 10 GbE ports. The rest of the board's feature-set is unchanged from the original. We expect a $100 premium over the original's price.

Intel Readying 22-core LGA2066 and 8-core LGA1151 Processors

Intel is readying a refresh to its "Basin Falls" HEDT platform (LGA2066 client high-end desktop), with a new 22-core silicon. This part is neither Skylake HCC (20 tiles, up to 18 cores) nor Skylake XCC (30 tiles, up to 28 cores), but a new die with four more tiles than the Skylake HCC silicon, all of which are cores. The new silicon could let Intel design 20-core and 22-core SKUs for the X299 Express chipset, and is seen as a direct response to AMD's 24-core Ryzen Threadripper II processor, which was recently shown beating the 18-core i9-7980X in tech demos. The 32-core Threadripper II could face competition from the 28-core HEDT processor Intel is readying for Q4-2018, but that processor won't be compatible with LGA2066.

In related news, the company is giving finishing touches to a new 8-core "Coffee Lake" die for the mainstream-desktop platform (LGA1151 socket, 300-series chipset). This die features 8 cores, and likely 16 MB of shared L3 cache, while retaining the iGPU and uncore components from the existing Coffee Lake-S die. The chip could retain the classic "Ring Bus" design. The new 8-core mainstream-desktop SKUs, and at least two new high-end desktop SKUs (20-core and 22-core), could be launched in September 2018. The "Basin Falls" refresh, coupled with the new LGA3647 "Purley" derivative for the 28-core monstrosity, will be all Intel has to face AMD this year, with the company's next HEDT silicon, "Cascade Lake-X" being reportedly delayed to the second half of 2019, probably due to foundry problems.

Intel Starts Testing Smallest 'Spin Qubit' Chip for Quantum Computing

Intel researchers are taking new steps toward quantum computers by testing a tiny new "spin qubit" chip. The new chip was created in Intel's D1D Fab in Oregon using the same silicon manufacturing techniques that the company has perfected for creating billions of traditional computer chips. Smaller than a pencil's eraser, it is the tiniest quantum computing chip Intel has made.

The new spin qubit chip runs at the extremely low temperatures required for quantum computing: roughly 460 degrees below zero Fahrenheit - 250 times colder than space. The spin qubit chip does not contain transistors - the on/off switches that form the basis of today's computing devices - but qubits (short for "quantum bits") that can hold a single electron. The behavior of that single electron, which can be in multiple spin states simultaneously, offers vastly greater computing power than today's transistors, and is the basis of quantum computing.

HP Launches New ProBook x360 440 G1 Laptop

Today, HP is introducing the new HP ProBook x360 440 G1 laptop PC designed to adapt to the way growing businesses and on-the-go professionals work. Business owners and mobile professionals want a powerful convertible PC that delivers the business performance features required to help address their company needs - both in and outside the office. These are users with passion for business that need a versatile device which combines style, powerful processing, and "built for business" features to deliver enhanced business experiences that typically cannot be achieved with a consumer PC.

Powered by Windows 10 and high-performance 8th Gen Intel Core processors, the ultra-slim ProBook x360 440 delivers the power, security, and durability growing businesses demand in a versatile 360° design. Users can quickly turn thoughts into action with the optional HP Active Pen, and easily transition to desktop productivity with a single cable that supports docking via USB-C .

ASUS Announces VivoBook Flip 14 (TP412)

ASUS today announced VivoBook Flip 14 (TP412), a stylish new addition to the VivoBook Flip Series of convertible laptops featuring a 360°-flippable display that allows this versatile device to be used in laptop, stand, tent and tablet modes - or anything in between.

VivoBook Flip 14 features an ASUS NanoEdge touchscreen with a 6.15mm-thin bezel for more immersive viewing. Powered by up to an 8th Generation Intel Core i7 processor with 16GB memory for powerful and energy-efficient performance, VivoBook Flip 14 is also equipped with up to a 1TB SSD and a touchpad-mounted fingerprint sensor for one-touch login via Window Hello. VivoBook Flip 14 also supports the ASUS Pen active stylus for accurate input and writing with a natural, responsive feel.
Return to Keyword Browsing